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Consider the differential equation 

(1) y ( n )+/( t ,y) = o, 

where n is even and f(t, y) is subject to the following conditions: 

(a) f(t, y) is continuous on [0, oo)xJR; 
(2) (b) f(t, y) is nondecreasing in y for each fixed te[0,o°); 

(c) y/(t, y ) > 0 for y ̂ 0 and re[0,oo). 

By a proper solution of equation (1) we mean a function y : [Ty, <») —> R which 
satisfies (1) on [Ty, ») and sup{|y(f)| : r>T}>0 for any T > Ty. For second order 
equations the question of existence of proper solutions has been addressed by 
Coffman and Wong [5] and in references contained therein. The corresponding 
question for nth order equations does not seem to have been extensively 
studied (we know only of the work of Burton [3] and Kiguradze [10]). 
Accordingly the difficulties arising from the non-existence of proper solutions 
are not addressed here, but a standing hypothesis is that equation (1) does 
possess proper solutions. A proper solution of (1) is called oscillatory if it has 
arbitrarily large zeros, and it is called nonoscillatory otherwise. For brevity we 
say that equation (1) is oscillatory if every proper solution of (1) is oscillatory. 

We are interested in the problem of characterizing the oscillation of equation 
(1), that is, obtaining necessary and sufficient conditions for (1) to be oscillatory 
in the sense defined above. This problem was first studied in the fundamental 
paper of Atkinson [1], which was followed by Belohorec [2]. Their results are 
summarized in the following theorem. 

THEOREM 0. Consider the equation 

(3) y" + p ( 0 | y r s g n y = 0 , 

where Y > 0 and p(t) is positive and continuous on [0,°°). 
(i) (Atkinson) Let y > l . Then equation (3) is oscillatory if and only if 

tp(t)dt = <*>. 
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(ii) (Belohorec) Let 0 < y < l . Then equation (3) is oscillatory if and only if 

J fp(t)df = oo. 

Extensions of Theorem 0 to equation (1) have been undertaken by numerous 
authors; see, for example, Coffman and Wong [4, 5], Izjumova [6], Kiguradze 
[7, 8, 9], Licko and Svec [12], Macki and Wong [13], Onose [14], and Ryder 
and Wend [15]. Such extensions are based on the introduction of an approp­
riate class of superlinear [resp. sublinear] functions fit, y) including 
p(t) \y\y sgny with Y > 1 [resp. 0 < y < l ] as a particular case. 

The purpose of this paper is to give new definitions of superlinearity and 
sublinearity of f(t,y) which unify the corresponding definitions found in the 
literature, and to obtain a characterization for oscillation of equation (1) with 
such super- and sublinearity so as to cover all the known extensions of 
Theorem 0 to even order equations of the form (1). 

DEFINITION 1. The function f(t, y) is called superlinear if 

(4) ^^f¥\^<- -d f"^Z£id„<co 
J f(<p(u),u) J f(<p(u)9-u) 

for some constant c > 0 and every strictly increasing function (p(u)eC[(0,œ), 
(0, oo)] such that <p(w) f oo as u | oo. 

DEFINITION 2. The function /(t, y) is called sublinear if 

( 5 ) f f ^ u ^ ^ d u < œ and f y ; ^ ~ C ^ d u < œ 

for some constant c > 0 and every pair of strictly decreasing functions i/>(w), 
X(u)e C[(0, Ô), (0, oo)], 8 > 0 , such that ^(u) T oo and x(u) t °° as u | 0. 

We now state and prove our oscillation theorems. 

THEOREM 1. Letf(t,y) be superlinear. Then equation (1) is oscillatory if and 
only if 

(6) J r n " 1 | / ( ^c ) |d r = oo for every c^O. 

Proof. Let y(t) be a nonoscillatory solution of (1). We may suppose that y(t) 
is eventually positive, since a parallel argument holds if y(t) is eventually 
negative. Then there exists a T > 0 such that 

(7) y (° ̂  1' iS(n-}l)Î /(S' y(5)) ds + %'^l)\' T / (S' y(5)) dS 

for t > T. For the proof see, for example, Kusano and Onose [11]. In particular 
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we have 

(8) 

for t > T. Let u --

OSCILLA 

Jr (w-

= <I>(0. Since 

du_{t-T)"-1 

dt~ (n-1)! 

411 

/ ( t , y (0 )>0 , t>T, 

u =4>(t) has the inverse function, which we denote by t = <p(u). It is clear that 
<p{u) t °° as u t °°. Noting that fit, y(t))>/(f,<I>(f)) by 2(b) and (8), we have 

[Ht-Vr-l
f(. , . _ f'^f-Tr-%, /(f,c) 

(9) I 7^T)T/(t'c) dt s 1 l^i)T /«• v«» ji^m * 
aw 

4>i <tl) /(<P(M), w) 

for any t2 > t± > T and some c > 0. Letting t2 —» °° in (9) and using (4), we have 
for some c > 0 

r ( t _ T ) n - l ~ f{<p(u),c) , ^ 

Jtl ( n - 1 ) ! 4( t l ) /(<p("),w) 

which contradicts (6). 
Conversely, if (6) is not satisfied for some c^O, then we can solve the 

integral equation 

(10) y(0 = f + r{s~t)n~'f(s,y(s))ds 
2 Jt ( n - 1 ) ! 

by the method of successive approximations or via the Schauder-Tychonoff 
fixed point theorem. The solution of (10) is clearly a nonoscillatory solution of 
equation (1). This completes the proof of Theorem 1. 

THEOREM 2. Let f(t, y) be sublinear. Then equation (1) is oscillatory if and 
only if 

(11) J" \f(t,ctn-1)\dt = ™ forevery c^O. 

Proof. Let y(t) be a nonoscillatory solution of (1), which may be supposed 
positive without loss of generality. Then there exists a T > 0 such that (8) holds 
for t > T. Hence we have 

(12) y( t )>*, *> f&yisVds*'— f(s,y(s))ds 
( n - 1 ) ! Jt n! Jt 
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for t > T , provided T > T is sufficiently large. Put 

u=V(t) = — f f(s,y(s))ds 
n\ J, 

and denote its inverse function by t = ^ ( u ) . Since we must have y ( n _ 1 )(0 1 0 as 
t t °°> it is obvious that «^(u) t °° as u | 0 and du/dt = - / ( t , y(t))/n!. In view of 
2(b) and (12), we have f(t, y(t))>f(t, r""V(0) for f > T ' , and 

^ f'V(r cr-1)*- f'-/(^(0) fbcr-1) dt 

aw 
Ĵ , (t2) /(^(M), Mf-Hu)) 

for any f2> *i > T" and some c > 0 . Passing to the limit as t2 —> °° and using (5), 
we obtain from (13) that for some c > 0 

Jti J+0 f(it/(u),ui(fn l(u)) 

which contradicts (11). 
If (11) is violated for some c > 0 [resp. c < 0 ] , then equation (1) has a 

nonoscillatory solution y(f) satisfying limt_^00[y(f)/tn_1] = const > 0 [resp. < 0 ] 
which is obtained as a solution to the integral equation 

c f (t-s)n~2 f°° 
yC)^'""1*! \n-2)i J Ku>y(u»duds> 

where T > 0 is chosen suitably large. See also Kiguradze [6]. Thus the proof of 
Theorem 2 is complete. 

By way of examples, we note that f(t, y) = p(t, y)y(logy2)1+e satisfies our 
definition of superlinearity whenever e > 0 and p(t, y) is continuous on 
[0,oo]xR, nondecreasing in y, and satisfying yp(t, y ) > 0 for y^O. For then 
f(t, y) satisfies 2(a)-(c) and there exists a constant fc such that 

f(<p(u),c) _k n_ 2 1_e 
< - ( l o g W

2 ) -
f(<p(u), u) u 

for u>c and 

for - u < - c . In this case our generalization of Theorem 0 asserts that (1) is 
oscillatory if and only if f° tn~1p(t, c) dt = °° for every c ^ 0. Our definition of 
sublinearity also contains f(t,y) = p(t)\y\y sgn y whenever 0 < 7 < 1 and p(t) is 
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continuous and positive in JR. For then we have 

f(<p(u),cX(u)) = f(<p(u\-cX(u)) _ /c\y 

f(<p(u), ux(u)) f(<p(u), -ux(u)) \u I 

so that (5) is satisfied. 
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