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Equivalence of Besov spaces on p.c.f.
self-similar sets
Shiping Cao and Hua Qiu
Abstract. On post-critically finite self-similar sets, whose walk dimensions of diffusions are in
general larger than 2, we find a sharp region where two classes of Besov spaces, the heat Besov spaces
Bp,q

σ (K) and the Lipschitz–Besov spaces Λp,q
σ (K), are identical. In particular, we provide concrete

examples that Bp,q
σ (K) = Λp,q

σ (K)with σ > 1. Our method is purely analytical, and does not involve
heat kernel estimate.

1 Introduction

In this paper, we study the identity of two classes of Besov spaces on post-critically
finite (p.c.f.) self-similar sets with regular harmonic structure. One class is the heat
Besov spaces Bp,q

σ (K), defined with the Neumann Laplacian ΔN , which was intro-
duced in the study of Brownian motions on self-similar sets (see [5–7, 16, 30, 31]), and
was later extended to general p.c.f. self-similar sets in a purely analytical way by Kigami
[24, 25]. The heat Besov spaces Bp,q

σ (K) are defined as potential spaces following [23],

Bp,q
σ (K) = { f ∈ Lp(K) ∶ (∫

∞

0
(t−σ/2 ∥(tΔN)k Pt f ∥Lp(K))

q
dt/t)

1/q
< ∞} ,

where {Pt}t≥0 is the heat semigroup associated with ΔN . Here, we take the measure μ
to be self-similar and dH-regular with respect to the effective resistance metric R(⋅, ⋅)
on K, where dH is the Hausdorff dimension of K under R. The other class Λp,q

σ (K),
named Lipschitz–Besov spaces, is defined in terms of difference of functions

Λp,q
σ (K) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ∈ Lp(K) ∶

⎛
⎝∫

∞

0
(∫

K
t−dH∫

B t(x)

∣ f (x) − f (y)∣p
tσ pdW /2

dμ(y)dμ(x))
q/p dt

t
⎞
⎠

1/q

< ∞
⎫⎪⎪⎪⎬⎪⎪⎪⎭

for 1 ≤ q < ∞, and

Λp,∞
σ (K) = { f ∈ Lp(K) ∶ sup

t>0
(∫

K
t−dH ∫

B t(x)

∣ f (x) − f (y)∣p
tσ pdW/2

dμ(y)dμ(x)) < ∞} ,
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2 S. Cao and H. Qiu

where Bt(x) is the ball of radius t centered at x under the metric R, and dW = 1 + dH
is the walk dimension of the associated heat kernel. Roughly speaking, dH reflects
the growth of the measure, and dW reflects the speed of the diffusion process. There is
another exponent dS that will be involved in the study of Bp,q

σ (K) and Λp,q
σ (K), called

the spectral dimension. It is known that dS = 2dH
dW

and it reflects the asymptotical law of
the eigenvalue counting function associate with ΔN (see [26, 28]). More explanations
on general metric measure spaces can be found in [18].

The relationship between the two classes of Besov spaces Bp,q
σ (K) and Λp,q

σ (K)
has been a long-term problem [32] on general metric measure spaces, and whether
the identity

Bp,q
σ (K) = Λp,q

σ (K)(1.1)

holds is of particular interest. For p = q = 2 and 0 < σ < 1, when the Besov spaces coin-
cide with the Sobolev spaces, under some weak assumption of heat kernel estimates,
Hu and Zähle [23] showed that (1.1) holds, as well as Strichartz [35] obtained the same
result on products of p.c.f. self-similar sets at the same time. Later, Grigor’yan and Liu
proved that (1.1) holds for any 1 < p, q < ∞ and any 0 < σ < 2Θ

dW
∧ 1, where Θ denotes

the Hölder exponent of the heat kernel (see [19]). Note that on p.c.f. self-similar sets,
due to the sub-Gaussian heat kernel estimates (see [21, 29]), the existence of small
Hölder exponent Θ was shown in [18]. Until now, a larger region where (1.1) holds or
not is still hard to reach.

Recently, Cao and Grigor’yan made much progress on this problem (see [10, 11]).
They showed that (1.1) holds on a larger region, under the assumption of Gaussian
heat kernel estimates. Their work utilizes some new techniques, but the results and
ideas are restricted to the dW = 2 case. For the general dW > 2 case, the study is still
on going.

In this paper, we will focus on p.c.f. self-similar sets with regular harmonic
structures, which are a class of well-known fractals where sub-Gaussian heat kernel
estimates hold. In particular, we will describe a sharp region where (1.1) holds. See the
left panel of Figure 1.

More precisely, we introduce a critical curve C , for 1 ≤ p ≤ ∞,

C (p) = sup{σ > 0 ∶H0 ⊂ Λp,∞
σ (K)} ,

where H0 is the space of harmonic functions. Our main result in this paper is the
following theorem.

Theorem 1.1 For 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < σ < C (p), we have Bp,q
σ (K) =

Λp,q
σ (K), and their norms are equivalent. In addition,

C (p) = sup{σ > 0 ∶ Bp,q
σ (K) = Λp,q

σ (K), for some 1 ≤ q ≤ ∞} .

One important fact about the theorem is that the identical region of (1.1) is sharp.
Indeed, it is not hard to see that

Bp,q
σ (K) ≠ Λp,q

σ (K) if σ > C (p).

We will explain this in Proposition 3.2 at the beginning of Section 3.
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Equivalence of Besov spaces on p.c.f. self-similar sets 3

Figure 1: The sharp region for (1.1) and the possible area where C lies.

One may compare C (p) with another important critical exponent

σ #
p = inf

σ>0
{Λp,∞

σ (K) = constants} .

Though, for p = 2, we always have σ #
2 = 1 = C (2) [18], we have to say that σ #

p is not in
general equal to C (p). In fact, it has been shown that σ #

1 = dS in [4] for nested fractals,
while on the Sierpinski gasket, C (1) < dS is indicated by Theorems 5.1 and 5.2 of [4]
(also see Example 3 in Section 3 for a rough estimate by a simple calculation).

It is not hard to find a narrow region where C lives, see the right panel of
Figure 1 for an illustration. Although much information of C can be derived with
Proposition 5.6 in [2] and Theorem 3.11 in [4], to provide an intuitive understanding
of Theorem 1.1, and to make our exposition self-contained, we will provide a short,
elementary discussion on C in Section 3 (see Proposition 3.3). Write

L1(p) = dS

p
, L2(p) = 2 − dS

p′

with p′ = p
p−1 . L1 is naturally the critical line concerning the continuity of functions,

and L2 is the critical line concerning the Hölder continuity of functions and thus
the existence of normal derivatives at boundaries. In the authors’ related works
[12–14], there is a discussion on the role of these critical lines concerning the relation-
ship between Sobolev spaces and (heat) Besov spaces on p.c.f. self-similar sets with
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4 S. Cao and H. Qiu

different boundary conditions. We will see that the curve C is concave and increasing
w.r.t. 1

p , and in addition:
(1). for 1 ≤ p ≤ 2, 1 ≤ C (p) ≤ 2

dW
+ 2

p ⋅
dH−1
dW

,
(2). for 2 ≤ p ≤ ∞, 2

dW
+ 2

p ⋅
dH−1
dW
≤ C (p) ≤ 1 ∧L2(p).

See the right panel of Figure 1. In particular, it may happen that C (1) > 1 (for example,
it is true for the Vicsek set and the Sierpinski gasket in standard setting), so (1.1) even
holds in some cases when σ > 1. This is a surprising result which was not mentioned
in previous studies.

The exact characterization of the critical curve C , and the problem of whether the
identity (1.1) holds along C , are still out of reach, and are left to the future study. It is of
particular interest to see whether C (1) > 1 always holds when dW > 2. Despite of this,
we are able to fully describe the curve C for the class of Vicsek sets (see Example 2 in
Section 3).

At the end of this section, we mention that, due to the nested structure of p.c.f. self-
similar sets, discrete characterizations of function spaces play natural and essential
role throughout our study. This might also be a proper starting point for problems on
general metric measure spaces by involving suitable partitions (see [27]).

Now, we briefly introduce the structure of this paper. Section 2 will serve as the
background of this paper, where we introduce necessary knowledge and notations,
including the p.c.f. self-similar sets, the Dirichlet forms and Laplacians on fractals, and
the definitions of function spaces we consider here. In Section 3, we will discuss the
critical curve C and provide several examples. This will help readers to understand
the sharp region in the main theorem. In Section 4, we focus on the Lipschitz–
Besov spaces Λp,q

σ (K). We will provide two kinds of discrete type characterizations of
Λp,q

σ (K), which will serve as a main tool toward the main theorem. In Sections 5 and 6,
we prove the main theorem, Theorem 1.1. In particular, we will show that Λp,q

σ (K) ⊂
Bp,q

σ (K) for any 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < σ < 2 in Section 5. In Section 6, we
will prove the other direction, i.e., Bp,q

σ (K) ⊂ Λp,q
σ (K) with 1 < p < ∞, 1 ≤ q ≤ ∞ and

0 < σ < C (p).
Throughout the paper, we will always write f ≲ g if there is a constant C > 0 such

that f ≤ Cg when we do not emphasize the constant C. In addition, we write f ≍ g if
both f ≲ g and g ≲ f hold.

2 Preliminary

The analysis on p.c.f. self-similar sets was originally developed by Kigami in [25, 26].
For convenience of readers, in this section, first, we will briefly recall the constructions
of Dirichlet forms and Laplacians on p.c.f. fractals. We refer to books [26, 36] for
details. Then we will provide the definitions of the two classes of Besov spaces,
Bp,q

σ (K) and Λp,q
σ (K). There is a large literature on function spaces on fractals or on

more general metric measure spaces (see [2–4, 12–15, 17, 22, 34] and the references
therein).

Let {Fi}N
i=1 be a finite collection of contractions on a complete metric space (M, d).

The self-similar set associated with the iterated function system (i.f.s.) {Fi}N
i=1 is the
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Equivalence of Besov spaces on p.c.f. self-similar sets 5

unique compact set K ⊂M satisfying

K =
N
⋃
i=1

Fi K .

For m ≥ 1, we define Wm = {1, . . . , N}m the collection of words of length m, and for
each w ∈Wm , denote

Fw = Fw1 ○ Fw2 ○ ⋅ ⋅ ⋅ ○ Fwm .

Set W0 = ∅, and let W∗ = ⋃m≥0 Wm be the collection of all finite words. For w =
w1w2 . . . wm ∈W∗/W0, we write w∗ = w1w2 . . . wm−1 by deleting the last letter of w.

Define the shift space Σ = {1, 2, . . . , N}N. There is a continuous surjection
π ∶ Σ → K defined by

π(ω) = ⋂
m≥1

F[ω]m K ,

where for ω = ω1ω2 . . . in Σ we write [ω]m = ω1ω2 . . . ωm ∈Wm for each m ≥ 1. Let

CK = ⋃
i≠ j

Fi K ∩ F jK , C = π−1(CK), P = ⋃
n≥1

σ nC,

where σ is the shift map define as σ(ω1ω2 . . .) = ω2ω3 . . .. P is called the post-critical
set. Call K a p.c.f. self-similar set if #P < ∞. In what follows, we always assume that K
is a connected p.c.f. self-similar set.

Let V0 = π(P) and call it the boundary of K. For m ≥ 1, we always have Fw K ∩
Fw′K ⊂ Fw V0 ∩ Fw′V0 for any w ≠ w′ ∈Wm . Denote Vm = ⋃w∈Wm Fw V0, and let
l(Vm) = { f ∶ f maps Vm into C}. Write V∗ = ⋃m≥0 Vm .

Let H = (Hpq)p,q∈V0 be a symmetric linear operator(matrix). H is called a (discrete)
Laplacian on V0 if H is nonpositive definite; Hu = 0 if and only if u is constant on V0;
and Hpq ≥ 0 for any p ≠ q ∈ V0. Given a Laplacian H on V0 and a vector r = {r i}N

i=1
with r i > 0, 1 ≤ i ≤ N , define the (discrete) energy form on V0 by

E0( f , g) = −( f , Hg), ∀ f , g ∈ l(V0),

and inductively on Vm by

Em( f , g) =
N
∑
i=1

r−1
i Em−1( f ○ Fi , g ○ Fi), ∀ f , g ∈ l(Vm),

for m ≥ 1. Write Em( f , f ) = Em( f ) for short.
Say (H, r) is a harmonic structure if for any f ∈ l(V0),

E0( f ) =min{E1(g) ∶ g ∈ l(V1), g∣V0 = f }.

In this paper, we will always assume that there exists a harmonic structure associated
with K, and in addition, 0 < r i < 1 for all 1 ≤ i ≤ N . Call (H, r) a regular harmonic
structure on K. It is known that the question of when a p.c.f. self-similar set admits a
regular harmonic structure is nontrivial, for example, see [26, Section 3.1].

Now, for each f ∈ C(K), the sequence {Em( f )}m≥0 is nondecreasing. Let

E( f , g) = lim
m→∞

Em( f , g) and domE = { f ∈ C(K) ∶ E( f ) < ∞} ,
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6 S. Cao and H. Qiu

where f , g ∈ C(K) and we write E( f ) ∶= E( f , f ) for short. Call E( f ) the energy of f.
It is known that (E, domE) turns out to be a local regular Dirichlet form on L2(K , μ)
for any Radon measure μ on K.

An important feature of the form (E, domE) is the self-similar identity,

E( f , g) =
N
∑
i=1

r−1
i E( f ○ Fi , g ○ Fi), ∀ f , g ∈ domE.(2.1)

Furthermore, denote rw = rw1 rw2 . . . rwm for each w ∈Wm , m ≥ 0. Then, for m ≥ 1, we
have

Em( f , g) = ∑
w∈Wm

r−1
w E0( f ○ Fw , g ○ Fw), E( f , g) = ∑

w∈Wm

r−1
w E( f ○ Fw , g ○ Fw).

2.1 The Laplacian and harmonic functions

To study the Besov spaces on K, we need a suitable metric and a comparable measure.
Instead of the original metric d, a natural choice of metric is the effective resistance
metric R(⋅, ⋅) [26], which matches the form (E, domE).

Definition 2.1 For x , y ∈ K, the effective resistance metric R(x , y) between x and y is
defined by

R(x , y)−1 =min{E( f ) ∶ f ∈ domE, f (x) = 0, f (y) = 1} .

It is known that R is indeed a metric on K which is topologically equivalent
to the metric d, and for each w ∈W∗, we always have diam(Fw K) ≍ rw , where
diam(Fw K) =max{R(x , y) ∶ x , y ∈ Fw K}. For convenience, we normalize diamK to
be 1 and so that we additionally have diam(Fw K) ≤ rw ,∀w ∈W∗. For x ∈ K and t > 0,
we will use Bt(x) to denote a ball centered at x with radius t in the sense of metric R.

We will always choose the following self-similar measure μ on K.

Definition 2.2 Let μ be the unique self-similar measure on K satisfying

μ =
N
∑
i=1

rdH
i μ ○ F−1

i ,

and μ(K) = 1, where dH is determined by the equation∑N
i=1 rdH

i = 1.
In this paper, we also let dW = 1 + dH and dS = 2dH

dW
.

Clearly, dH is the Hausdorff dimension of K with respect to the metric R. Write
μ i ∶= rdH

i , then we have μ(Fw K) = μw ∶= μw1 μw2 . . . μwm for any m ≥ 0, w ∈Wm . In
addition, it is well known that

C−1 tdH ≤ μ (Bt(x)) ≤ CtdH

with some constant C independent of x , t.
The exponent dW is called the walk dimension, which appears as an important

index in the heat kernel estimates (see [21]). In this paper, dW = 1 + dH holds because
we use the resistance metric R. In general, this relationship is not true, for example,
on the Sierpinski gasket equipped the Euclidean metric, dW = log 5

log 2 , dH = log 3
log 2 , and
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Equivalence of Besov spaces on p.c.f. self-similar sets 7

so dW ≠ 1 + dH . The exponent dS is called the spectral dimension since it reflects the
asymptotic order of the eigenvalue counting function associated with the Dirichlet
form (E, domE) (see [26, Theorem 4.2.1].

With the Dirichlet form (E, domE) and the self-similar measure μ, we can define
the associated Laplacian on K with the weak formula.

Definition 2.3 (a). Let dom0E = {φ ∈ domE ∶ φ∣V0 = 0}. For f ∈ domE, say Δ f = u if

E( f , φ) = −∫
K

uφdμ, ∀φ ∈ dom0E.

(b). In addition, say ΔN f = u if

E( f , φ) = −∫
K

uφdμ, ∀φ ∈ domE.

Although, we will focus on Besov spaces (and Sobolev spaces) with Neumann
boundary condition in this paper, it is convenient to consider Δ instead of ΔN in the
proof, to enlarge the domain a little bit.

Definition 2.4 DefineH0 = {h ∈ domE ∶ Δh = 0}, and call h ∈H0 a harmonic func-
tion.

In fact,H0 is a finite dimensional space, and each h ∈H0 is uniquely determined by
its boundary value on V0. In particular, we can see that H0 is always in the Lp domain
of Δ for any 1 < p < ∞.

2.2 Besov spaces on K

In this paper, we consider the (heat) Besov spaces Bp,q
σ (K) with the Neumann

boundary condition. Recall that Pt = eΔN t , t > 0 is a heat operator associated with ΔN ,
and the Bessel potential can be defined as (1 − ΔN)−σ/2 = Γ(σ/2)−1 ∫

∞
0 tσ/2−1e−t Ptdt.

We define potential spaces on K as follows, following [23] and [34].

Definition 2.5 (a). For 1 < p < ∞, σ ≥ 0, define the Sobolev space

H p
σ(K) = (1 − ΔN)−σ/2Lp(K)

with norm ∥ f ∥H p
σ(K) = ∥(1 − ΔN)σ/2 f ∥Lp(K).

(b). For 1 < p < ∞, 1 ≤ q ≤ ∞ and σ > 0, define the heat Besov space

Bp,q
σ (K) = { f ∈ Lp(K) ∶ (∫

∞

0
(t−σ/2 ∥(tΔN)k Pt f ∥Lp(K))

q
dt/t)

1/q
< ∞}

with k ∈ N ∩ (σ/2,∞), and norm ∥ f ∥Bp,q
σ (K) = ∥ f ∥Lp(K) + (∫

∞
0 (t−σ/2∥(tΔN)k

Pt f ∥Lp(K))qdt/t)1/q . We take the usual modification when q = ∞.

Note that the above definition is independent of k, since different choices of k will
provide equivalent norms (see [19] for example). The heat Besov spaces are related
with Sobolev spaces by real interpolation. See book [20] for a proof, noticing that ΔN
is a sectorial operator. See also books [9, 38] for the real interpolation methods.
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8 S. Cao and H. Qiu

Lemma 2.6 Let σ1 > 0, 1 < p < ∞ and 1 ≤ q ≤ ∞. For 0 < θ < 1 and σθ = θσ1, we have

(Lp(K), H p
σ1(K))θ ,q = Bp,q

σθ (K).

In application, we will set σ1 = 2 in the above lemma, where H p
2 (K) =

domLp(K)ΔN ∶= { f ∈ Lp(K) ∶ ΔN f ∈ Lp(K)} (see Sections 5 and 6 for details).
Another class of function spaces that will be studied is the Lipschitz–Besov spaces,

whose definition does not rely on the Laplacian.

Definition 2.7 Let 1 ≤ p < ∞, t > 0 and f be a measurable function on K, we define

Ip( f , t) = (∫
K

t−dH ∫
B t(x)

∣ f (x) − f (y)∣pdμ(y)dμ(x))
1/p

.

In addition, we define I∞( f , t) = sup{∣ f (x) − f (y)∣ ∶ x , y ∈ K , R(x , y) < t}.

The Lipschitz–Besov spaces, denote by Λp,q
σ (K), are defined as follows.

Definition 2.8 For σ > 0 and 1 ≤ p, q ≤ ∞, we define

Λp,q
σ (K) = { f ∈ Lp(K) ∶ t−σ dW/2Ip( f , t) ∈ Lq

∗(0, 1]}

with norm

∥ f ∥Λp,q
σ (K) ∶= ∥ f ∥Lp(K) + ∥t−σ dW/2Ip( f , t)∥Lq

∗(0,1] ,

where ∥ f ∥Lq
∗(0,1] = (∫

1
0 ∣ f (t)∣q dt

t )
1/q

and we take the usual modification when q = ∞.

Remark 1 Since K is bounded, we can replace the integral of t over (0, 1]with (0,∞)
in the above definition.

Remark 2 Note that Ip( f , st) ≥ θ−dH/p Ip( f , t),∀s ∈ [1, θ] for each θ > 1 and 1 ≤
p ≤ ∞. We have ∥t−σ dW/2Ip( f , t)∥Lq

∗(0,1] ≍ ∥θ
m(σ dW/2)Ip( f , θ−m)∥l q , where ∥am∥l q =

(∑∞m=0 ∣am ∣q)1/q if q < ∞ and ∥am∥l∞ = supm≥0 ∣am ∣ for each sequence of real num-
bers am , m ≥ 0. The constants of “≍” depend only on p, K and the harmonic structure
(H, r).

Using the above equivalent norm, we can see

Λp,q1
σ (K) ⊂ Λp,q2

σ (K) for any σ > 0, 1 ≤ p ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞.

3 A critical curve

In this section, we introduce a critical curve C in the ( 1
p , σ)-parameter plane as

follows.

Definition 3.1 For 1 ≤ p ≤ ∞, we define C (p) = sup{σ > 0 ∶H0 ⊂ Λp,∞
σ (K)}.

The following proposition implies that Bp,q
σ (K) ≠ Λp,q

σ (K) when σ > C (p).

https://doi.org/10.4153/S0008414X23000330 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000330


Equivalence of Besov spaces on p.c.f. self-similar sets 9

Proposition 3.2 For 1 < p < ∞, 1 ≤ q ≤ ∞, σ > C (p), Bp,q
σ (K)/Λp,q

σ (K) ≠ ∅.

Proof Fix σ > C (p). First, by the definition of C (p) and by Remark 2 after
Definition 2.8, there is h ∈H0, such that h ∉ Λp,q

σ (K). Next, we choose m ≥ 1, w ∈Wm
such that Fw K ∩ V0 = ∅, and fix k ∈ N so that 2k > σ . Then one can find f ∈ H p

2k(K) ⊂
Bp,q

σ (K) such that f ○ Fw = h. The last step can be done by gluing together functions in
{g ○ Fw ∶ g ∈ domE, Δk g ∈ C(K)} with proper boundary conditions on different m-
cells. We can make f smooth enough, guaranteed by Theorem 4.3 of [33]. However,
f ∉ Λp,q

σ (K). To show this, we note that

Ip( f , t) = (∫
K

t−dH ∫
B t(x)

∣ f (x) − f (y)∣pdμ(y)dμ(x))
1/p

≥ (∫
Fw K

t−dH ∫
B t(x)∩Fw K

∣ f (x) − f (y)∣pdμ(y)dμ(x))
1/p

≥ μ2/p
w (∫

K
t−dH ∫

Bc1 ⋅t/rw (x)
∣ f ○ Fw(x) − f ○ Fw(y)∣pdμ(y)dμ(x))

1/p

= cdH/p
1 rdH/p

w Ip( f ○ Fw , c1r−1
w t) = cdH/p

1 rdH/p
w Ip(h, c1r−1

w t),

where we choose a finite positive constant c1 such that Fw (Bc1 t/rw (x)) ⊂
Bt (Fw(x)) for each x ∈ K. Hence, we see that ∥t−σ dW/2Ip( f , t)∥Lq

∗(0,1] = ∞ since
∥t−σ dW/2Ip(h, t)∥Lq

∗(0,1] = ∞. ∎

3.1 Two regions

In this part, we provide some qualitative behavior of the critical curve C . We begin
with the following easy observation.

Proposition 3.3 (a). The critical curve C is concave and increasing with respect to the
parameter 1

p . In addition, C (∞) = 2
dW

and C (2) = 1.
(b). For 1 ≤ p ≤ 2, we have 1 ≤ C (p) ≤ 1 + ( 2

p − 1)(dS − 1).
(c). For 2 ≤ p ≤ ∞, we have 1 + ( 2

p − 1)(dS − 1) ≤ C (p) ≤ 1 ∧ ( 2
dW
+ dS

p ).
See Figure 2 for an illustration.

Proof We remark that (b) and the lower bound in (c) can be derived by Proposi-
tion 5.6 in [2] and Theorem 3.11 in [4]. Since the proof is very short, we still provide
an elementary proof here for completeness.

Recall Definition 2.2 that dW = 1 + dH , dS = 2dH
dW

, and note that dS − 1 = 1 − 2
dW

.
(a). The observation that C (∞) = 2

dW
follows from the fact that 0 <

supx≠y
∣h(x)−h(y)∣

R(x , y) < ∞ for any nonconstant harmonic function h (see [37]). For
p = 2, it is well known that Λ2,∞

1 (K) = domE and Λ2,∞
σ (K) = constants provided

σ > 1 (see [18]), which gives C (2) = 1.
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10 S. Cao and H. Qiu

Figure 2: The critical curve C in the ( 1
p , σ)-parameter plane.

Next, let 1 ≤ p1 < p2 ≤ ∞, σ1 < C (p1) and σ2 < C (p2). Also, let s ∈ (0, 1), and let
1
p =

s
p1
+ 1−s

p2
and σ = sσ1 + (1 − s)σ2. Then, for any 0 < t ≤ 1 and h ∈H0, it holds that

(∫
K

t−dH ∫
B t(x)

∣h(x) − h(y)∣pdμ(y)dμ(x))
1/p

≤(∫
K

t−dH ∫
B t(x)

∣h(x) − h(y)∣s⋅p1/sdμ(y)dμ(x))
s/p1

⋅ (∫
K

t−dH ∫
B t(x)

∣h(x) − h(y)∣(1−s)⋅p2/(1−s)dμ(y)dμ(x))
(1−s)/p2

,

and thus t−σ dW/2Ip(h, t) ≤ t−σ dW/2Is
p1
(h, t)I(1−s)

p2 (h, t) ≤ ∥h∥s
Λp1 ,∞

σ1 (K)∥h∥
1−s
Λp2 ,∞

σ2 (K).

This implies H0 ⊂ Λp,∞
σ (K). Thus, we conclude C (p) ≥ sC (p1) + (1 − s)C (p2). So

C is concave.
Lastly, there is a constant C > 0 such that μ(Bt(x)) ≤ CtdH for any x ∈ K and t ∈

(0, 1]. Thus, for 1 ≤ p1 ≤ p2 < ∞ and 0 < t ≤ 1, it is easy to see

Ip1(h, t) ≤ CIp2(h, t)

by using the Hölder inequality. This implies that C is increasing with respect to 1
p .

(b). Part (b) is a consequence of part (a) and the fact that C (∞) = 2
dW

and C (2) = 1.
(c). Now, by part (a), we can conclude that 1 + ( 2

p − 1)(dS − 1) ≤ C (p) ≤ 1. It
remains to prove C (p) ≤ 2

dW
+ dS

p . We choose a nonconstant harmonic function h
such that h ○ F1 = r1h, whose existence is guaranteed by Theorem A.1.2 in [26]. For
any n ≥ 0, we see that
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Ip(h, rn
1 ) = (∫K

μ−n
1 ∫

Brn
1
(x)
∣h(x) − h(y)∣pdμ(y)dμ(x))

1/p

≥ (∫
Fn

1 K
μ−n

1 ∫
Brn

1
(x)
∣h(x) − h(y)∣pdμ(y)dμ(x))

1/p

≥ rn
1 μn/p

1 (∫
K
∫

K
∣h(x) − h(y)∣pdμ(y)dμ(x))

1/p
.

This implies that r−C (p)dW/2
1 r1+dH/p

1 ≤ 1, and thus C (p) ≤ 2
dW
+ dS

p . ∎

Remark (a). When dW = 2, which happens when dH = 1 for the setting of the paper,
we can see that C (p) ≡ 1 for p ∈ [1,∞] by Proposition 3.3(b),(c) as dS = 1. This may
happen when K is the unit interval, but to the best of the authors knowledge, it is
unclear whether there are other interesting examples of p.c.f. self-similar sets.

(b). When dW > 2, which happens when dH > 1 for the setting of the paper, we
can see C (∞) < 1 by Proposition 3.3(c). So according to Proposition 3.2, Bp,q

σ (K) =
Λp,q

σ (K) does not hold for some large p and σ < 1.
(c). For 1 < p < 2, it is possible that Bp,q

σ (K) = Λp,q
σ (K) for some σ > 1. See the next

subsection for examples with C (1) > 1.

There are two more critical lines L1, L2 in the ( 1
p , σ)-parameter plane, that are of

interest, with

L1(p) = dS

p
and L2(p) = 2 − dS

p′
,

where p′ = p
p−1 . See Figure 3 for an illustration for the positions of C , L1, and L2.

In particular, as illustrated in [18, 23, 34], the Sobolev spaces H p
σ(K) and the heat

Besov spaces Bp,q
σ (K) are embedded in C(K) when the parameter point ( 1

p , σ) is
above L1, and these function spaces with or without Neumann condition coincide if
( 1

p , σ) is below L2 (see [12–14]), which clearly covers the parameter region below C

by Proposition 3.3.
In this paper, we are most interested in the region σ < C (p), and we can see that

C and L1 intersect at some point with 1 ≤ p ≤ dS by Proposition 3.3. In particular, we
divide the region below C into two parts (see Figure 4 for an illustration).

Region 1. A1 ∶= {( 1
p , σ) ∶ 1 < p < ∞ and L1(p) < σ < C (p)};

Region 2. A2 ∶= {( 1
p , σ) ∶ 1 < p < ∞ and 0 < σ <L1(p) ∧C (p)}.

We will apply different methods when considering these two regions, for the proof
of Bp,q

σ (K) ⊂ Λp,q
σ (K). The border between the two regions can be dealt with by using

real interpolation.
The reason that we need to divide the region σ < C (p) in this manner is due to the

existence of the region C (p) < σ <L1(p)when C (1) < dS . For example, this happens
for the Sierpinski gasket, see the next subsection.
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12 S. Cao and H. Qiu

Figure 3: The critical curves L1 , L2 , and C .

Figure 4: The regions A1 and A2.

3.2 Examples

In this subsection, we look at some typical p.c.f. self-similar sets, and describe their
critical curves C or provide some rough estimates.

Example 1 The unit interval I = [0, 1], generated by F1(x) = x
2 , F2(x) = x

2 +
1
2 , is a

simplest example of p.c.f. self-similar sets. We equip I with the standard Laplacian,
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Figure 5: The Vicsek set V.

then it has walk dimension dW = 2 and spectral dimension dS = 1. So the critical
curve is simply a horizontal line segment, C (p) ≡ 1, as pointed out in the remark after
Proposition 3.3.

Example 2 A more interesting example is the Vicsek set V. For this example, we show
that

C (p) = 1 + ( 2
p
− 1)(dS − 1) = 2 log 3

log 15
+ 2

p
⋅ log 5 − log 3

log 15
,(3.1)

which corresponds to equality in two of the inequalities of Proposition 3.3(b),(c),
specifically that C (p) is the line through (p = ∞, σ = 2

dW
), (p = 2, σ = 1), and (p = 1,

σ = dS ). See a similar consideration in [1]. In the following, we state the definition of
V and show (3.1).

Let {q i}4
i=1 be the four vertices of a square in R

2, and let q5 be the center of the
square. Define an i.f.s. {Fi}5

i=1 by

Fi(x) =
1
3
(x − q i) + q i , for 1 ≤ i ≤ 5.

The Vicsek set V is then the unique compact set in the square such that V = ⋃5
i=1 FiV

(see Figure 5).
We equip V with the fully symmetric measure μ and energy form (E, domE).

In particular, μ is chosen to be the normalized Hausdorff measure on V. As for
(E, domE), recall that it could be defined first on discrete graphs on Vm ’s then passing
to the limit. Note that Vm = ⋃w∈Wm Fw V0, where V0 = {q1 , q2 , q3 , q4} is the boundary
ofV. For convenience of the later calculation, we instead to use an equivalent definition
of (E, domE) by involving the point q5 in the graph energy forms, i.e., letting Ṽ0 =
{q i}5

i=1 and Ṽm = ⋃w∈Wm Fw Ṽ0, and defining the energy form on Ṽ0 to be

Ẽ0( f , g) =
4
∑
i=1
( f (q i) − f (q5)) (g(q i) − g(q5)) ,

and iteratively Ẽm( f , g) = 3∑5
i=1 Ẽm−1( f ○ Fi , g ○ Fi) on Ṽm , which still approximate

(E, domE) on V. In particular, we have r = 1
3 , and in addition,
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14 S. Cao and H. Qiu

Figure 6: A harmonic function h on V with boundary value h(q1) = a, h(q2) = b, h(q3) = c,
h(q4) = d, and e = h(q5) = (a + b + c + d)/4.

dH =
log 5
log 3

, dW = 1 + dH =
log 15
log 3

, dS =
2dH

dW
= 2 log 5

log 15
.

In particular, for h ∈H0 and t ∈ (0, 1], we are interested in the estimate of I1(h, t).
We denote by∑x∼m y ∣h(x) − h(y)∣ the sum of absolute differences of h over edges of
level m, where x ∼m y means that there exist a word w ∈Wm and an 1 ≤ i ≤ 4 such that
x = Fw q i and y = Fw q5. Since H0 is of finite dimension, it is not hard to check that

∑
x∼m y

∣h(x) − h(y)∣ ≍ 5m I1(h, 3−m) = 3mdH I1(h, 3−m).

On the other hand, due to the harmonic extension algorithm as shown in Figure 6, we
immediately have

∑
x∼m y

∣h(x) − h(y)∣ =
4
∑
i=1
∣ f (q i) − f (q5)∣, ∀m ≥ 0.

So supm≥0 3mdS dW/2I1(h, 3−m) ≲ ∥h∥∞, which means h ∈ Λ1,∞
dS
(V). Thus, C (1) = dS

by applying Proposition 3.3(b). This determines the formula of C (p) in (3.1), using
Proposition 3.3(a).

The above description of C is also valid for a general (2k + 1)-Vicsek set with k ≥ 1,
which is generated by an i.f.s. of 4k + 1 contractions, such that each of the two cross
directions of the fractal consists of 2k + 1 sub-cells. We omit the details. Before ending,
we refer to a recent study by Baudoin and Chen [8] on the equivalent Sobolev space
characterization of the domain of p-energies on V.

Example 3 The next example is the Sierpinski gasket SG. Let {q i}3
i=0 be the three

vertices of an equilateral triangle in R
2, and define an i.f.s. {Fi}3

i=1 by

Fi(x) =
1
2
(x − q i) + q i , for 1 ≤ i ≤ 3.

The Sierpinski gasket SG is the unique compact set in R
2 such that SG = ⋃3

i=1 FiSG

(see Figure 7).

https://doi.org/10.4153/S0008414X23000330 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000330


Equivalence of Besov spaces on p.c.f. self-similar sets 15

Figure 7: The Sierpinski gasket SG.

On SG, we take the normalized Hausdorff measure μ and the standard energy form
(E, domE) satisfying

E( f , g) = 5
3

3
∑
i=1

E( f ○ Fi , g ○ Fi), ∀ f , g ∈ domE.

In particular, we have r = 3
5 , and in addition,

dH =
log 3

log 5 − log 3
, dW = 1 + dH =

log 5
log 5 − log 3

, dS =
2dH

dW
= 2 log 3

log 5
≈ 1.36521.

It seems hard to get the exact formula of C (p). However, by a simple calculation, we
can see that C (p) is indeed a “curve” by observing that 1 < C (1) < dS , and then using
Proposition 3.3. In fact, this can be verified by estimating the maximal exponential
growth ratio of ∑x∼m y ∣h(x) − h(y)∣ as m →∞, which should be rC (1)dW/2−dH for
harmonic functions h on SG. Since any harmonic function h is a combination of
h1 , h2 , h3 with h i(q j) = δ i , j , by calculating∑x∼m y ∣h1(x) − h1(y)∣ with m = 3, we see
that

1.02 < C (1) < 1.14.

Lastly, we remark that the fact 1 < C (1) < dS is also indicated by Theorem 5.2 of [4].

4 Discrete characterizations of Λp,q
σ (K)

In this section, we will provide some discrete characterizations of the Lipschitz–Besov
spaces Λp,q

σ (K). These characterizations will provide great convenience in proving
Theorem 1.1. In particular, they heavily rely on the nested structure of K.

Definition 4.1 (a). For m ≥ 0, define Λm = {w ∈W∗ ∶ rw ≤ rm < rw∗} with r =
min1≤i≤N r i . In particular, we denote Λ0 = {∅}.

(b). Define VΛm = ⋃w∈Λm Fw V0 for m ≥ 0, and denote

V̊Λm =
⎧⎪⎪⎨⎪⎪⎩

V0 , if m = 0,
VΛm/VΛm−1 , if m ≥ 1.
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In the rest of this section, we will consider two kinds of discrete characterizations
of Λp,q

σ (K), basing on the cell graphs approximation and vertex graphs approximation
of K, respectively.

4.1 A Haar series expansion

We begin with a Haar series expansion of a function. We classify Haar functions on K
into different levels based on the partition Λm .

Definition 4.2 (a). For each f ∈ L1(K), we define Ew( f ) = 1
μw ∫Fw K f dμ, and write

E[ f ∣Λm] = ∑
w∈Λm

Ew( f )1Fw K , m ≥ 0,

which can be understood as the conditional expectation of f with respect to the sigma
algebra generated by the collection {Fw K ∶ w ∈ Λm}. In addition, we write

Ẽ[ f ∣Λm] =
⎧⎪⎪⎨⎪⎪⎩

E[ f ∣Λ0], if m = 0,
E[ f ∣Λm] − E[ f ∣Λm−1], if m ≥ 1.

(b). Define J̃m = {Ẽ[ f ∣Λm] ∶ f ∈ L1(K)}, and call J̃m the space of level-m Haar
functions.

It is easy to see that, for m ≥ 1, J̃m consists of functions u which are piecewise
constant on {Fw K ∶ w ∈ Λm}, and satisfy E[u∣Λm−1] = 0. We have the following
estimates.

Lemma 4.3 Let f ∈ Lp(K) with 1 < p < ∞ and u ∈ J̃m with m ≥ 0. Then:
(a). ∥Ẽ[ f ∣Λm]∥Lp(K) ≤ CIp( f , rm−1) for any m ≥ 1.
(b). Ip( f , t) ≤ C∥ f ∥Lp(K) for any 0 < t ≤ 1.
(c). Ip(u, rn) ≤ Cr(n−m)dH/p∥u∥Lp(K) for any n ≥ m.
The constant C can be chosen to be independent of f , u, and p.

Proof (a). For each point x ∈ K/VΛm , we define ZΛm(x) = Fw K with w ∈ Λm such
that x ∈ Fw K. Clearly, we have ZΛm(x) ⊂ Brm(x) since the diameter of each cell
Fw K , w ∈ Λm is at most rm . For m ≥ 1, we have

∥Ẽ[ f ∣Λm]∥Lp(K) = (∫K
∣E[ f ∣Λm](x) − E[ f ∣Λm−1](x)∣pdμ(x))

1/p

≤ (∫
K
∣ f (x) − E[ f ∣Λm−1](x)∣pdμ(x))

1/p

≤ (∫
K
(μ−1

ZΛm−1(x) ∫ZΛm−1(x)

∣ f (x) − f (y)∣pdμ(y)) dμ(x))
1/p

≤ (∫
K

r−mdH ∫
Brm−1 (x)

∣ f (x) − f (y)∣pdμ(y)dμ(x))
1/p

≤ CIp( f , rm−1),

where we ignore the finitely many points in VΛm in the above estimate.
(b) is obvious, and C only depends on the estimate μ(Bt(x)) ≲ tdH .

https://doi.org/10.4153/S0008414X23000330 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000330


Equivalence of Besov spaces on p.c.f. self-similar sets 17

(c). First, we have the estimate that

∥u∥Lp(K) =
⎛
⎝ ∑w∈Λm

μw ∣Ew(u)∣p
⎞
⎠

1/p

≥
⎛
⎝

r(m+1)dH ∑
w∈Λm

∣Ew(u)∣p
⎞
⎠

1/p

≳ rmdH/p ⎛
⎝ ∑

w∼w′ in Λm

∣Ew(u) − Ew′(u)∣p
⎞
⎠

1/p

,

(4.1)

where we write w ∼ w′ if w ≠ w′ and Fw K ∩ Fw′K ≠ ∅, and use the fact that #{w′ ∈
Λm ∶ w′ ∼ w} ≤ #V0#C for any w ∈ Λm .

Next, notice that there is k > 0 such that R(x , y) > rn for any m ≥ 0, n ≥ m +
k and x ∈ Fw K , y ∈ Fw′K with Fw K ∩ Fw′K = ∅, w , w′ ∈ Λm . It suffices to consider
n ≥ m + k, since for n < m + k we have (b). For n ≥ m + k, we have the estimate

Ip(u, rn) = (∫
K

r−ndH ∫
Brn (x)

∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p

≍ (∬
R(x , y)<rn

r−ndH ∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p

=
⎛
⎝ ∑

w∼w′ in Λm

∬
{x∈Fw K , y∈Fw′K∶R(x , y)<rn}

r−ndH ∣u(x) − u(y)∣pdμ(y)dμ(x)
⎞
⎠

1/p

≲
⎛
⎝

rndH ∑
w∼w′ in Λm

∣Ew(u) − Ew′(u)∣p
⎞
⎠

1/p

.

Combining this with the estimate (4.1), we get (c). ∎

Using Lemma 4.3, we can prove a Haar function decomposition of the spaces
Λp,q

σ (K) for 0 < σ <L1(p).

Proposition 4.4 For 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < σ <L1(p) = dS
p , we have

f ∈ Λp,q
σ (K) if and only if ∥r−mσ dW/2∥Ẽ[ f ∣Λm]∥Lp(K)∥l q < ∞. In addition,

∥ f ∥Λp,q
σ (K) ≍ ∥r

−mσ dW/2∥Ẽ[ f ∣Λm]∥Lp(K)∥l q .

Proof We first observe that

∥ f ∥Λp,q
σ (K) =∥ f ∥Lp(K)+ ∥t−σ dW/2Ip( f , t)∥Lq

∗(0,1) ≍∥ f ∥Lp(K)+∥r−mσ dW/2Ip( f , rm)∥l q .
(4.2)

By using Lemma 4.3(a), we then easily see that

∥r−mσ dW/2∥Ẽ[ f ∣Λm]∥Lp(K)∥l q ≲ ∥ f ∥Λp,q
σ (K).

For the other direction, we write fm = Ẽ[ f ∣Λm] for m ≥ 0, and assume that

∥r−mσ dW/2∥ fm∥Lp(K)∥l q < ∞.
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First of all, by the Martingale convergence theorem, we see that E[ f ∣Λm′] =
∑m′

m=0 fm → f strongly in Lp(K) as m′ →∞, so

∥ f ∥Lp(K) = lim
m′→∞

∥E[ f ∣Λm′]∥Lp(K) ≤
∞

∑
m=0
∥ fm∥Lp(K)

≤ ∥rmσ dW/2∥l q′ ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q

(4.3)

with q′ = q
q−1 . Next, we notice that

∥r−mσ dW/2Ip( f , rm)∥l q ≤ ∥
m−1
∑
n=0

r−mσ dW/2Ip( fn , rm)∥
l q

+ ∥
∞

∑
n=m

r−mσ dW/2Ip( fn , rm)∥
l q

(4.4)

with

∥
m−1
∑
n=0

r−mσ dW/2Ip( fn , rm)∥
l q

≲ ∥
m−1
∑
n=0

r−mσ dW/2+(m−n)dH/p∥ fn∥Lp(K)∥
l q

= ∥
m
∑
n=1

r−mσ dW/2+ndH/p∥ fm−n∥Lp(K)∥
l q

= ∥
m
∑
n=1

r−(m−n)σ dW/2+n(dH/p−σ dW/2)∥ fm−n∥Lp(K)∥
l q

≤ (
∞

∑
n=1

rn(dH/p−σ dW/2)) ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q

(4.5)

by using Lemma 4.3(c) and the Minkowski inequality, and

∥
∞

∑
n=m

r−mσ dW/2Ip( fn , rm)∥
l q

≲ ∥
∞

∑
n=m

r−mσ dW/2∥ fn∥Lp(K)∥
l q

= ∥
∞

∑
n=0

r−mσ dW/2∥ fn+m∥Lp(K)∥
l q

≤ (
∞

∑
n=0

rnσ dW/2) ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q

(4.6)

by using Lemma 4.3(b) and the Minkowski inequality again.
Combining equations 4.2–4.6, and noticing that 0 < σ < dS

p , we get

∥ f ∥Λp,q
σ (K) ≲ ∥r

−mσ dW/2∥ fm∥Lp(K)∥l q .

The proposition follows. ∎

4.2 Graph Laplacians and a tent function decomposition

Now, we turn to the case when σ >L1(p). In this case, we have Bp,q
σ (K) ⊂ C(K) as a

well-known result[23], and we would expect this to happen for Λp,q
σ (K). This can be

easily seen from the following lemma.
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Lemma 4.5 Let 1 < p < ∞ and f ∈ Lp(K), we define EB t(x)( f ) = 1
μ(B t(x)) ∫B t(x) f dμ

for any x ∈ K and 0 < t ≤ 1. Then we have:
(a). If {x j}n

j=1 ⊂ K is a finite set of points such that ∑n
j=1 1Br t(x j) ≤ λ for some finite

number λ < ∞, then

⎛
⎝

n
∑
j=1
∣EB t(x j)( f ) − EBr t(x j)( f )∣p

⎞
⎠

1/p

≲ λ1/p t−dH/pIp ( f , (r + 1)t) .

(b). For 1 ≤ q ≤ ∞, Λp,q
σ (K) ⊂ Cσ dW/2−dH/p(K) for σ > dS

p , where Cσ dW/2−dH/p(K)
denotes the space of Hölder continuous functions on (K , R) with exponent σdW/2 −
dH/p.

Proof (a) follows from a direct estimate,

⎛
⎝

n
∑
j=1
∣EB t(x j)( f ) − EBr t(x j)( f )∣p

⎞
⎠

1/p

≲t−dH/p ⎛
⎝

n
∑
j=1
∫

Br t(x j)
∣ f (y) − EB t(x j)( f )∣pdμ(y)

⎞
⎠

1/p

≲t−dH/p ⎛
⎝

n
∑
j=1
∫

Br t(x j)
((r + 1)t)−dH ∫

B(r+1)t(y)
∣ f (y) − f (z)∣pdμ(z)dμ(y)

⎞
⎠

1/p

≤λ1/p t−dH/pIp ( f , (r + 1)t) .

(b). Let f ∈ Λp,q
σ (K). By the Lebesgue differentiation theorem, we know that

f (x) = limm→∞ EBrm (x)( f ) for μ-a.e. x ∈ K. For such x and m ≥ 0,

∣ f (x) − EBrm (x)( f )∣ ≤
∞

∑
n=m
∣EBrn (x)( f ) − EBr⋅rn (x)( f )∣

≤ C1
∞

∑
n=m

r−ndH/pIp ( f , ((r + 1)rn) ∧ 1) ≤ C2rm(σ dW/2−dH/p)∥ f ∥Λp,q
σ (K) ,

where we apply the special case of (a) with one point, one ball and λ = 1 in the
second inequality, and we use the fact that σ dW

2 > dH
p in the last inequality. Next, we

fix x , y ∈ K such that f (x) = limm→∞ EBrm (x)( f ), f (y) = limm→∞ EBrm (y)( f ) and
rm+1 < R(x , y) ≤ rm for some m ≥ 0. Choose k > 0 such that rk < 1/2 and let m′ =
(m − k) ∨ 0. It is not hard to see that

∣EBrm (x)( f ) − EBrm (y)( f )∣ ≤ C3r−mdH/pIp( f , rm′) ≤ C4rm(σ dW/2−dH/p)∥ f ∥Λp,q
σ (K) .

Combining the above two estimates, we can see that

∣ f (x) − f (y)∣ ≤ (2C2 + C4)rm(σ dW/2−dH/p)∥ f ∥Λp,q
σ (K)

≤ C5∥ f ∥Λp,q
σ (K) ⋅ (R(x , y))σ dW/2−dH/p .

Since the above estimate holds for μ-a.e. x , y ∈ K, there exists a Hölder continuous
version of f, and the Hölder exponent is σdW/2 − dH/p. ∎
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In addition, we will have a characterization of Λp,q
σ (K) based on the discrete

Laplacian on Λm for L1(p) < σ < C (p).

Definition 4.6 (a). For m ≥ 0, define the graph energy form on VΛm by

EΛm( f , g) = ∑
w∈Λm

r−1
w E0( f ○ Fw , g ○ Fw), ∀ f , g ∈ l(VΛm).

(b). Define HΛm ∶ l(VΛm) → l(VΛm) the graph Laplacian associated with EΛm , i.e.,

EΛm( f , g) = − < HΛm f , g >l 2(VΛm )
= − < f , HΛm g >l 2(VΛm )

, ∀ f , g ∈ l(VΛm),

where l 2(VΛm) stands for the discrete l 2 inner product over VΛm with the counting
measure.

(c). For m ≥ 1, define Jm = { f ∈ C(K) ∶ f is harmonic in Fw K ,∀w ∈ Λm , and
f ∣VΛm−1

= 0}, and call Jm the space of level-m tent functions. For convenience, set
J0 =H0.

(d). For 1 < p < ∞, 1 ≤ q ≤ ∞ and σ > dS
p , define

Λp,q
σ ,(1)(K) = { f ∈ C(K) ∶ {rm(−σ dW/2+1+dH/p)∥HΛm f ∥l p(VΛm )

} ∈ l q}

with norm ∥ f ∥Λp,q
σ ,(1)(K)

= ∥ f ∥Lp(K) + ∥rm(−σ dW/2+1+dH/p)∥HΛm f ∥l p(VΛm )
∥l q .

For each f ∈ C(K), clearly f admits a unique expansion in terms of tent functions
f = ∑∞m=0 fm with fm ∈ Jm ,∀m ≥ 0.

Before proceeding, let’s first collect some easy observations. Recall the notation
V̊Λm from Definition 4.1.

Lemma 4.7 Let 1 < p < ∞ and u ∈ Jm with m ≥ 0.
(a). HΛn u∣V̊Λn

= 0 for any n > m.
(b). ∥u∥Lp(K) ≍ rm(1+dH/p)∥HΛm u∥l p(V̊Λm )

≍ rm(1+dH/p)∥HΛm u∥l p(VΛm )
for m ≥ 1.

(c). For any σ < C (p), we have Ip(u, rn) ≤ Cr(n−m)σ dW/2∥u∥Lp(K) for all n ≥ m.

Proof (a) is trivial since u is harmonic on V̊Λn by definition.
(b). First, we see the following estimate between Lp(K) and l p(V̊Λm) (or l p(VΛm))

norm.

∥u∥Lp(K) =
⎛
⎝ ∑w∈Λm

μw∥u ○ Fw∥p
Lp(K)

⎞
⎠

1/p

≍ rmdH/p ⎛
⎝ ∑w∈Λm

∥u ○ Fw∥p
Lp(K)

⎞
⎠

1/p

≍ rmdH/p
⎛
⎜
⎝
∑

x∈V̊Λm

∣u(x)∣p
⎞
⎟
⎠

1/p

= rmdH/p∥u∥l p(V̊Λm )
= rmdH/p∥u∥l p(VΛm )

.
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To proceed, on one hand, we notice that ∥HΛm u∥l p(VΛm )
≲ r−m∥u∥l p(VΛm )

since

∥HΛm u∥l p(VΛm )
=
⎛
⎝ ∑x∈VΛm

⎛
⎝ ∑

w∈Λm ∶Fw V0∋x
r−1

w ∑
y∈Fw V0

H(F−1
w x)(F−1

w y) (u(x) − u(y))
⎞
⎠

p
⎞
⎠

1/p

≲
⎛
⎝ ∑x∈VΛm

⎛
⎝ ∑

w∈VΛm ∶Fw V0∋x
r−1

w ∑
y∈Fw V0

u(x)
⎞
⎠

p
⎞
⎠

1/p

≲ r−m∥u∥l p(VΛm )
,

where we recall that H = (Hpq)p,q∈V0 is the Laplacian matrix associated with E0. On
the other hand, noticing that there are essentially finitely many different types of
Fw K ∩ V̊Λm , w ∈ Λm−1, we see that ∥HΛm u∥l p(V̊Λm∩Fw K) ≍ r−m∥u∥l p(V̊Λm∩Fw K) with “≍”
independent of w ∈ Λm−1 , m ≥ 1, so by taking summation,

∥HΛm u∥l p(VΛm )
≥ ∥HΛm u∥l p(V̊Λm )

≍ r−m∥u∥l p(V̊Λm )
.

(b) follows by combining the above three estimates.
(c). For m = 0, the result trivially follows from the definition of C (p). It suffices

to consider m ≥ 1 case. Choose k such that R(x , y) > rk+n for any x , y not in adjacent
cells in {FτK ∶ τ ∈ Λn} and for any n ≥ 0. Now, for any fixed w ∈ Λm , we consider the
integral

(∫
Fw K

r−ndH ∫
Brn (x)

∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p
≤ I(1, w) + I(2, w)

with

I(1, w) ∶= (∫
Fw K

r−ndH ∫
Brn (x)∩Fw K

∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p

,

I(2, w) ∶= (∫
Fw K

r−ndH ∫
Brn (x)/Fw K

∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p

.

Notice that

Ip(u, rn) ≤
⎛
⎝ ∑

w∈Λm

(I(1, w) + I(2, w))p⎞
⎠

1/p

≤
⎛
⎝ ∑

w∈Λm

(I(1, w))p⎞
⎠

1/p

+
⎛
⎝ ∑

w∈Λm

(I(2, w))p⎞
⎠

1/p

.

Let’s estimate I(1, w) and I(2, w). For I(1, w), we notice that

I(1, w) = (∫
Fw K

r−ndH ∫
Brn (x)∩Fw K

∣u(x) − u(y)∣pdμ(y)dμ(x))
1/p

≤ (rmdH∫
K

r(m−n)dH∫
F−1

w (Brn (Fw x))
∣u ○ Fw(x) − u ○ Fw(y)∣pdμ(y)dμ(x))

1/p

≤ (rmdH ∫
K

r(m−n)dH ∫
Bc2 ⋅rn−m (x)

∣u ○ Fw(x) − u ○ Fw(y)∣pdμ(y)dμ(x))
1/p

≲ rmdH/pIp(u ○ Fw , c2rn−m),
where c2 is constant depending only on K and the harmonic structure, notic-
ing that there is c1 ∈ (0, 1) such that R(Fw x , Fw y) ≥ c1rw R(x , y),∀w ∈W∗ , x , y ∈ K.
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In addition, since u ○ Fw ∈H0 and σ < C (p), we know that

r(m−n)σ dW/2Ip(u ○ Fw , c2rn−m) ≲ ∥u ○ Fw∥Λ p,∞
σ (K) ≲ ∥u ○ Fw∥Lp(K) ≲ r−mdH/p∥u∥Lp(Fw K) ,

where the second inequality is due to the fact that all norms on the finite dimensional
space H0 are equivalent. Combining the above two observations, we get

I(1, w) ≲ r(n−m)σ dW/2∥u∥Lp(Fw K) .

For I(2, w), we can see that in fact Brn(x)/Fw K ≠ ∅ only if x stays in a cell FτK with
τ ∈ Λn−k which contains a point z ∈ Fw V0. Without loss of generality, we assume that
n − k ≥ m, and sum I(2, w)’s over Λm to get

⎛
⎝ ∑w∈Λm

I(2, w)p⎞
⎠

1/p

≤ (∑
τ ,τ′
∫

x∈Fτ K
∫

y∈Fτ′K
r−ndH ∣u(x) − u(y)∣pdμ(y)dμ(x))

1/p

≤ C
⎛
⎝∑τ

∑
z∈VΛm∩Fτ K

∫
x∈Fτ K

∣u(x) − u(z)∣pdμ(x)
⎞
⎠

1/p

≤ C′
⎛
⎝

rndH ∑
w∈Λm

r(n−m)p∥u ○ Fw∥p
Lp(K)

⎞
⎠

1/p

= C′r(n−m)(1+dH/p) ⎛
⎝ ∑w∈Λm

∥u∥p
Lp(Fw K)

⎞
⎠

1/p

,

where τ, τ′ ∈ {τ′′ ∈ Λn−k ∶ Fτ′′K ∩ VΛm ≠ ∅}, and we require τ ≠ τ′ with FτK ∩ Fτ′

K ≠ ∅ in the first line.
Combining the estimates on I(1, w)’s and I(2, w)’s, and noticing that

1 + dH

p
≥ C (p)dW

2
> σdW

2
by Proposition 3.3, (c) follows. ∎

Now, we state the main result in this subsection.

Theorem 4.8 Let f ∈ C(K) with f = ∑∞m=0 fm and fm ∈ Jm ,∀m ≥ 0. For 1 < p < ∞,
1 ≤ q ≤ ∞, for the claims:
(1) f ∈ Λp,q

σ (K); (2) f ∈ Λp,q
σ ,(1)(K); (3) {r−mσ dW/2∥ fm∥Lp(K)}m≥0 ∈ l q ,

we can say:
(a). If σ >L1(p), we have (1) E⇒ (2) E⇒ (3) with

∥ f ∥Λp,q
σ (K) ≳ ∥ f ∥Λp,q

σ ,(1)(K)
≳ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .

(b). If L1(p) < σ <L2(p), we have (1) E⇒ (2) ⇐⇒ (3) with

∥ f ∥Λp,q
σ (K) ≳ ∥ f ∥Λp,q

σ ,(1)(K)
≍ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .

(c). If ( 1
p , σ) ∈ A1, we have (1) ⇐⇒ (2) ⇐⇒ (3) with

∥ f ∥Λp,q
σ (K) ≍ ∥ f ∥Λp,q

σ ,(1)(K)
≍ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .
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Proof (a). We first prove (1) E⇒ (2). We follow the conventional notation to denote
x ∼m y if x , y ∈ Fw V0 for some w ∈ Λm . We fix k > 0 so that Brm(y) ⊂ Brm−k(x) for any
x ∼m y and m ≥ 0. Then we can see

⎛
⎝ ∑x∼m y

∣EBrm (x)( f ) − EBrm (y)( f )∣p
⎞
⎠

1/p

≲ r−mdH/pIp( f , rm−k).

Since each vertex x ∈ VΛm is of bounded degree, by writing

f (x) = EBrm (x)( f ) +
∞

∑
n=m
(EBrn+1 (x)( f ) − EBrn (x)( f )) ,

we apply Lemma 4.5(a) to see that

⎛
⎝ ∑x∼m y

∣ f (x) − f (y)∣p
⎞
⎠

1/p

≲ r−mdH/pIp( f , rm−k) +
∞

∑
n=m

r−ndH/pIp( f , rn).

Write H̃Λm f = rm(1+dH/p)HΛm f for convenience. We then have

∥H̃Λm f ∥l p(VΛm )
≲ Ip( f , rm−k) +

∞

∑
n=m

r(m−n)dH/pIp( f , rn)

= Ip( f , rm−k)+
∞

∑
n=0

r−ndH/pIp( f , rm+n).

Noticing that

∥r−mσ dW/2
∞

∑
n=0

r−ndH/pIp( f , rm+n)∥
l q

= ∥
∞

∑
n=0

rn(σ dW/2−dH/p)r−(m+n)σ dW/2Ip( f , rm+n)∥
l q

≤
∞

∑
n=0

rn(σ dW/2−dH/p) ⋅ ∥r−mσ dW/2Ip( f , rm)∥
l q

≲ ∥r−mσ dW/2Ip( f , rm)∥
l q

,

since we assume σ >L1(p) = dS
p , the claim follows.

(2) E⇒ (3) is easy. We can see that HΛm (∑m−1
n=0 fm) ∣V̊Λm

≡ 0 by Lemma 4.7(a), and
(∑m

n=0 fm)∣VΛm
= f ∣VΛm

. Thus, HΛm f ∣V̊Λm
= HΛm fm ∣V̊Λm

and then

∥ fm∥Lp(K) ≍ ∥H̃Λm f ∥l p(V̊Λm )

using Lemma 4.7(b). The claim follows immediately.
(b). It remains to show (3) E⇒ (2). By the definition of EΛm and the fact that fm

is harmonic in Fw K for each w ∈ Λm , we can see that

∥HΛn fm∥l p(VΛn )
= ∥HΛm fm∥l p(VΛm )

≍ r−m(1+dH/p)∥ fm∥Lp(K),∀n ≥ m.
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Also, ∥HΛn fm∥l p(VΛn )
= 0 for n < m. Thus,

∥rm(−σ dW/2+1+dH/p)∥HΛm f ∥l p(VΛm )
∥

l q
≲ ∥

m
∑
n=0

r(m−n)(1+dH/p)−mσ dW/2∥ fn∥Lp(K)∥
l q

= ∥
m
∑
n=0

rn(1+dH/p)−mσ dW/2∥ fm−n∥Lp(K)∥
l q

≲
∞

∑
n=0

rn(1+dH/p−σ dW/2) ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q
.

The claim follows since 1 + dH
p −

σ dW
2 > 0 by σ <L2(p).

(c). We only need to prove (3) E⇒ (1). Since ( 1
p , σ) ∈ A1, which means that we

have σ < C (p) in addition to L1(p) < σ <L2(p), we can find η ∈ (σ , C (p)). The
rest proof goes similar to the second part of Proposition 4.4. By using Lemma 4.7(c),
we can see

Ip( fn , rm) ≲ r(m−n)ηdW/2∥ fn∥Lp(K),∀m ≥ n ≥ 0.

Then, by the proof of (4.5), we get

∥
m−1
∑
n=0

r−mσ dW/2Ip( fn , rm)∥l q ≲ (
∞

∑
n=1

rn(η−σ)dW/2) ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .

In addition, by Lemma 4.3(c) and the same proof of (4.6), we have

∥
∞

∑
n=m

r−mσ dW/2Ip( fn , rm)∥l q ≲ (
∞

∑
n=0

rnσ dW/2) ⋅ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .

The claim then follows by combining the above two estimates, and noticing that

∥r−mσ dW/2Ip( f , rm)∥l q ≤ ∥
m−1
∑
n=0

r−mσ dW/2Ip( fn , rm)∥l q + ∥
∞

∑
n=m

r−mσ dW/2Ip( fn , rm)∥l q .

∎

We end this section with the following theorem, whose proof will be completed in
Section 5 and Section 6.

Theorem 4.9 For 1 < p < ∞, 1 ≤ q ≤ ∞ and L1(p) < σ < 2, we have Bp,q
σ (K) =

Λp,q
σ ,(1)(K) with ∥ ⋅ ∥Λp,q

σ ,(1)(K)
≍ ∥ ⋅ ∥Bp,q

σ (K).

5 Embedding Λp,q
σ (K) into Bp,q

σ (K)

In this section, we will use the J-method of real interpolation to prove that Λp,q
σ (K) ⊂

Bp,q
σ (K) for 0 < σ < 2. This will not involve the critical curve C .

We will use the following fact about the real interpolation, which is obvious from
the J-method. Readers may find details of the J-method in the book [9].

Lemma 5.1 Let X̄ ∶= (X0 , X1) be an interpolation couple of Banach spaces, 1 ≤ q ≤ ∞,
0 < θ < 1, and X̄θ ,q ∶= (X0 , X1)θ ,q be the real interpolation space. For each x ∈ X0 ∩ X1
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and λ > 0, write

J(λ, x) =max{∥x∥X0 , λ∥x∥X1} .

If {gm}m≥0 ⊂ X0 ∩ X1 is a sequence with {λ−mθ J(λm , gm)}m≥0 ∈ l q and λ > 0, then

g =
∞

∑
m=0

gm ∈ X̄θ ,q

with ∥g∥X̄θ ,q
≲ ∥λ−mθ J(λm , gm)∥l q .

We start with the following lemma.

Lemma 5.2 For 1 < p < ∞, f ∈ Lp(K) and m ≥ 0, there is a function um in H p
2 (K)

such that

E[um ∣Λm] = E[ f ∣Λm],

and in addition,
⎧⎪⎪⎨⎪⎪⎩

∥um − E[ f ∣Λm]∥Lp(K) ≤ CIp( f , rm−k),
∥Δum∥Lp(K) ≤ Cr−mdW Ip( f , rm−k),

where k ∈ N and C > 0 are constants independent of f and m.

Proof For convenience, we write E[ f ∣Λm] = ∑w∈Λm
cw1Fw K with cw ∈ C.

For each x ∈ VΛm and n ≥ m, we write Ux ,n = ⋃{Fw′K ∶ x ∈ Fw′K , w′ ∈ Λn}, and
take m′ ≥ m to be the smallest one, such that

#VΛm ∩Ux ,m′ ≤ 1, Ux ,m′ ∩Uy ,m′ = ∅, ∀x , y ∈ VΛm .

Clearly, the difference m′ −m is bounded for all m.
Let Um′ = ⋃x∈VΛm

Ux ,m′ . We define um as follows:
(1). For x ∈ K/Um′ , we define um(x) = E[ f ∣Λm](x).
(2). For x ∈ VΛm , we let Mx = #{w ∈ Λm ∶ x ∈ Fw K} and define

um(x) =
1

#Mx
∑

w∈Λm ,Fw K∋x
cw .

(3). It remains to construct um on each Ux ,m′ with x ∈ VΛm . In this case, for each
Fw′K ⊂ Ux ,m′ with w′ ∈ Λm′ , we have already defined its boundary values. For um in
Fw′K, additionally, we require that um satisfies the Neumann boundary condition on
Fw′V0, and Ew′(um) = cw for w to be the word in Λm such that Fw′K ⊂ Fw K. It is easy
to see the existence of such a function locally on Fw′K, and the following estimate can
be achieved by scaling:

⎧⎪⎪⎨⎪⎪⎩

∥um − cw∥Lp(Fw′K) ≲ rmdH/p∣um(x) − cw ∣,
∥Δum∥Lp(Fw′K) ≲ rm(dH/p−dW)∣um(x) − cw ∣.
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With (1)–(3), we obtain a function um ∈ H p
2 (K) such that E[um ∣Λm] = E[ f ∣Λm].

It remains to show the desired estimates for um . First, we have

∥um − E[ f ∣Λm]∥Lp(K) = (∑
w′
∥um − cw∥p

Lp(Fw′K)
)

1/p

≲ (rmdH ∑
w′
∣um(xw′) − cw ∣p)

1/p

≲ (rmdH ∑
w∼m ν

∣cw − cν ∣p)
1/p

,

where the summation ∑w′ is over all w′ ∈ Λm′ such that Fw′K ∩ VΛm ≠ ∅ and xw′ is
the single vertex in Fw′K ∩ VΛm , w stands for the word in Λm such that Fw′K ⊂ Fw K,
and ∑w∼m ν is over all the pairs w , ν ∈ Λm with Fw K ∩ Fν K ≠ ∅. By choosing k ∈ N
such that rm−k > 2diamFw K for any w ∈ Λm (clearly, this k can be chosen to work for
all m), we then have

(rmdH ∑
w∼ν
∣cw − cν ∣p)

1/p

≲ Ip( f , rm−k),

thus, we get the first desired estimate. The estimate for ∥Δum∥Lp(K) is essentially the
same. ∎

Now, we prove the main result of this section.

Proposition 5.3 For 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < σ < 2, we have Λp,q
σ (K) ⊂ Bp,q

σ (K)
with ∥ ⋅ ∥Bp,q

σ (K) ≲ ∥ ⋅ ∥Λp,q
σ (K).

Proof Let f ∈ Λp,q
σ (K). We define a sequence of functions um in H p

2 (K) by
Lemma 5.2, and we take

gm =
⎧⎪⎪⎨⎪⎪⎩

u0 , if m = 0,
um − um−1 , if m > 0.

For m ≥ 0, by Lemma 5.2, we have the estimate
⎧⎪⎪⎨⎪⎪⎩

∥gm∥Lp(K) ≲ ∥Ẽ[ f ∣Λm]∥Lp(K) + Ip( f , rm−k) + Ip( f , rm−k−1) ≲ Ip( f , rm−k−1),
∥Δgm∥Lp(K) ≲ r−mdW (Ip( f , rm−k) + Ip( f , rm−k−1)) ≲ r−mdW Ip( f , rm−k−1),

where k is the same as Lemma 5.2, and we use Lemma 4.3(a) in the second estimate of
the first formula. Taking λ = rdW , X0 = Lp(K) and X1 = H p

2 (K) in Lemma 5.1, it then
follows that

∥r−mσ dW/2 J(rmdW , gm)∥l q ≤ ∥r−mσ dW/2∥gm∥Lp(K)∥l q + ∥rm(1−σ/2)dW ∥gm∥H p
2 (K)
∥

l q

≲ ∥r−mσ dW/2Ip( f , rm−k−1)∥l q ≲ ∥ f ∥Λp,q
σ (K) .

It is easy to see that f = ∑∞m=0 gm , so combining with Lemma 2.6, we have f ∈ Bp,q
σ (K)

with ∥ f ∥Bp,q
σ (K) ≲ ∥ f ∥Λp,q

σ (K). ∎

Before ending this section, we mention that the same method can be applied to
show that Λp,q

σ ,(1)(K) ⊂ Bp,q
σ (K) for L1(p) < σ < 2. In this case, for each m ≥ 0, we

choose a piecewise harmonic function of level m that coincides with f at VΛm , then
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modify it in a neighborhood of VΛm to get a function um in H p
2 (K) analogous to that

in Lemma 5.2. Since the idea is essentially the same, we omit the proof, and state the
result as follows.

Proposition 5.4 For 1 < p < ∞, 1 ≤ q ≤ ∞ and L1(p) < σ < 2, we have Λp,q
σ ,(1)(K) ⊂

Bp,q
σ (K) with ∥ ⋅ ∥Bp,q

σ (K) ≲ ∥ ⋅ ∥Λp,q
σ ,(1)(K)

.

6 Embedding Bp,q
σ (K) into Λp,q

σ (K)

We will prove Bp,q
σ (K) ⊂ Λp,q

σ (K) for 0 < σ < C (p) in this section. Also, we will show
that Bp,q

σ (K) ⊂ Λp,q
σ ,(1)(K) for L1(p) < σ < 2.

First, let’s look at two easy lemmas.

Lemma 6.1 Let {Xm , ∥ ⋅ ∥Xm}m≥0 be a sequence of Banach spaces. For 1 ≤ q ≤ ∞ and
α > 0, let

l q
α(X⋅) = {s = {sm}m≥0 ∶ sm ∈ Xm ,∀m ≥ 0, and {α−m∥sm∥Xm} ∈ l q} ,

be the space with norm ∥s∥l q
α(X⋅) = ∥α

−m∥sm∥Xm∥l q . Then, for α0 ≠ α1, 0 < θ < 1 and
1 ≤ q0 , q1 , q ≤ ∞, we have

(l q0
α0 (X⋅), l q1

α0(X⋅))θ ,q = l q
αθ (X⋅), with αθ = α(1−θ)

0 αθ
1 .

This lemma is revised from Theorem 5.6.1 in book [9] with a same argument. The
difference is that we allow each coordinate taking values in different spaces, which
does not bring any difficult to the proof. As an immediate consequence, we can see
the following interpolation lemma for Λp,q

σ (K) and Λp,q
σ ,(1)(K).

Lemma 6.2 Let 1 ≤ p, q, q0 , q1 ≤ ∞, 0 < σ0 , σ1 < ∞ and 0 < θ < 1. We have:
(a). (Λp,q0

σ0 (K), Λp,q1
σ1 (K))θ ,q ⊂ Λp,q

σθ (K);
(b). (Λp,q0

σ0 ,(1)(K), Λp,q1
σ1 ,(1)(K))θ ,q

⊂ Λp,q
σθ ,(1)(K),

with σθ = (1 − θ)σ0 + θσ1.

From now on, we will separate our consideration into two cases, according to
( 1

p , σ) belongs to A1 or A2. We will deal with the border between A1 and A2 by
using Lemma 6.2. For the region A1, in fact, we mainly consider a larger region
B ∶= {( 1

p , σ) ∶L1(p) < σ <L2(p)} instead.

6.1 On regions A1 and B

To reach the goal that Bp,q
σ (K) ⊂ Λp,q

σ (K) for ( 1
p , σ) ∈ A1, by Theorem 4.8(c), it

suffices to prove Bp,q
σ (K) ⊂ Λp,q

σ ,(1)(K). We will fulfill this for the parameter region

B = {( 1
p , σ) ∶L1(p) < σ <L2(p)}, which is the region between the two critical lines

L1 and L2, and of cause contains A1.
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Note that we can write each f ∈ C(K) as a unique series,

f =
∞

∑
m=0

fm , with fm ∈ Jm , ∀m ≥ 0,

and in addition, by Theorem 4.8(b), it always holds

∥ f ∥Λp,q
σ ,(1)(K)

≍ ∥r−mσ dW/2∥ fm∥Lp(K)∥l q .

Let’s start with some observations.

Lemma 6.3 Let 1 < p, q < ∞ and 0 < σ < 2. Write p′ = p
p−1 and q′ = q

q−1 . Then there

is a continuous sesquilinear form Ẽ(⋅, ⋅) on Bp,q
σ (K) × Bp′ ,q′

2−σ (K) such that

Ẽ( f , g) = E( f , g), ∀ f ∈ Bp,q
σ (K) ∩ domE, g ∈ H p′

2 (K).
Proof First, by the definition of ΔN , we can see that

∣E( f , g)∣ = ∣∫
K

f ΔN gdμ∣ ≤ ∥ f ∥Lp(K)∥g∥H p′
2 (K)

,(6.1)

for any f ∈ Lp(K) ∩ domE and g ∈ H p′
2 (K). So there is a continuous sesquilinear form

Ẽ ∶ Lp(K) ×H p′
2 (K) → C, such that Ẽ( f , g) = E( f , g) for any f ∈ Lp(K) ∩ domE

and g ∈ H p′
2 (K). In addition, we can see that ∣E( f , g)∣ ≤ ∥ f ∥H p

2 (K)
⋅ ∥g∥Lp′(K) for any

f ∈ H p
2 (K) and g ∈ H p′

2 (K).
As a consequence, the mapping f → Ẽ( f , ⋅) is continuous from Lp(K) to

(H p′
2 (K))

∗
, and is continuous from H p

2 (K) to (Lp′(K))
∗

since H p′
2 (K) is dense

in Lp′(K), where we use ∗ to denote the dual space. Using the theorem of real
interpolation (see [9, Theorem 3.7.1] Theorem 3.7.1), we have f → Ẽ( f , ⋅) is continuous
from Bp,q

σ (K) to (Bp′ ,q′
2−σ (K))

∗
. So Ẽ extends to a continuous sesquilinear form on

Bp,q
σ (K) × Bp′ ,q′

2−σ (K). ∎
Lemma 6.4 For 1 ≤ p, q ≤ ∞, we have H p

2 (K) ⊂ Λp,∞
2,(1)(K). In addition, this implies

H p
2 (K) ⊂ Λp,q

σ ,(1)(K) for each 0 < σ < 2.

Proof In fact, for each f ∈ H p
2 (K) and x ∈ VΛm , we have

HΛm f (x) = ∫
Ux ,m

ψx ,m(Δ f )dμ,

where Ux ,m is the same we defined in the proof of Lemma 5.2, and ψx ,m is a piecewise
harmonic function supported on Ux ,m , with ψx ,m(x) = 1 and ψx ,m ∣VΛm /{x} ≡ 0, and is
harmonic in each Fw K , w ∈ Λm . As a consequence, we get

r−mdH/p′∥HΛm f ∥l p(VΛm )
≲ ∥Δ f ∥Lp(K) ,

which yields that H p
2 (K) ⊂ Λp,∞

2,(1)(K), noticing that −2dW/2 + 1 + dH/p =
−dH/p′ since dW = 1 + dH . Finally, H p

2 (K) ⊂ Λp,∞
2,(1)(K) ⊂ Λp,q

σ ,(1)(K) since
rm(−σ dW/2+1+dH/p)∥HΛm f ∥l p(VΛm )

≤ rm(2−σ)dW/2∥ f ∥Λp,∞
2,(1)(K)

. ∎
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Proposition 6.5 For 1 < p < ∞, 1 ≤ q ≤ ∞ and L1(p) < σ <L2(p), we have
Bp,q

σ (K) = Λp,q
σ ,(1)(K) with ∥ ⋅ ∥Λp,q

σ ,(1)(K)
≍ ∥ ⋅ ∥Bp,q

σ (K). In particular, if ( 1
p , σ) ∈ A1, we

have Bp,q
σ (K) = Λp,q

σ (K) with ∥ ⋅ ∥Λp,q
σ (K) ≍ ∥ ⋅ ∥Bp,q

σ (K) .

Proof By Theorem 4.8(c), it suffices to prove the first result. Also, by Lemma 6.2(b)
and Proposition 5.4, it suffices to consider the 1 < q < ∞ case.

By Lemma 6.3, there exists Ẽ on Bp,q
σ (K) × Bp′ ,q′

2−σ (K) with p′ = p
p−1 , q′ = q

q−1 satis-
fying (6.1). In the following claims, we provide an exact formula of Ẽ on Λp,q

σ ,(1)(K) ×
Λp′ ,q′

2−σ ,(1)(K).

Claim 1 Let M ≥ 0, f = ∑M
m=0 fm and g = ∑M

m=0 gm with fm , gm ∈ Jm , 0 ≤ m ≤ M.
We have

Ẽ( f , g) =
M
∑
m=0

E( fm , gm) = −
M
∑
m=0
< HΛm fm , gm >l 2(VΛm )

. ∎

Proof Clearly, we have f ∈ domE ∩ Bp,q
σ (K), and g ∈ Bp′ ,q′

2−σ (K) by Proposition 5.4,
thus, there is a sequence of functions g(n) in H p′

2 (K) converging to g in Bp′ ,q′
2−σ (K). For

each n, by Lemma 6.3, we have

Ẽ( f , g(n)) = E( f , g(n)) =
M
∑
m=1

E( fm , g(n)) = −
M
∑
m=1
< HΛm fm , g(n) >l 2(VΛm )

.

Letting n →∞, we have the claim proved, since g(n) converges to g in Bp′ ,q′
2−σ (K) and

thus converges uniformly as 2 − σ >L1(p′). ∎

Claim 2 Let f = ∑∞m=0 fm and g = ∑∞m=0 gm with fm , gm ∈ Jm ,∀m ≥ 0, and

∥r−mσ dW/2∥ fm∥Lp(K)∥l q < ∞, ∥rm(σ−2)dW/2∥gm∥Lp′(K)∥l q′ < ∞.

We have

Ẽ( f , g) = −
∞

∑
m=0
< HΛm fm , gm >l 2(VΛm )

.

Proof By using Claim 1, we have Ẽ (∑M
m=0 fm ,∑M

m=0 gm) = −∑M
m=0 <

HΛm fm , gm >l 2(VΛm )
for any M ≥ 0. Letting M →∞, then the claim follows,

since the left side converges to Ẽ( f , g) as ∑M
m=0 fm converges to f in Bp,q

σ (K) and
∑M

m=0 gm converges to g in Bp′ ,q′
2−σ (K) by Proposition 5.4. ∎

Claim 3 Let f = ∑∞m=0 fm with fm ∈ Jm ,∀m ≥ 0, and ∥r−mσ dW/2∥ fm∥Lp(K)∥l q < ∞.
We have ∥r−mσ dW/2∥ fm∥Lp(K)∥l q ≲ ∥ f ∥Bp,q

σ (K).

Proof The space l q′ (l p′(VΛ⋅)) can be identified with the dual space of l q (l p(VΛ⋅))
in a natural way, and thus, we can find g = ∑∞m=0 gm , with gm ∈ Jm and 0 <
∥rm(σ−2)dW/2∥gm∥Lp′(K)∥l q′ < ∞, such that
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∣Ẽ( f , g)∣ ≥ 1
2
∥r−mσ dW/2+m+mdH/p∥HΛm fm∥l p(VΛm )

∥
l q
⋅ ∥rm(σ−2)dW /2+mdH/p′∥gm∥l p′ (VΛm )

∥
l q′

≳ ∥r−mσ dW/2∥ fm∥L p(K)∥
l q
⋅ ∥rm(σ−2)dW /2∥gm∥L p′ (K)∥l q′

≳ ∥r−mσ dW/2∥ fm∥L p(K)∥
l q
⋅ ∥g∥

B p′ ,q′
2−σ (K)

.

On the other hand, we have ∣Ẽ( f , g)∣ ≲ ∥ f ∥Bp,q
σ (K) ⋅ ∥g∥Bp′ ,q′

2−σ (K)
. The estimate

follows. ∎

Now, combining Claim 3 and Proposition 5.4, we can see that Λp,q
σ ,(1)(K) is a closed

subset of Bp,q
σ (K). On the other hand, we have H p

2 (K) ⊂ Λp,q
σ ,(1)(K) by Lemma 6.4. So

the desired result follows since H p
2 (K) is dense in Bp,q

σ (K).
Finally, for 1 < p < ∞, q = 1,∞ and L1(p) < σ <L2(p), we pick L1(p) < σ1 < σ <

σ2 <L2(p) and θ ∈ (0, 1) such that σ = (1 − θ)σ1 + θσ2, then

Λp,q
σ (K) ⊃ (Λp,2

σ1 (K), Λp,2
σ2 (K))θ ,q

= (Bp,2
σ1 (K), Bp,2

σ2 (K))θ ,q
= Bp,q

σ (K)

by Lemma 6.2(b), Lemma 2.6, and the reiteration theorem of real interpolation.
Hence, Λp,q

σ (K) = Bp,q
σ (K) by Proposition 5.4.

By applying Propositions 5.4 and 6.5 and Lemma 6.2(b), we can finish the proof of
Theorem 4.9.

Proof of Theorem 4.9 Let’s fix 1 < p < ∞, 1 ≤ q ≤ ∞ and L1(p) < σ < 2, and we
choose L1(p) < σ1 < σ ∧L2(p) and θ ∈ (0, 1) such that σ = (1 − θ)σ1 + 2θ. Then, by
Proposition 6.5, we know that Bp,q

σ1 (K) = Λp,q
σ1 ,(1)(K); by Lemma 6.4, we know that

H p
2 (K) ⊂ Λp,∞

2,(1)(K). Hence,

Bp,q
σ (K) = (Bp,q

σ1 (K), H p
2 (K))θ ,q ⊂ (Λp,q

σ1 ,(1)(K), Λp,∞
2,(1)(K))θ ,q

⊂ Λp,q
σ ,(1)(K)

by Lemma 2.6, the reiteration theorem of real interpolation and Lemma 6.2(b).
Combining this with Proposition 5.4, the theorem follows. ∎

6.2 On region A2

It remains to show Bp,q
σ (K) ⊂ Λp,q

σ (K) on A2. In fact, by Proposition 6.5 and Lemma
6.2(a), noticing that Lp(K) is contained in “Λp,∞

0 (K),” we can simply cover a large
portion of A2, see an illustration in Figure 8. However, it remains unclear for the strip
region near p = 1, if C and L1 intersect at some point with p > 1. We will apply another
idea to overcome this. Also, we mention here that a similar method can solve the A1
region as well with necessary modifications.

We will rely on Proposition 4.4 in this part, which says, for 0 < σ <L1(p), it holds
that

∥ f ∥Λp,q
σ (K) ≍ ∥r

−mσ dW/2∥Ẽ[ f ∣Λm]∥Lp(K)∥l q .

To get a reasonable estimate for ∥Ẽ[ f ∣Λm]∥Lp(K), we start with a new decomposition.
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Figure 8: A portion of A2 .

Definition 6.6 (a). For m ≥ 0, we define Tm = {∑w∈Λm
hw ○ F−1

w ∶ hw ∈H0 ,
∀w ∈ Λm}.

(b). Write PTm for the orthogonal projection L2(K) → Tm for m ≥ 0, and

PT̃m
=
⎧⎪⎪⎨⎪⎪⎩

PT0 , if m = 0,
PTm − PTm−1 , if m ≥ 1.

Since PTm is realized by integration against an L2 orthogonal basis of harmonic
functions, which are bounded, it extends to a bounded linear map Lp(K) → Tm for
any 1 ≤ p ≤ ∞.

(c). Write T̃m = {PT̃m
f ∶ f ∈ L1(K)} for m ≥ 1, and write T̃0 = T0.

Remark The spaces Tm are collections of piecewise harmonic functions, but may not
be continuous at VΛm/V0.

We collect some useful results in the following lemma.
Lemma 6.7 Let 1 < p < ∞, m ≥ 0 and u ∈ T̃m .

(a). We have Ẽ[u∣Λn] = 0 if n < m.
(b). For any 0 < σ < C (p), we have ∥Ẽ[u∣Λn]∥Lp(K) ≲ r(n−m)σ dW/2∥u∥Lp(K) for

n ≥ m.
Proof (a). By definition, for each u ∈ T̃m , we have PTm−1 u = 0. On the other hand,
we can see that⊕n

l=0 J̃ l ⊂ Tm−1 since clearly J̃ l consists of piecewise constant functions.
Thus,

Ẽ[u∣Λn] = Ẽ[PTm−1 u∣Λn] = 0, ∀n < m.

(b). We first look at m = 0 case. By definition of C , we have r−nσ dW/2Ip(u, rn) ≲
∥u∥Lp(K), as u ∈ T̃m =H0. The claim then follows by applying Lemma 4.3(a).

For general case, for each w ∈ Λm , we can see that

r−(n−m)σ dW/2∥(E[u∣Λn]) ○ Fw∥Lp(K) ≲ ∥u ○ Fw∥Lp(K), ∀n ≥ m.

(b) then follows by scaling and summing the estimates over Λm . ∎
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Proposition 6.8 For 1 < p < ∞, 1 ≤ q ≤ ∞ and ( 1
p , σ) ∈ A2, we have Bp,q

σ (K) ⊂
Λp,q

σ (K) with ∥ ⋅ ∥Λp,q
σ (K) ≲ ∥ ⋅ ∥Bp,q

σ (K).

Proof Let f ∈ Bp,q
σ (K), it suffices to show that ∥r−mσ dW/2∥Ẽ[ f ∣Λm]∥Lp(K)∥l q ≲

∥ f ∥Bp,q
σ (K) by applying Proposition 4.4.

For convenience, we write P ∶ Lp(K) → ∏∞m=0 T̃m , defined as P( f )m = PT̃m
f .

Also, we equip each T̃m with the Lp norm. Then, PTm and PT̃m
are bounded linear

maps on Lp(K), which immediately provides Claim 1.

Claim 1 P is bounded from Lp(K) to l∞(T̃⋅). ∎

Recall the definition of l p
α from Lemma 6.1.

Claim 2 P is bounded from H p
2 (K) to l∞rdW (T̃⋅).

Proof Let G be the Dirichlet Green’s operator on K [26, 36]. For any f ∈ H p
2 (K) =

H p
2,D(K) ⊕H0, we have

∥ f − PT0 f ∥Lp(K) ≲ ∥GΔ f ∥Lp(K) ≲ ∥Δ f ∥Lp(K) ,

where the first inequality is due to the fact that f −G(−Δ) f ∈ T0 =H0, and the second
inequality is due to the fact that G is bounded from Lp(K) to Lp(K). We apply the
above estimate locally on each Fw K with w ∈ Λm to get

∥ f − PTm f ∥Lp(K) ≲ rmdW ∥Δ f ∥Lp(K) ,

by using the scaling property of Δ f . Thus, we have

∥PT̃m
f ∥Lp(K) ≲ ∥ f − PTm f ∥Lp(K) + ∥ f − PTm−1 f ∥Lp(K) ≲ rmdW ∥Δ f ∥Lp(K).

This finishes the proof of Claim 2. ∎

Combining Claim 1 and Claim 2, and using Lemma 6.1, we see the following claim.

Claim 3 For 1 < p < ∞, 1 ≤ q ≤ ∞ and 0 < σ < 2, P is bounded from Bp,q
σ (K) to

l q
rσ dW /2

(T̃⋅).

Now, we turn to the proof of the proposition. We fix a parameter point ( 1
p , σ) in

A2. By Claim 3, we can see that, for each f ∈ Bp,q
σ (K), we clearly have f = ∑∞m=0 PT̃m

f ,
with the series absolute convergent in Lp(K). Thus, we have

Ẽ[ f ∣Λm] =
∞

∑
n=0

Ẽ[PT̃n
f ∣Λm] =

m
∑
n=0

Ẽ[PT̃n
f ∣Λm],

where the second equality is due to Lemma 6.7(a). In addition, by applying
Lemma 6.7(b), we have the estimate
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∥Ẽ[ f ∣Λm]∥Lp(K) ≲
m
∑
n=0

r(m−n)ηdW/2∥PT̃n
f ∥Lp(K) ,

where η is a fixed number such that σ < η < C (p). As a consequence, we then have

∥r−mσ dW/2∥Ẽ[ f ∣Λm]∥L p(K)∥
l q
≲ ∥r−mσ dW/2

m
∑
n=0

r(m−n)ηdW/2∥PT̃n
f ∥L p(K)∥

l q

= ∥r−mσ dW/2
m
∑
n=0

rnηdW /2∥PT̃m−n
f ∥L p(K)∥

l q

≤
∞

∑
n=0

rn(η−σ)dW/2 ⋅ ∥r−mσ dW/2∥PT̃m
f ∥L p(K)∥

l q
≲ ∥ f ∥B p,q

σ (K) ,

where we use Claim 3 again in the last inequality.

Remark We can apply a similar argument as Lemma 6.7 and Proposition 6.8 for
( 1

p , σ) ∈B to show that Bp,q
σ (K) ⊂ Λp,q

σ ,(1)(K), as stated in Proposition 6.5. The
difference is that fm ∈ Jm in the tent function expansion of f = ∑∞m=0 fm depends on
PT̃n

f for n ≥ m. This gives a second proof of Proposition 6.5.

We finish this section with a conclusion that Theorem 1.1 holds.

Proof of Theorem 1.1 On A1, the theorem follows from Proposition 6.5; on A2,
the theorem follows from Propositions 5.3 and 6.8; lastly, on the border between A1
and A2, we have Bp,q

σ (K) ⊂ Λp,q
σ (K) by interpolation using Lemma 6.2(a), as well

as the other direction is covered by Proposition 5.3. Finally, the region is sharp by
Proposition 3.2. ∎
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