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Abstract In this paper we classify all infinite metacyclic groups up to isomorphism and determine their
non-abelian tensor squares. As an application we compute various other functors, among them are the
exterior square, the symmetric product, and the second homology group for these groups. We show that
an infinite non-abelian metacyclic group is capable if and only if it is isomorphic to the infinite dihedral
group.
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1. Introduction

For any group G, the non-abelian tensor square G ® G is generated by the symbols g®h,
subject to the relations

gg'®h = (gg' ®9h)(g®h) and g®hti = {g®h)(hg®hh'),

where g, g', h, h' range independently over G and 9h = ghg~l. It is a special case of the
non-abelian tensor product of groups which has its roots in algebraic K-theory as well
as topology. For Brown and Loday in [2] and [3], the non-abelian tensor product is the
direct outgrowth of their involvement with generalized Van Kampen theorems. Earlier
work by Miller [13] and Dennis [4] is in context with Schur multipliers and algebraic
/("-theory, respectively. Independently, Lue [12] defines the non-abelian tensor products
in the setting of nilpotent groups. In [1], Brown, Johnson and Robertson started the
investigation of non-abelian tensor squares as group theoretic objects. One of their main
results is the explicit computation of non-abelian tensor squares. For a complete overview
of the non-abelian tensor squares that have been computed so far, we refer to [10].

The topic of this paper is the classification of infinite metacyclic groups up to isomor-
phism and the determination of their non-abelian tensor squares. As an application we
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compute various functors derived from the non-abelian squares of these groups, among
them the exterior square, the symmetric product, the Schur multiplier and other homo-
topy groups. In addition, we characterize infinite metacyclic groups which are capable in
the sense of [8], i.e. central quotients of a group.

A metacyclic group is the extension of a cyclic group by a cyclic group. In our clas-
sification of infinite metacyclic groups, it comes as no surprise that all such groups are
split extensions. However, the breakdown into isomorphism classes is different than one
would expect from the finite case (see, for example, Exercise 6 on p. 186 of [5]).

Based on earlier results in [1], Johnson already determined the non-abelian tensor
square of a finite split metacyclic group in [9]. We want to mention here that in a
future publication, J.R.B. will address the non-abelian tensor square of a finite non-split
metacyclic group, thus completing the determination of non-abelian tensor squares of
metacyclic groups.

The commutator subgroup of a metacyclic group is cyclic. As a consequence of this, its
non-abelian tensor square is abelian (see Proposition 3.5 in [14]). This fact helps us in
using the concept of a crossed pairing in our computations. We define it here in the case
relevant for non-abelian tensor squares. For the general case of the non-abelian tensor
product we refer to [1].

Definition 1.1 (see [1]). Let G and L be groups. A function F : G x G -> L is called
a crossed pairing if the following relations hold for all g, g', h, h! S G:

) , (1.1)

r(g,hh')=r(g,h)-r(hg,hti). (1.2)

Crossed pairings allow us to determine homomorphic images of G ® G as follows.

Proposition 1.2 (see [l]). A crossed pairing F determines a unique homomorphism
of groups F* :G®G -4 L, such that r*(g ®h)= F(g, h) for all g,heG.

For obvious reasons we only determine the non-abelian tensor squares of infinite meta-
cyclic groups with non-trivial commutator subgroup. Contrary to the case of nilpotent
groups of class 2 and rank 2, not all of our groups are homomorphic images of a universal
parent group. For all infinite metacyclic groups whose commutator subgroup is finite or
which are the extension of an infinite cyclic group by an infinite cyclic group, we have to
apply directly crossed pairings to obtain their non-abelian tensor squares (Theorem 4.3).
However, infinite metacyclic groups with infinite commutator subgroup are all homomor-
phic images of one group, namely the extension of an infinite cyclic group by an infinite
cyclic group. The following result then allows us to obtain the tensor square of such a
group as a homomorphic image of the tensor square of the universal parent group of this
class (Theorem 4.4).

Theorem 1.3 (see [11]). Let G, H, K, L be groups with n : H -> G an epimor-
phism, ip : K -> L a homomorphism, and F : HxH —» K a crossed pairing. IfF(ker w, H)
and F(H, ker vr) are contained in ker ip, then there exists a crossed pairing A : G xG —> L
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for which the following diagram commutes:

H

(TT.TT)

G

X

1
X

H -

G -

r

A

¥ K

V
» L.

The relations of the non-abelian tensor square with other well-known constructions
is one of the motivations to compute it. After that, the desired constructions can be
obtained with little effort.

There exists a homomorphism K : G <8» G -> G' sending g ® h to [g, h]. We write J{G)
for the kernel of K. Its topological interest is the formula J(G) = nsSK(G, 1), as given
in [2] and [3], where SK(G, 1) is the suspension of K(G, 1). The group J{G) lies in the
centre of G <g> G.

Following the notation and terminology in [7], let A(G) denote the subgroup of J(G)
generated by the elements (x<g>y)(y<S>x) for x,y GG. The symmetric product of G is
then defined as G®G = (G®G)/A(G). We set J(G) = J{G)/A{G). It is shown in [3]
that J{G) s n4S

2K{G, 1) = TTS
2K(G, 1).

Let V(G) denote the subgroup of J(G) generated by the elements x ® x for x £ G. The
exterior square of G is then denned as G A G = (G <g> G)/V(G). We set 7(G)/V(G) =
M(G), which is otherwise known as the Schur multiplier of G. It has been shown in [13]
that M(G) = H2(G), the second homology group of G.

We summarize these results in the following theorem, which (modulo different notation
and terminology) can already be found in [3].

Theorem 1.4 (see [3]). Let G be a group. Then the rows are exact in the following
commutative diagram

1

where n{g ® h) = n"(g ®h) = n'{g Ah) = [g, h].

In our last section, we will compute G®G, G AG as well as J{G), J(G) and M(G)
for an infinite metacyclic group G.

Following [8], we say that a group is capable if there exists a group H such that
G = H/Z(H). In [6], a necessary and sufficient condition is given for a group to be
capable involving the exterior centre of the group, denned as

ZA(G) = {g G G | g A x = 1A for all x € G}.
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Theorem 1.5 (see [6]). A group is capable if and only if its exterior centre is trivial.

In the final theorem of this paper we will show that the only capable non-abelian
infinite metacyclic group is the infinite dihedral group.

2. Some preparatory results

This section contains some results to be used in the next three sections. First, we define
a number theoretic function and study its properties.

We start with some notation. Let m be a non-negative integer. For m > 0, let Cm

denote the cyclic group of order m, Zm the ring of integers modulo m, and Um the set of
integers relatively prime to m. If m = 0, we denote by CQ the infinite cyclic group, Zo or
Z the ring of integers, and UQ = {1, —1}, the group of units in Z. Furthermore, for m > 0
denote by r~1 the smallest positive integer in lAm such that rr~l = 1 mod m, whenever
r € Um- Let x, y be non-negative integers. For x and y not both zero, let (x, y) = gcd(x, y)
and define (0,0) = 0. The function in the following definition, suggested by Guzman, will
be used extensively in subsequent sections. It considerably facilitates our exposition.

Definition 2.1. Let m, r be integers with m ^ 0 and r € Um. Then define a function
Em : Um x Z -» Z by

{ x if r = 1 mod m or x = 0,

l + r + \-rx~l i f r ^ l mod m and x > 0, (2.1)

—rxEm(r, —x) if r ^ 1 mod m and x < 0.
In the following three lemmas, detailed information on the function Em is provided

facilitating the verification that a certain mapping in Theorem 4.3 is a crossed pairing.
The proof of the first lemma will be given in § 3.

Lemma 2.2. Let m, r, x, y be integers with m ^ 0 and r € Um. Then
Em(r, x + y) = Em(r,x) + rxEm(r,y) mod m; (2.2)

(1 - rx)Em{r, y) = (l- ry)Em{r, x) mod m. (2.3)

Lemma 2.3. Let m, r, x be integers with m ^ 0 and even, and r € Um. Then

Em(r,x) = x mod 2.
Proof. If r = 1 mod m or x = 0, there is nothing to show. Suppose now r ^ 1

mod TO. Since m is even, it follows that r is odd. Let x > 0. Then, by the definition of
Em, Em(r, x) is the sum of an even number of odd integers or a sum of an odd number of
odd integers, depending on whether x is even or odd, respectively, and our claim follows.
Now let x < 0. Observing that rx is also odd, we conclude that our claim is true in this
case as well. D

Lemma 2.4. Let m, r, x be integers with m ^ 0 and even, and r € Um. Then

r2x = 1 mod (m, 2(r - 1)); (2.4)

rx + (r- l)x = 1 mod (m, 2(r - 1)). (2.5)
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Proof. If r = 1 mod TO or x = 0, the result is obvious. So, let r ^ 1 mod m. By
(2.3), we obtain r2x = (r2* - 1) + 1 = (r - l)Em{r, 2x) + 1 mod TO, with y = 1 and x
replaced with 2x. Now, Lemma 2.3 implies Em(r,2x) = 0 mod 2. We conclude that
r2x = 1 mod (TO, 2(r — 1)). We observe that (2.5) is an immediate consequence of (2.4).

D

For easier reference, we include a lemma on finitely generated abelian groups.

Lemma 2.5. Let A = (a\,... tan) be a finitely generated abelian group, and B =
(b\) x ••• x (bn) a direct sum of n cyclic groups such that the order of ai divides the
order of bi for i = 1 , . . . , n. If (f>: A —s- B is a homomorphism such that (j>(a,i) = b{, then
4> is an isomorphism.

3. The classification of infinite metacyclic groups

In this section we classify infinite metacyclic groups up to isomorphism. We start with a
lemma which provides us with formulae to compute products, conjugates and powers of
elements in a split metacyclic group.

Lemma 3.1. Let TO, n, r be integers with TO, n non-negative and r s Um, and let

G = {a,b | am = bn = 1, [a,b] = a1"7"),

a split metacyclic group. Then every g £ G can be written as g = aab^, where a and (3
are integers which are unique modulo m and n, respectively.

If h € G with h = a^b6, then we have the following multiplication, conjugation and
power formulae in G:

(3.1)

9h = a T a - ^ H ^ V ; (3.2)

g° = acEm(r^a)^ for any i n t e g e r a (33)

Proof. First we observe that 6a = arb and, as an immediate consequence, b~1a =
ar 6"1. The verification of (3.1) and (3.2) now follows immediately. To avoid the use
of non-trivial identities for Em, we use induction on both positive and negative a. For
positive a, (3.3) follows by induction. For negative a, we observe that g~x = a~ar y~P
and proceed by induction. •

Using Lemma 3.1, Lemma 2.2 can be now be proved without the need for any cases.

Proof of Lemma 2.2. Let m, r, x, y be integers with TO non-negative and r € Um.
Furthermore, let G = (a,b | am = bn = 1, [a,b] = a 1 - r ) . From (3.1) and (3.3) we get

aEm(r,x+y)bx+v _ (aby+v = (ab)x(ab)v = a
Em{-r'x^bxaEm(-r^by = a

Em{-r-x^+TXE^{-T^bx+v.
Thus, Em(r, x+y) = Em{r, x)+rxEm(r, y) mod TO. For (2.3), we observe that Em(r, x) +
rxEm(r,y) = Em(r,x + y) = Em(r,y) + ryEm(r,x) mod TO, which yields the desired
result. •
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Theorem 3.2. Let G be an infinite metacyclic group. Then G is isomorphic to

G(m, n, r) = (a, b | am = bn = 1, [a, b] = a1^),

where TO, n, r are non-negative integers, with mn = 0 and r e Um. Moreover, ifr = —l
mod TO, then n is even, or if r = 1 mod TO, then m = 0. In particular, G(mt n, r) =
G(m', n', s) if and only ifm = TO', n=n' and r = sl mod TO, where I = 1, —1.

Proof. The proof of the first part of our claim is routine and will be omitted. To
prove the second part, assume G{m,n,r) = G(m',n',s). It can easily be seen that this
implies m — m' and n = n'. However, we will show explicitly that this also implies r = sl

mod m, where / = 1,-1, since this is in contrast to what holds in the finite case, as
already mentioned in § 1.

If m = 0, then r = s = 1 when the groups are abelian, and r = s = — 1 otherwise.
Thus, our claim holds trivially in this case.

Now assume TO > 0, and thus n = 0. For ease of computation, let G(m, n, r) = (a, b)
and G(m',n',s) = (c,d). Denoting the isomorphism from G(m, 0,r) to G(m',0, s) by \p,
there exist integers i, j and I such that ip(a) = c1 and ip{b) = c'd1. Furthermore, ba = arb,
implies dd1? = {df^d1. From (3.1) and (3.3) we obtain cj+is'dl = cir+jdl. This yields
is1 = ir mod m. Since ip is injective and ip(a) = c\ it follows that (i,m) = 1. So

sl =r mod m. (3.4)

Also, since tp is surjective, there are integers u and v such that d = ip{aubv). By the
definition of tp and (3.3), we obtain

d = ip{aubv) = ciu(c>dl)v = c™+JEm(s',v)div

So, since d has infinite order, it follows that Iv •= 1. This, together with (3.4), yields
r = sl mod TO, with I = 1,-1, the desired result.

It is clear that the reverse implication holds. •

4. The non-abelian tensor square of an infinite metacyclic group

Our first proposition contains an expansion formula for g®h, where g and h are elements
in an infinite metacyclic group.

Proposition 4.1. Let G be a group of type G(m, n, r), as given in Theorem 3.2, with
g,h e G, where g = aab^ and h = aJb5 with a, ft, 7, 6 integers. Then

g®h = (a® a)x{a<g> 6)M(6<g>a)I/(6<g>b)p

with

(4.1)

x [fij{a - 1) + aS{j - 1) + |(/?72 + Sa2 + fi + v)} mod TO,

fx = ajSm(r, ^) mod TO,

v = jEm(r,P) mod TO,

p = (35 mod n.
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Proof. Direct calculations yield (a ® a ) m = (a ® b)m = (b <g> a ) m = (b <g> 6)" = 1®. So
(4.1) is well defined. The formula follows by repeatedly applying the defining relations
for G(m, n,r), as given in Theorem 3.2, and the defining relations of the tensor square
to aab^ <S> cfb5 and collecting terms, observing that G <g> G is abelian by Proposition 3.5
in [11]. We observe that Em{—l,m + 1) = 0 or 1, if m is odd or even, respectively. In
particular, A = cry for odd m. If m is even, then r — 1 is even, so | ( r - 1) is defined. •

The next proposition is, in part, a consequence of the preceding one.

Proposition 4.2. Let G be a non-abelian group of type G(m,n,r). Then

G®G = (a® a, (a®6)(6<g>a),6® a,6®6). (4.2)

For the orders of the generators the following estimates hold:

(a ® O)(m.n.2(r-D) = ^ (6 ® o)"> = 1 0 ,

" = la-

Proof. The first claim, that G<g>G is generated by the elements above, is an immediate

consequence of Proposition 4.1. It remains to establish the order bounds. The bounds

(a®a)m = (a<g>b)m = (b®a)m = (b®b)n = 1® were already obtained in Proposition 4.1.

We now compute a better upper bound for the order of a <g> a. Applying (4.1) and

(11) of Proposition 3 in [1], we obtain (a <g> a) ( 1 ~ r ) 2 = a 1 - r <g> a}~T = [a,b] <g> [a,b] =

[a ® b, a ® b] = 1®. Observing that b acts trivially o n a ® a (see Proposition 4 of [1]),

it follows that a <g> a = b(a ® a) = ar ® ar = (a <8> a) r , hence (a ® a ) r - 1 = 1®. Since

(r2 - 1) - ( r - I)2 = 2(r - 1), we obtain (o® o)2^"1) = 1®. So, (o® o ) ^ 2 ^ - 1 " = 1®. If

n = 0, then (m,2(r —1)) = (m,0,2(r —1)), and our result follows. Let n > 0, m = 0, and,

hence, r = —1 and n is even. From (4.1) we get 1® = a ® bn = (a ® a ) n . This, together

with the above, yields ( a ® ^ " ' 2 ^ " 1 ) ) = 1®. Next, consider (a ® 6) {b <8» a). By (4.1) and

the defining relations of G, it follows that [(a ® b){b ® a)]1"7" = ( a x - r ® 6)(6 ® a 1 - r ) =

([a,6] ®6)(6® [a,6]). Using (9) and (10) of Proposition 3 in [1], we obtain

([a, b) ®b){b® [a, b)) = (a ® 6) • (6(a ® 6)"1) • b(a ® 6) • (a ® b)"1 = 1®.

Hence, [(a®6)(6®a)]1~r = 1®. For the other bound, note that [(a<g>b)(b®a)]m = (a®
6)m(6<8»a)m = 1®. This, together with the above, yields ((a®6)(6<8>a))(m'r-1) = 1®. •

We are now in a position to determine the non-abelian tensor square of an infinite
metacyclic group in the case n = 0.

Theorem 4.3. Let G be a group of type G(m, 0, r). Then

G ® G S C{m,2(r-i)) x C(m,r_i) x Cm x Co, (4.3)

with generators a® a, {a®b)(b®a), b<8>a, b®b, respectively.
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Proof. Set L = (m) x (u2) x (u3) x (u4), where (ui) = C(m,2(r-i)), («2> = C(m,r-i)>
(113) = Cm, and (u4) = Co- We represent the elements I € L as 4-tuples, listing the
exponents of generators as coordinates as follows:

I = (exp(ui),exp(u2),exp(u3),exp(u4)), (4.4)

and denote the identity element of L by 0. Set g = aab^, h = a7bs and g' = h' = cf'ti3',
where (3, 8, (3' are integers and a, 7, a' are integers modulo m.

Define a map ip : G x G —> L as

ip(g,h) = (\,ij,,i/-lj,,p), (4.5)

where A, /z, u, p are defined as in (4.1). Since (3, 6 are unique integers and a, 7 are unique
integers modulo m, the mapping ip : G x G —t L given by (4.5) is well defined.

Next we will show that ip is a crossed pairing, i.e. (1.1) and (1.2) are satisfied. Using
(4.5), (3.1) and (3.3), we obtain

g', h) - V>(V, 9ti) - 1;(g, h) = (zu z2, z3, z4), (4.6)

where

Z! = (a + a'r/3)7 + (r - l)Em(-l, m + 1)[(/?' + /3)7(a + a'r? - 1)

+ (a + a'r/3)5(7 - 1) + i((/3' + /3)7
2 + <5(a + a'r13)2 + (a + ^ ^ ( r , <5)

+ 7Em(r,/? ' + 0))] - [(a(l - r)Sm(r, /?') + a V ) ( a ( l - r J^Cr , 8)

+ (r - l)£7m(-l, m

6a'2 + a'r^Em(r, 5)

+ |(/?72 + Sa2 + aEm(r, 8) + jEm(r, 0))]] mod (m, 2(r - 1)),

- [07 + (1 - r)Em{-l,m + l)]/?7(a - 1) + a<5(7 - 1)

z2 = (a + a'^)JBm(r! 5) - [(a(l - r)

- aEm(r, 8) mod (m, r - 1),

z3 = 7 ^ m ( r , / 3 + /3') - [a(l - r ) £ m ( r

- 7 ^ m ( r , /3) - [(a + a'r0)Em(r, 8)

- [(a(l - r)Em(r,p') + a'r^)Em(r,«)] - aEm(r,8)} mod m,

2:4 = 0.

By Lemma 2.2, it follows that z\ = 0 mod (m,2(r — 1)) and z3 = 0 mod m. Direct
computation yields 22 = 0 mod (m,r — 1). Hence, (4.6) becomes

and (1.1) holds. To verify (1.2), we exploit the 'symmetry' of ip, i.e. ifip(g,h) = (X,/j., v —
(i, p), then ij)(h,g) = (A, t/jfi — i/, p). Thus, (1.2) is satisfied and rp is a crossed pairing. By
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Proposition 1.2 it follows that there is a homomorphism ijj* of G®G into L. In particular,
we have tp*{a®a) = (1,0,0,0). ip*{{a ® b)(b® a)) = (0,1,0,0), ip*{b®a) = (0,0,1,0),
a,ndip*(b®b) = (0,0,0,1).

Thus, the generators of G ® G map to the generators of L. By the order estimates
given in Proposition 4.2, the orders of the generators of G ® G divide the corresponding
orders of the generators of L. By Lemma 2.5, ip* is an isomorphism. We conclude that
G®G^ C(m>2(r_i)) x C(mir_!) x Cm x Co. •

The groups of the form G(0, n, -1), where n > 0 and even, are homomorphic images of
G(0,0, —1). This helps us in the determination of their non-abelian tensor square, which
is the content of the last theorem of this section.

Theorem 4.4. Let G be a group of type G(0, n, — 1). Then

G®G^ C(n,4) x C2 x Co x Cn, (4.7)

with generators a ® a, (a ® b) (b ® a), 6 <g> a, 6 ® 6, respectiveiy.

Proof. Let G = G(0,n, -1) and H = G(0,0, -1) . For ease of computation set G =
(a,b) and H = (c, d). Let TT : # —> G be the homomorphism given by TT(C) = a and
7r(d) = 6. Observe that kerrr = (dra). Set K = C4 x Ci x Go x Go, with generators i i ,
i2, ^3) £4J respectively, and observe that K = H®H by Theorem 4.3. Let ijj : H x H -*
K be the crossed pairing denned in (4.5). Furthermore, let L = G(n>4) x G2 x Co x
Gn, with generators 3/1,2/2,2/3,2/4, respectively. Define a homomorphism 0 : if -4 L, by
</>(xi) = 2/i- In order to apply Proposition 1.3, we have to verify that 4>(ip(kerTr,H)) =
<f>(tp(H,kerTT)) = 0. For (drn,c<ds) ekernx H with T G Z, we have

So, (/"(^(kerTr,^)) = 0. Similarly, <f>(ip(H,kern)) = 0. Thus, by Proposition 1.3, there
exists a crossed pairing A : G x G -» L such that the diagram commutes. Hence, by
Proposition 1.2, the crossed pairing A lifts to a homomorphism A* : G ® G —> L with
A*(g®h) = ^(#,/i). In particular, A*{a®a) = (1,0,0,0), 4*((a®6)(6®a)) = (0,1,0,0),
A*(b®a) = (0,0,1,0), and A*(b® b) = (0,0,0,1).

Hence, the generators of G<8>G are mapped to generators of L. By the order estimates
given in Proposition 4.2, the orders of the generators of G ® G divide the corresponding
orders of the generators of L. By Proposition 2.5, it follows that A* is an isomorphism.
Thus, G®G^ G(ni4) x C2 x Co x Cn. O

It is observed that the finite split metacyclic groups are homomorphic images of
G(m, 0,r). A similar technique that was used to compute the non-abelian tensor square
of groups of type G(0, n, -1) can be used to obtain Johnson's result in [9] for finite split
metacyclic groups.
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5. Applications

In this section we compute various functors that arise out of the non-abelian tensor square
as homomorphic images or kernels of homomorphisms for the class of infinite metacyclic
groups. In addition, we determine all non-abelian infinite metacyclic groups which are
capable.

We first determine the exterior square and the second homology group.

Theorem 5.1. Let G be a non-abelian infinite metacyclic group of type G(m,n,r).
Then

(5.1)

(5.2)

Proof. Let G be a non-abelian infinite metacyclic group of type G(m,n,r). Using
Proposition 4.1, we obtain V(G) = (a ® a, (a <g> b)(b ® a), b <g> b). From Theorems 4.3 and
4.4 we conclude that G A G = G ® G/V(G) = {b <g> a) = Cm, proving (5.1).

To show (5.2), suppose first m > 0. By direct calculations, it follows that \G'\ =
(m/(m,r — 1)). From (5.1), we have that G A G = Cm. So, by Theorem 1.4 and the
above, it follows that H2(G) is cyclic of order (m,r — 1). Now suppose m = 0. Since
«'(6 A a) = a~2 and G' = (a2) has infinite order, we conclude that H2{G) = 1 in this
case. •

Next, we determine the third homotopy group of the suspension of K(G, 1).

Theorem 5.2. Let G be a non-abelian infinite metacyclic group of type G(rn,n,r).
Then

CTSi/1 1 \ r^ J C(m,2(r-ll) X Cim r-1) X Crm r - l ) x Co if Til > 0,
7T3OK(G,lj = <

[C(n,4) x C2 x Cn ifm = 0.

Proof. Let G be a non-abelian infinite metacyclic group of type G(m, n, r). Then, from
Theorem 1.4 and the remark preceding it, we have J(G) = TT3SK(G, 1). It follows from
the definition of K, that (a <g> a, (a <8> b) (6 <g> a), b <g> 6) < J(G). To finish the computation
of J(G), it suffices to compute the kernel of K when restricted to the cyclic subgroup
(b ® a). First, suppose m = 0 and, hence, r = —1. Since K(6 ® a) = a~2 is a generator
of G' and G' is infinite cyclic, we obtain J(G) = (a <g> a, (a <g> 6) (b <8> a), b ® b). Hence,
J{G) = C(n]4) x C2 x Cn, when m = 0. Now, let m > 0. In this case, we have |6®a| = m
and |G'| = (m/(m,r - 1)). Thus,

Hence, J(G) = C(m]2(r-i)) x C(m]7._i) x C^, . . !) x Co, for the case m > 0. D

Now we determine the symmetric product and the corresponding kernel of the com-
mutator map.
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Theorem 5.3. Let G be a non-abelian infinite metacyclic group of type G{m,n,r).
Then, with generators a® a, b®a, b<g>6, respectively,

°' (5.3)
ifm = 0;

°' (5.4)
\ C 2 x C 2 ifm = 0.

Proof. Let G be a non-abelian infinite metacyclic group of type G(m,n,r). From
(4.1) we have A(G) = ((a ® a)2, (a <g> 6) (6 ® a), (6 <g> 6)2). The desired result now follows
from Theorem 4.3 for m > 0 and Theorem 4.4 if m = 0 and the fact that n is even for
m = 0.

To prove (5.4), we observe that ix^KiG, 1) = J{G). Prom the definition of K", we have
(a <g> a, b ® 6) ^ J{G). To compute J(G), we determine which power of 6® a is in J(G).
First, suppose m = 0 and, hence, n is even. Since /c"(6®a) = a~2 is a generator of G"
and G' is infinite cyclic, we obtain J(G) = {a®a,6®6). Hence, J(G) = C2 x C2, when
m = 0. Now, suppose m > 0. By (5.3) we have |b<8>a| = m. Since /c"(6®a) = a~2, and
G' = (a2), we conclude that

J{G) =

Hence, J{G) ^ C(m,2) x C(m,r_i) x C2, for m > 0. •

In our final theorem we determine all capable non-abelian infinite metacyclic groups.

Theorem 5.4. The only non-abelian infinite metacyclic group that is capable is CQ X>
C2, the infinite dihedral group. In particular, if H = Co x C4, then Co x C2 = H/Z{H).

Proof. Let G be a non-abelian infinite metacyclic group. Then G is a group of type
G(m,n,r). Suppose g = aab0 € ZA(G). Then, from (4.1), we obtain 1A = aQ&" A b =
(a A b)aE(r>V = (a A b)a. Since |a A 6| = m, we have aa = 1G. Hence, ZA(G) ^ (b).
To show that ZA(G) is non-trivial and, hence, by Theorem 1.5, G is not capable, it
suffices to show that there exists @ € N, such that b° A a = 1A and /? ̂  0 mod n, since
b0 A cfb6 = (b0 A a)^.

First, suppose m > 0. We have in this case that n = 0. Since (r, m) = 1, there is a
positive integer, x, such that E(r,x) = 0 mod m. Since n = 0 we have bx ^ 1G, but
bx A a = (6 A a)£( r ' x) = 1A. Hence G is not capable if m > 0.

Next, suppose m = 0 and, hence, r = — 1 and n is even. Note that

if and only if /3 is even. So, if n ^ 4, then G is not capable, since \G ^ b2 6 ZA(G)
in this case. If n = 2, then G is capable. Thus, the only non-abelian infinite metacyclic
group that is capable is Co x> G2. Let H = (c,d | d4 = 1, dc = c~l). Then, it follows that
Z(H) = {d2). The result now follows. D
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