IRREDUCIBLE REPRESENTATIONS OF ALGEBRAS

EDGAR G. GOODAIRE

1. Introduction. The concept of the universal enveloping algebra $\mathscr{U}(X)$ of a (not necessarily associative) algebra X is basic to the study of the representations of X, because there is a one-to-one correspondence between the representations of X and $\mathscr{U}(X)$. If one is only interested in studying a certain class of the representations of X, the thought occurs that there may exist a more suitable universal object. The main result of this paper shows that, provided an associative algebra A possesses a diagonable subspace L, there is a one-to-one correspondence between the λ-weighted representations of A and the λ-weighted representations of the subalgebra \mathscr{C}, which is the centralizer of L in A. In particular, any Cartan subalgebra of a finite dimensional simple Lie (Jordan) algebra over an algebraically closed field of characteristic 0 is a diagonable subspace of its universal enveloping algebra (universal multiplication envelope) and so our result applies directly to these cases.

We assume throughout that all fields have characteristic 0 . If A is an associative algebra over the field F and $x \in A$, the linear transformation ad x of A is defined by $a \mapsto(a, x)=a x-x a$. This is a derivation of A in the sense that

$$
\begin{equation*}
(a b, x)=a(b, x)+(a, x) b \tag{1}
\end{equation*}
$$

for any $a, b \in A$. If W is a vector space over F, the dual of W (the space of linear functionals $W \rightarrow F$) will be denoted by W^{*}.

Definitions 1.1 Let L be a subspace of an associative algebra A with identity over a field F. A map $\alpha: L \rightarrow F$ such that

$$
A_{\alpha}(L) \equiv\{a \in A:(a, x)=\alpha(x) a, \text { for every } x \in L\}
$$

is non-zero is called a root of L in A, and $A_{\alpha}(L)$ is the corresponding root space. We say that L is a diagonable subspace of A if it is spanned by commuting elements, and if A has a linear basis relative to which $\{\operatorname{ad} x: x \in L\}$ is a set of simultaneously diagonalizable linear transformations; that is, as a vector space,

$$
A=\oplus \sum_{\alpha \in \Delta} A_{\alpha}(L)
$$

where Δ is the complete set of roots of L in A. If V is a right A-module which

[^0]is also a vector space over F, a map $\lambda: L \rightarrow F$ is a weight of L in V if
$$
V_{\lambda} \equiv\left\{v \in V: v(x-\lambda(x) 1)^{n}=0\right.
$$
$$
\text { for every } x \in L \text { and some } n=n(x, v)>0\}
$$
is non-zero. V_{λ} is the weight space corresponding to λ and V is said to be weighted, or λ-weighted, if we wish to emphasize that λ is a weight. A representation of A is weighted if the associated A-module is weighted.

Proposition 1.2. If λ is any weight of L in an A-module V, and α is any root of L, then both λ and α are in L^{*}.

Proof. We show first that for any $u \in L, \lambda(u)$ is the only characteristic root of u on V_{λ}. For this, let $0 \neq v \in V_{\lambda}$. If for some $t \in F, v(u-t 1)^{m}=0=$ $v(u-\lambda(u) 1)^{n}$, then $v((u-\lambda(u) 1)-(u-t 1))^{m+n}=0$. Thus $v((t-\lambda$ $(u)) 1)^{m+n}=0$ and $\lambda(u)=t$. That λ is linear now follows from
(a) $x, y \in L$ implies $\lambda(x)+\lambda(y)$ is a characteristic root of $x+y$ on V_{λ}, and
(b) $x \in L$ and $t \in F$ implies $t \lambda(x)$ is a characteristic root of $t x$ on V_{λ}.

To see (a), for any $0 \neq v \in V_{\lambda}$, there exist positive integers n and m such that $0=v(x-\lambda(x) 1)^{n}=v(y-\lambda(y) 1)^{m}$. Since $x-\lambda(x) 1$ and $y-\lambda(y) 1$ commute, $v((x+y)-(\lambda(x)+\lambda(y)) 1)^{n+m}=v((x-\lambda(x) 1)+(y-\lambda(y) 1))^{n+m}=$ 0 . The proof of (b) is similar; the linearity of the map ad x then shows that any root α is in L^{*} as above.

An element $x \in A$ is called diagonable if $F x$ is a diagonable subspace. In this case, we write $A_{\alpha(x)}(x)$ instead of $A_{\alpha}(F x)$, thus identifying the root $\alpha: F x \rightarrow F$ with the scalar $\alpha(x)$ which, by the proposition, completely determines α.

2. Examples.

2.1. Algebraic elements. Any algebraic element x whose minimal polynomial $p(t) \in F[t]$ has distinct roots $\alpha_{1} \ldots, \alpha_{n}$ in F is diagonable. First, x can be written as $\sum_{i=1}^{n} \alpha_{2} e_{i}$ where e_{1}, \ldots, e_{n} are orthogonal idempotents, for upon defining $h_{i}(t)=\prod_{j \neq i}\left(t-\alpha_{j}\right), h_{1}(t), \ldots, h_{n}(t)$ are relatively prime in $F[t]$, and so $\sum_{i=1}^{n} a_{i}(t) h_{i}(t)=1$ for some $a_{i}(t) \in F[t]$. Letting $e_{i}=a_{i}(x) h_{i}(x)$, we obtain $x=\sum_{i=1}^{n} \alpha_{i} e_{i}$. But now it is clear that x is diagonable because if $a \in A, a=\sum_{i, j=1}^{n} e_{i} a e_{j}$, and $e_{i} a e_{j} \in A_{\alpha_{j}-\alpha_{i}}(x)$.
2.2. Commuting diagonable elements. By definition, any diagonable subspace is spanned by commuting diagonable elements; conversely, if L is a subspace spanned by finitely many commuting diagonable elements x_{1}, \ldots, x_{n}, then L is diagonable. Without loss of generality, we can take x_{1}, \ldots, x_{n} as a basis for L, for any linear combination of commuting diagonable elements is diagonable. This observation is a consequence of the following more general fact:

If x is diagonable and B is a subspace of A such that B ad $x \subset B$, then B decomposes as $\sum B_{\alpha}(x)$ relative to x.

For this, let $b=\sum b_{\alpha}$ be the decomposition of an element $b \in B$ relative to x. Since B ad $x \subset B$,
(1) $b(\operatorname{ad} x)^{k}=\sum_{\alpha \neq 0} \alpha^{k} b_{\alpha}=b^{(k)}$
is in B for every integer $k>0$. Now $b_{\alpha}=0$ for all α outside a finite set of cardinality n say. Then letting k run from 1 to n, (1) is a system of n equations in n unknowns whose coefficient matrix is a vandermonde matrix with nonzero determinant. It follows that each $b_{\alpha} \in B$.

Now if x and y are commuting diagonable elements, the above result with $B=A_{\alpha}(x)$ implies that

$$
A=\oplus \sum_{\alpha \in \Delta} \sum_{\beta \in \Delta^{\prime}}\left(A_{\alpha}(x)\right)_{\beta}(y)
$$

where Δ and Δ^{\prime} are the sets of roots of $F x$ and $F y$ respectively. But $\left(A_{\alpha}(x)\right)_{\beta}(y) \subset A_{\alpha+\beta}(x+y)$ and so $x+y$ is diagonable. In fact if t and s are non-zero scalars, $t x+s y$ is diagonable with roots in the set $\{t \alpha+s \beta: \alpha \in \Delta$, $\left.\beta \in \Delta^{\prime}\right\}$.

Now let L_{1} be the subspace of A spanned by x_{1}, \ldots, x_{n-1}. By induction, we may assume that L_{1} is diagonable and $A=\oplus \sum_{\alpha \in \Delta_{1}} A_{\alpha}\left(L_{1}\right)$ where Δ_{1} is the set of roots of L_{1} in A. Since $A_{\alpha}\left(L_{1}\right)$ is invariant under ad $x_{n}, A_{\alpha}\left(L_{1}\right)$ decomposes as

$$
\oplus \sum_{\beta \in \Delta^{\prime}}\left(A_{\alpha}\left(L_{1}\right)\right)_{\beta}\left(x_{n}\right)
$$

relative to the set Δ^{\prime} of roots of $F x_{n}$. A direct verification reveals that

$$
\left(A_{\alpha}\left(L_{1}\right)\right)_{\beta}\left(x_{n}\right)=A_{\alpha}\left(L_{1}\right) \cap A_{\beta}\left(x_{n}\right)=A_{\gamma}(L)
$$

where by Proposition 1.2, $\gamma: L \rightarrow F$ is uniquely determined by the conditions $\gamma\left(x_{i}\right)=\alpha\left(x_{i}\right)$ for $1 \leqq i \leqq n-1$, and $\gamma\left(x_{n}\right)=\beta\left(x_{n}\right)$. It is immediate that L is a diagonable subspace.
2.3. Lie algebras. Let A be the universal enveloping algebra of a finite dimensional simple Lie algebra \mathscr{L} over an algebraically closed field F of characteristic 0 , and suppose \mathscr{H} is a Cartan subalgebra of \mathscr{L}. Then \mathscr{L} possesses a Cartan basis $B=\left\{e_{\alpha}, f_{\alpha}, h_{\beta}: \alpha \in I, \beta \in J\right\}$, where I and J are (finite) totally ordered index sets, and $\left\{h_{\beta}: \beta \in J\right\}$ is a basis for \mathscr{H}, such that after embedding \mathscr{L} in A, the following multiplicative relations among the elements of B hold:

$$
\begin{aligned}
& \left(h_{\beta}, h_{\beta^{\prime}}\right)=0 \\
& \left(e_{\alpha}, h_{\beta}\right)=A_{\alpha, \beta} e_{\alpha} \\
& \left(f_{\alpha}, h_{\beta}\right)=B_{\alpha, \beta} f_{\alpha}, \quad \alpha \in I, \beta, \beta^{\prime} \in J
\end{aligned}
$$

where $A_{\alpha, \beta}$ and $B_{\alpha, \beta}$ are integers. By the Poincaré-Birkhoff-Witt Theorem
[4, §5.2], A has a linear basis consisting of all elements of the form

$$
\begin{equation*}
\prod_{\alpha \in I} f_{\alpha}^{n(\alpha)} \prod_{\beta \in J} h_{\beta}^{r(\beta)} \prod_{\alpha \in I} e_{\alpha}^{m(\alpha)} \tag{2}
\end{equation*}
$$

where $n(\alpha), r(\beta), m(\alpha)$ are non-negative integers, and the product respects the ordering in I and J. Because of the identity

$$
\begin{equation*}
(x y, z)=x(y, z)+(x, z) y \tag{3}
\end{equation*}
$$

which holds in any associative algebra (see equation (1) of § 1), for any fixed $\beta \in J$, we observe that

$$
\left(\prod_{\alpha \in I} e_{\alpha}^{m(\alpha)}, h_{\beta}\right)=\left(\sum_{\alpha \in I} m(\alpha) A_{\alpha, \beta}\right) \prod_{\alpha \in I} e_{\alpha}^{m(\alpha)}
$$

and that in fact, for any basis element u of the form (2), $\left(u, h_{\beta}\right)=\alpha\left(h_{\beta}\right) u$ for some integer $\alpha\left(h_{\beta}\right)$. Thus h_{β} is a diagonable element of A for each $\beta \in J$. Since $\left\{h_{\beta}: \beta \in J\right\}$ is a basis for \mathscr{H}, \mathscr{H} is a diagonable subspace of A by the results of 2.2 .
2.4. Jordan algebras. Suppose now that A is the universal multiplication envelope of a finite dimensional semi-simple Jordan algebra J over the algebraically closed field F of characteristic 0 . In [5], Jacobson shows that any Cartan subalgebra \mathscr{H} of J is of the form $\mathscr{H}=\sum_{i=1}^{t} J_{i i}$, where $J=\sum_{i, j=1}^{t} J_{i j}$ is the Peirce decomposition of J relative to a set of primitive orthogonal idempotents e_{1}, \ldots, e_{t} with sum 1. Here

$$
J_{i j}=\left\{a \in J: a e_{i}=a e_{j}=\frac{1}{2} a\right\} \text { for } i \neq j, \text { and } J_{i i}=\left\{a \in J: a e_{i}=a\right\} .
$$

Moreover, Albert shows in [1] that the simplicity of J forces $J_{i i}$ to be just $F e_{i}$. Now denoting by $a \mapsto \bar{a}$ the canonical embedding of J in A, it is wellknown [6, p. 102] that for any idempotent e of J, \bar{e} satisfies the polynomial $2 t^{3}-3 t^{2}+t \in F[t]$ with the distinct roots $0, \frac{1}{2}, 1$, and hence is diagonable in A by 2.1. Also, if e and f are orthogonal idempotents in J, \bar{e} and \bar{f} commute in A. Thus, as a subspace spanned by the commuting diagonable elements $\bar{e}_{1}, \ldots, \bar{e}_{t}, \mathscr{H}$ is a diagonable subspace of A by the results of 2.2 . We remark in passing, that this similar behaviour of Cartan subalgebras of Lie and Jordan algebras when considered as subalgebras of a universal enveloping algebra is not really surprising in view of the work of Foster [2] who proved that the Cartan theory of Lie and Jordan algebras is essentially the same.
3. Weighted modules. In this section, we establish various results of a technical nature which are needed before we can prove our main representation theorem (4.5). In the remainder of this paper, L is a fixed diagonable subspace of the associative algebra A with 1 over F, and $A=\oplus \sum_{\alpha \in \Delta} A_{\alpha}, A_{\alpha}=A_{\alpha}(L)$, is the decomposition of A relative to the collection Δ of roots of L.

Lemma 3.1. If V is a weighted A-module, then $V_{\lambda} A_{\alpha} \subset V_{\lambda+\alpha}$ for any weight λ. Should V in addition be irreducible, V decomposes as $\oplus \sum_{\lambda \Lambda \in} V_{\lambda}$ relative to the set Λ of all weights of L in V.

Proof. An easy induction shows that $x^{k} a=a(x-\alpha(x) 1)^{k}$ for all $a \in A_{\alpha}$ and $x \in L$. Thus, if $v(x-\lambda(x) 1)^{n}=0$, we have

$$
\begin{aligned}
0=v(x-\lambda(x) 1)^{n} a & =v \sum_{k=0}^{n}\binom{n}{k} x^{k}(-\lambda(x) 1)^{n-k} a \\
& =v \sum_{k=0}^{n}\binom{n}{k}(-\lambda(x))^{n-k} a(x-\alpha(x) 1)^{k} \\
& =v a(x-(\lambda(x)+\alpha(x)) 1)^{n}
\end{aligned}
$$

and hence $v a \in V_{\lambda+\alpha}$. It now follows that $\sum_{\lambda \in \Lambda} V_{\lambda}$ is a non-zero submodule of any weighted module V, so that if V is irreducible, of course we must have $V=\oplus \sum_{\lambda \leqslant \Lambda} V_{\lambda}$.

Now the identity (3) in section 2 implies $A_{\alpha} A_{\beta} \subset A_{\alpha+\beta}$ for any roots α, β of L. In particular, $A_{0}=\{a \in A:(a, x)=0$, for every $x \in L\}$ is a subalgebra of A containing 1 and L; namely, the centralizer of L in A. The lemma shows that any weight space V_{λ} of a weighted A-module is an A_{0}-module, and we can further show

Lemma 3.2. If V is an irreducible, weighted A-module, V_{λ} is an irreducible A_{0}-module, for any weight λ.

Proof. If $W_{\lambda_{0}}$ is a proper A_{0}-submodule of $V_{\lambda_{0}}$, then

$$
W=W_{\lambda_{0}} A=W_{\lambda_{0}} \oplus \sum_{0 \neq \alpha \in \Delta} W_{\lambda_{0}} A_{\alpha}
$$

is a proper A-submodule of V because of 3.1.
Lemma 3.3. If K is any maximal right ideal of A_{0}, and $u \in Z\left(A_{0}\right)$, the centre of A_{0}, then au $\in K$ with $a \in A_{0}$ implies $a \in K$ or $u \in K$.

Proof. If $a \notin K, K+a A_{0}=A_{0}$, and so $k+a b=1$ for some $k \in K$ and $b \in A_{0}$. Hence $k u+a b u=u$ with both $k u$ and $a b u(=a u b)$ in K. So $u \in K$.

Now suppose V is an irreducible weighted A-module and V_{λ} is a non-zero weight space. Let $0 \neq v \in V_{\lambda}$. Then $\tau: a \mapsto v a$ is an A_{0}-module homomorphism $A_{0} \rightarrow V$ which must be surjective by 3.2 . Thus $V_{\lambda} \cong A_{0} / T_{0}$ where T_{0} is the kernel of τ. Since T_{0} is a maximal right ideal of A_{0} containing $(x-\lambda(x) 1)^{n}$ for every $x \in L$, and since $x-\lambda(x) 1 \in Z\left(A_{0}\right)$, by $3.3, T_{0}$ actually contains $x-\lambda(x) 1$, for every $x \in L$. But now, letting T be the kernel of the A-module homomorphism $A \rightarrow V$ defined by $a \mapsto v a$, we have $V \cong A / T$. Noting that $T \cap A_{0}=T_{0}$, we obtain

Theorem 3.4. If V is an irreducible weighted A-module, and λ is any weight of L in V, then $V \cong A / T$, where T is a maximal right ideal of A containing $x-\lambda(x) 1$ for every $x \in L$.
4. The representation theorem. For any linear functional λ on L, denote by \mathscr{W}_{λ} (respectively, $\mathscr{W}_{\lambda}{ }^{0}$) the collection of all isomorphism classes of irreducible λ-weighted A-modules (respectively, A_{0}-modules). Notice that Theorem 3.4, and the fact that $x-\lambda(x) 1$ is in the centre of A_{0} for any $x \in L$ imply
(1) $\quad V \in \mathscr{W}_{\lambda}{ }^{0}$ if and only if $V(x-\lambda(x) 1)=0$, for every $x \in L$.

Now there is an obvious map $\Phi: \mathscr{W}_{\lambda} \rightarrow \mathscr{W}_{\lambda}{ }^{0}$; namely, $\Phi V=V_{\lambda}$ for $V \in \mathscr{W}_{\lambda}$. Φ is well-defined because of

Proposition 4.1. If W is an irreducible weighted A-module, and V is any A-module isomorphic to W, then V is irreducible and weighted, and $W_{\lambda} \cong V_{\lambda}$ as A_{0}-modules for every weight λ.

Proof. We simply observe that if $\psi: W \rightarrow V$ is the A-module isomorphism, then by restricting ψ to W_{λ} and the ring of scalars to A_{0}, we obtain an isomorphism $W_{\lambda} \rightarrow V_{\lambda}$ because each module is irreducible and $\psi\left(W_{\lambda}\right) \subset V_{\lambda}$.

Our objective now is to establish an inverse for Φ, but this requires several preliminary results. We begin with

Lemma 4.2. If V is a vector space over a field F, and T_{1}, \ldots, T_{n} are distinct elements of V^{*}, then there is $a v \in V$ such that $\left\{T_{1}(v), \ldots, T_{n}(v)\right\}$ is a set of n distinct scalars.

Proof. Since T_{1}, \ldots, T_{n} are distinct, $\left\{\operatorname{ker}\left(T_{i}-T_{j}\right): i \neq j\right\}$ is a finite set of proper subspaces of V, whose union cannot be all of V because F is infinite (it has characteristic 0). Now choose any

$$
v \in V \backslash \bigcup_{i \neq j} \operatorname{ker}\left(T_{i}-T_{j}\right)
$$

An ideal (right, left, or two-sided) of $A=\oplus \sum_{\alpha \in \Delta} A_{\alpha}$ is said to be homogeneous if $I=\oplus \sum_{\alpha \in \Delta} I \cap A_{\alpha}$. In particular, if I is a right ideal which contains $x-\lambda(x) 1$ for every $x \in L$ and some $\lambda \in L^{*}$, then I must be homogeneous. For suppose $a=\sum_{\alpha \in \Delta} a_{\alpha} \in I$ with $a_{\alpha} \in A_{\alpha}$. Then for any $x \in L,(a, x)=$ $(a, x-\lambda(x) 1)=\sum_{0 \neq \alpha \in \Delta} \alpha(x) a_{\alpha} \in I$. Similarly, $((a, x), x)=((a, x), x-$ $\lambda(x) 1)=\sum_{0 \neq \alpha \in \Delta} \alpha(x)^{2} a_{\alpha} \in I$, and continuing in this way, we get that for any integer $k>0$,
(2) $\sum_{0 \neq \alpha \in \Delta} \alpha(x)^{k} a_{\alpha}=i_{k} \in I$.

Now $a_{\alpha}=0$ for all α not in some finite set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of distinct roots. The $\alpha_{i} \in L^{*}$ by 1.2 and so the previous lemma provides $x \in L$ with $\left\{\alpha_{1}(x), \ldots, \alpha_{n}(x)\right\}$
a set of n distinct scalars. Letting k run from 1 to n, (2) is a system of linear equations over F with coefficient matrix a vandermonde matrix with non-zero determinant. Thus each $a_{\alpha} \in I$ for $\alpha \neq 0$, but then $a_{0}=a-\sum_{0 \neq \alpha \in \Delta} a_{\alpha}$ is in I too.

Incidentally, it is worth noting that only a slight modification of the above argument shows that any two-sided ideal of A is also homogeneous. The key step in defining Φ^{-1} is

Proposition 4.3. Any maximal right ideal of A_{0} which contains $x-\lambda(x) 1$ for every $x \in L$ and some $\lambda \in L^{*}$ determines a unique maximal right ideal I^{*} of A contained in $I \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$.

Proof. The right ideal $I A$ of A which I generates is contained in $I \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$ because $A_{\alpha} A_{\beta} \subset A_{\alpha+\beta}$. The existence of I^{*} then follows from an easy Zorn's Lemma argument. Now I is contained in $I^{*} \cap A_{0}$ which is a proper right ideal of A because $1 \notin I^{*}$. By maximality of $I, I^{*} \cap A_{0}=I$. We claim that for any (proper) right ideal of A containing $I, J \subset I \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$. For such J is homogeneous and so contained in $\left(J \cap A_{0}\right) \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$. Since $I \subset J \cap A_{0} \neq A_{0}$, $J \cap A_{0}=I$ by maximality. Thus the sum of all proper right ideals of A containing I is contained in $I \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$ and so must again be proper. Clearly this is the unique maximal right ideal I^{*}.

We now define $\operatorname{map} \psi: \mathscr{W}_{\lambda}{ }^{0} \rightarrow \mathscr{W}_{\lambda}$ as follows: If $V \in \mathscr{W}_{\lambda}{ }^{0}$, then by Theorem $3.4, V \cong A_{0} / I$ where I is a maximal right ideal of A_{0} containing $x-\lambda(x) 1$ for all $x \in L$. By the proposition, I extends uniquely to maximal right ideal I^{*} of A.

Certainly $A / I^{*} \in \mathscr{W}_{\lambda}$ because $\left(I^{*}+1\right)(x-\lambda(x) 1)=0$ for every $x \in L$ and so we can define ψV to be $A / I^{*} . \psi$ is well-defined because of

Lemma 4.4. If A_{0} / I_{1} and A_{0} / I_{2} are irreducible, isomorphic A_{0}-modules, and if for some $\lambda \in L^{*}, x-\lambda(x) 1 \in I_{1} \cap I_{2}$ for all $x \in L$, then $A / I_{1}{ }^{*} \cong A / I_{2}{ }^{*}$ as A-modules, where $I_{1}{ }^{*}$ and $I_{2}{ }^{*}$ are the right ideals of A given by 4.3.

Proof. Suppose that $\sigma\left(I_{1}+1\right)=I_{2}+a_{0}$, where $\sigma: A_{0} / I_{1} \rightarrow A_{0} / I_{2}$ is the given isomorphism. Lift σ to $\sigma^{*}: A / I_{1}{ }^{*} \rightarrow A / I_{2}{ }^{*}$ by $\sigma^{*}: I_{1}{ }^{*}+a \mapsto I_{2}{ }^{*}+a_{0} a$. σ^{*} is well-defined, for if $a \in I_{1}{ }^{*}$ but $a_{0} a \notin I_{2}{ }^{*}$, then $I_{2}{ }^{*}+a_{0} a A=A$ and so there exists $u \in A$ such that

$$
\begin{equation*}
a_{0} a u-1 \in I_{2}^{*} \subset I_{2} \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha} \tag{3}
\end{equation*}
$$

Now because $a u \in I_{1}{ }^{*} \subset I_{1} \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$, we can write $a u=b_{0}+\sum b_{\alpha}$ where $b_{0} \in I_{1}$. From (3), $a_{0} b_{0}-1 \in I_{2}$. But this is impossible because $\sigma\left(I_{1}+b_{0}\right)=$ $0=I_{2}+a_{0} b_{0}$. Finally, since $I_{2}{ }^{*} \subset I_{2} \oplus \sum_{0 \neq \alpha \in \Delta} A_{\alpha}, a_{0} \notin I_{2}{ }^{*}$. Hence σ^{*} is non-zero and therefore an isomorphism by Schur's Lemma.

The main theorem on representations is contained in

Theorem 4.5. Let L be a diagonable subspace of an associative algebra A over F and let \mathscr{C} be the centralizer of L in A. Then there is a one-to-one correspondence between the isomorphism classes of λ-weighted irreducible A-modules, and the isomorphism classes of λ-weighted irreducible \mathscr{C}-modules.

Proof. We need only prove that Φ and ψ are inverse maps. Given $V \in \mathscr{W}_{\lambda}$, recall that $\Phi V=V_{\lambda} \cong A_{0} / I$ for some maximal right ideal I of A_{0} containing $x-\lambda(x) 1$ for every $x \in L . \psi(\Phi V)$ is then A / I^{*}, where I^{*} is that ideal of A given by 4.3. That $\psi(\Phi V) \cong V$ follows from Theorem 3.4 upon observing that the ideal I^{*} is the ideal T of that theorem by uniqueness. Conversely, given $V \in \mathscr{W}_{\lambda^{0}}, V \cong A_{0} / J$, where J is a maximal right ideal of A_{0} containing $x-\lambda(x) 1$ for all $x \in L$. Letting J^{*} be that ideal of A given by 4.3, $\Phi(\psi V)$ is $\left(A / J^{*}\right)_{\lambda}$. To see that this is isomorphic to V, define $\sigma: A_{0} \rightarrow\left(A / J^{*}\right)_{\lambda}$ by $a_{0} \mapsto J^{*}+a_{0}$. For any $a_{0} \in A_{0}, a_{0}(x-\lambda(x) 1)=(x-\lambda(x) 1) a_{0}$ is in J and so in J^{*}. Thus $\sigma\left(A_{0}\right) \subset\left(A / J^{*}\right)_{\lambda} . \sigma$ is surjective because it is non-zero and $\left(A / J^{*}\right)_{\lambda}$ is irreducible. The kernel of σ is $\left\{a_{0} \in A_{0}: a_{0} \in J^{*}\right\}=J^{*} \cap A_{0}=J$ by the maximality of J. Thus $\left(A / J^{*}\right)_{\lambda} \cong A_{0} / J \cong V$ as required.

Because of our observations in sections 2.3 and 2.4, and because weighted irreducible representations of any algebra correspond to weighted irreducible representations of its universal enveloping algebra, we can extend, as a consequence of our theory, a theorem of Lemire [7] concerning the representations of a simple Lie algebra to the case of Jordan algebras as well.

Theorem 4.6. Let \mathscr{H} be a Cartan subalgebra of a finite dimensional simple Lie or Jordan algebra X over an algebraically closed field of characteristic 0 . Let \mathscr{C} denote the centralizer of \mathscr{H} in the universal enveloping algebra $\mathscr{U}(X)$ of X. Then there is a one-to-one correspondence between the isomorphism classes of λ-weighted irreducible representations of X and the isomorphism classes of λ-weighted irreducible representations of \mathscr{C}.
5. Semi-simplicity and primitivity. In this section of our paper, we examine connections between the ring-theoretic properties of an algebra A and the centralizer \mathscr{C} of a diagonable subspace L which it possesses. Our results are used to analyse the algebraic structure of the centralizer of a Cartan subalgebra of a finite dimensional semi-simple Jordan algebra in its universal multiplication envelope. We recall that the Cartan subalgebra is a diagonable subspace of the universal envelope.

Thus, we assume that L is a diagonable subspace of an associative algebra A with 1, and that $A=\oplus \sum_{\alpha \in \Delta} A_{\alpha}$ is the decomposition of A relative to the collection Δ of roots of L in A. Furthermore, we suppose L to be finitely diagonable in the sense that Δ is a finite set, $\Delta=\left\{0, \alpha_{1}, \ldots, \alpha_{k}\right\}$. Under these conditions we prove the useful

Lemma 5.1. If $V=\oplus \sum_{\lambda \in \Delta} V_{\lambda}$ is the decomposition of an irreducible weighted
A-module V relative to the set Λ of weights of L in V, then Λ is a finite set.
Proof. Fixing a $\lambda_{0} \in \Lambda$. we have by 3.4 ,

$$
V \cong A / J=\sum_{\alpha \in \Delta}\left(A_{\alpha}+J\right) / J
$$

for some maximal right ideal J of A containing $x-\lambda_{0}(x) 1$ for every $x \in L$. Now for $a_{\alpha} \in A_{\alpha}$ and $x \in L, a_{\alpha}\left(x-\lambda_{0}(x) 1\right)=\left(x-\lambda_{0}(x) 1\right) a_{\alpha}+\alpha(x) a_{\alpha}$, so that $a_{\alpha}\left(x-\left(\lambda_{0}+\alpha\right)(x) 1\right) \in J$. By Proposition 4.1, we have $\left(A_{\alpha}+J\right) / J \cong$ $V_{\lambda_{0}+\alpha}$; i.e., the weights of L in V are in the finite set $\left\{\lambda_{0}+\alpha: \alpha \in \Delta\right\}$.

Before continuing, we remind the reader that $A_{\alpha} A_{\beta} \subset A_{\alpha+\beta}$, where $A_{\alpha+\beta}$ is 0 by definition if $\alpha+\beta \notin \Delta$.

Lemma 5.2. Suppose x_{1}, \ldots, x_{k+1} are $k+1$ elements of A with each x_{i} in a root space $A_{\beta_{i}}$. Then the product $x_{1} \ldots x_{k+1}$ contains an element of A_{0} as a subproduct (i.e. for some integers m and n with $1 \leqq m \leqq n \leqq k+1$, the product $x_{m} \ldots x_{n}$ is in A_{0}).

Proof. Define $b_{i}=\beta_{1}+\beta_{2}+\ldots+\beta_{i}$ for each i. Assuming as we may, that each b_{i} is a non-zero root, we obtain $k+1$ elements in the set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. Thus there are integers r and n with $r<n$ for which $b_{r}=b_{n}$. But then, letting $m=r+1$, it follows that $x_{m} \ldots x_{n} \in A_{0}$.

Lemma 5.3. Suppose I is a right ideal of A such that $\left(I \cap A_{0}\right)^{2}=0$. Then I is nilpotent.

Proof. Let x_{1}, \ldots, x_{N} be N elements of I, where $N=(k+1)(k+2)$. By 5.2, the product $x_{1} \ldots x_{N}$ contains $k+2$ subproducts in A_{0}, and since they are also in I, if any two are adjacent, $x_{1} \ldots x_{N}=0$. Thus, we can assume that $x_{1} \ldots x_{N}$ contains a subproduct of the form $u_{1} a_{1} u_{2} a_{2} \ldots u_{k+1} a_{k+1} u_{k+2}$ where each u_{i} is in $I \cap A_{0}$ and each a_{i} is in a non-zero root space. Again uisng 5.2, some subproduct $a_{m} u_{m+1} \ldots a_{n}$ is in A_{0}. But then $u_{m} a_{m} u_{m+1} \ldots a_{n}$ is in $\left(I \cap A_{0}\right)^{2}$ and hence 0 . Since I^{N} consists of sums of products of N elements from I, we see that $I^{N}=0$.

Theorem 5.4. If A is semi-prime, so is A_{0}. Conversely, if A_{0} is semi-prime, then the nilpotent right ideals of A are exactly those contained in $\sum_{0 \neq \alpha \in \Delta} A_{\alpha}$.

Proof. Suppose A is semi-prime and I is a right ideal of A_{0} with $I^{2}=0$. Then $I A$ is a right ideal of A contained in $I+\sum_{0 \neq \alpha \in \Delta} A_{\alpha}$. Also $I A \cap A_{0}=I$ has square 0 , so by $5.3, I A$ is nilpotent and hence 0 . But $I \subset I A$ implies $I=0$ too. On the other hand, if A_{0} is semi-prime and I is a nilpotent right ideal of A, then $I_{1}=I+A I$ is a two-sided ideal of A which is nilpotent because $I_{1}{ }^{m} \subset$ $I^{m}+A I^{m}$ for any positive integer m. If $I_{1}{ }^{t}=0,\left(I_{1} \cap A_{0}\right)^{t}=0$, so $I_{1} \cap A_{0}=$ 0 and $I_{1} \subset \sum_{0 \neq \alpha \in \Delta} A_{\alpha}$ by homogeneity (see §4.2). Thus

$$
I \subset I_{1} \subset \sum_{0 \neq \alpha \in \Delta} A_{\alpha}
$$

Finally, we note that any ideal of A contained in $\sum_{0 \neq \alpha \in \Delta} A_{\alpha}$ must be nilpotent by 5.3 .

We will denote the Jacobson radical of an associative algebra X by $J(X)$, and call the algebra semi-simple if $J(X)=0$. Then

Corollary 5.5. If A_{0} is semi-simple, $J(A)$ is the sum of all right ideals of A contained in $\sum_{0 \neq \alpha \in \Delta} A_{\alpha}$ and hence it is nilpotent.

Proof. Let T denote the sum defined above. Certainly $T \subset J(A)$ because $J(A)$ contains all nilpotent ideals of A. The reverse inclusion holds because $J(A) \cap A_{0} \subset J\left(A_{0}\right)$. Seeing this requires the fact that the Jacobson radical of a ring with 1 can be characterized as the intersection of all maximal right ideals (see [3, Chapter 1]). But in the course of proving Proposition 4.3 we showed that any maximal right ideal of A_{0} is contained in a maximal right ideal of A.

Now suppose that V is an irreducible weighted A-module and V decomposes as $\oplus \sum_{\lambda \in \Lambda} V_{\lambda}$ relative to the set Λ of weights of L in V, (cf. 3.1). If $v a_{0}=0$, for some $v=\sum_{\lambda \in \Delta \nu_{\lambda}} \in V$ and $a_{0} \in A_{0}$, then $v_{\lambda} a_{0}=0$ for each λ because $V_{\lambda} A_{\alpha} \subset V_{\lambda+\alpha}$. Thus we obtain

$$
(0: V) \cap A_{0}=\bigcap_{\lambda \in \Lambda}\left(0: V_{\lambda}\right)_{0}
$$

where $(0: V)$ denotes the A-annihilator of V and $\left(0: V_{\lambda}\right)_{0}$ the A_{0}-annihilator of V_{λ}. If V is faithful, $\left\{V_{\lambda}: \lambda \in \Lambda\right\}$ is a collection of irreducible A_{0}-modules and $\bigcap_{\lambda \in \Lambda} P_{\lambda}=0$ where $P_{\lambda}=\left(0: V_{\lambda}\right)_{0}$ is a primitive ideal of A_{0} containing by 3.4, $x-\lambda(x) 1$ for every $x \in L$ (see [3, Chapter 2]). Moreover, for $\lambda, \mu \in \Lambda$ and $\lambda \neq \mu$, there is an $x \in L$ for which $\lambda(x) \neq \mu(x)$, and so $(x-\mu(x) 1)-$ $(x-\lambda(x) 1)=(\lambda-\mu)(x) 1 \in P_{\lambda}+P_{\mu}$. This implies $P_{\lambda}+P_{\mu}=A_{0}$. Since Λ is a finite set, we can apply the Chinese Remainder Theorem to obtain

$$
A_{0} \cong \sum_{\lambda \in \Lambda} A_{0} / P_{\lambda}
$$

Since the quotient of any ring by a primitive ideal is a primitive ring, we have established

Theorem 5.6. Suppose L is a finitely diagonable subspace of a primitive algebra A possessing a faithful irreducible weighted module. Then the centralizer of L is a direct sum of primitive algebras.

In passing, we remark that the theorem is also true if A is in fact a direct sum of primitive algebras B_{i}, for it can be shown that the diagonable subspace L of A decomposes into a direct sum of diagonable subspaces L_{i} of B_{i}, and that any weighted irreducible A-module is a weighted irreducible B_{i}-module for each i.
6. Applications to Jordan algebras. Let now J be a finite-dimensional semi-simple Jordan algebra over an algebraically closed field F of characteristic 0 . We showed in Section 2.4 that the centralizer $\mathscr{C}=A_{0}(\mathscr{H})$ of any Cartan subalgebra \mathscr{H} of J is a diagonable subspace of the universal multiplication envelope $A=\mathscr{U}(J)$; hence it plays an important role in the representation theory of J. Now $\mathscr{U}(J)$ is semi-prime (in fact, semi-simple) and L is finitely diagonable because $\mathscr{U}(J)$ is finite-dimensional. Thus, applying Theorem 5.4, we see that A_{0} is a semi-prime finite-dimensional algebra over the algebraically closed field F. One part of the following theorem characterizing \mathscr{C} is now proven.

Theorem 6.1. The centralizer of a Cartan subalgebra of a finite dimensional semi-simple Jordan algebra over an algebraically closed field F of characteristic 0 in the universal multiplication envelope is a direct sum of complete matrix rings over F, and is actually just the centralizer of a single element of the Cartan subalgebra.

In order to prove that $\mathscr{C}=A_{0}(x)$ for some $x \in \mathscr{H}$, we will establish a more general result. First, call a diagonable element x finitely diagonable if $F x$ is a finitely diagonable subspace. Note that this implies that the linear transfortion ad x is algebraic, for the roots of the minimal polynomial of ad x will be exactly the set $\{\alpha(x): \alpha \in \Delta\}$, where Δ is the collection of roots of $F x$ in A. Theorem 6.1 follows immediately from

Theorem 6.2. Let L be a finitely diagonable subspace of $A=\sum_{\alpha \in \Delta} A_{\alpha}$ and assume that any collection of centralizers of finitely diagonable elements from A has a minimal member (with respect to inclusion). Then there exists $x \in L$ such that $A_{0}(x)=A_{0}(L)$.

Proof. Let $x \in L$ be such that $A_{0}(x)$ is a minimal member of the set $\left\{A_{0}(u): u \in L\right\}$ and let y be any element of L. For any $t \in F$, define $y_{t}=$ $x+t(y-x)$. Now for a fixed $\alpha \in \Delta, A_{\alpha}(x)$ is invariant under ad $(y-x)$, and so we can define $p(\lambda)$ to be the minimal polynomial of the restriction of this transformation to the space $A_{\alpha}(x)$. Similarly, we let $f_{\alpha}(\lambda, t)$ denote the minimal polynomial of the restriction of ad y_{i} to $A_{\alpha}(x)$. Assuming $t \neq 0$, it is easy to see that β is a root of $p(\lambda)$ if and only if $\alpha+t \beta$ is a root of $f_{\alpha}(\lambda, t)$ and so

$$
f_{\alpha}(\lambda, t)=\prod_{\beta}(\lambda-(\alpha+t \beta))=\lambda^{m_{\alpha}}+\beta_{1}^{\alpha}(t) \lambda^{m_{\alpha}-1}+\ldots+\beta_{m_{\alpha}^{\prime}}^{\alpha}(t)
$$

where the product is taken over all the roots β of $p(\lambda)$. Here, the $\beta_{i}{ }^{\alpha}(t)$, $i=1, \ldots, m_{\alpha}$, are polynomials in t, and m_{α} depends only on α, not on t; in fact, m_{α} is just the number of roots of the polynomial $p(\lambda)$. If $\alpha \neq 0, \beta_{m_{\alpha}}{ }^{\alpha}(0)=$ $(-\alpha)^{m_{\alpha}} \neq 0$, and so letting α range over the non-zero roots of $F x$, we have finitely many polynomials $\beta_{m_{\alpha}}{ }^{\alpha}(t)$, none of which is identically 0 . Since char $F=0, F$ is infinite, and there must be an infinite subset D of F such that $\beta_{m_{\alpha}}{ }^{\alpha}(t) \neq 0$ for any $t \in D$ and non-zero α. But for $t \in D, A_{0}\left(y_{t}\right) \subset A_{0}(x)$,
because if $a \in A_{0}\left(y_{t}\right)$ and we write $a=\sum a_{\alpha}$ relative to $F x$, then $\left(a, y_{i}\right)=0$ implies $\left(a_{\alpha}, y_{t}\right)=0$ for each α. But ad y_{t} is non-singular on $A_{\alpha}(x)$ for $\alpha \neq 0$. Hence $a=a_{0} \in A_{0}(x)$. By the minimality of $A_{0}(x), A_{0}\left(y_{t}\right)=A_{0}(x)$ and therefore, the minimal polynomial of ad y_{t} on $A_{0}(x)$ is λ for $t \in D$; i.e., $\beta_{i}{ }^{0}(t)=0$ for infinitely many $t, i=1, \ldots, m_{0}$. It follows that the polynomials $\beta_{i}{ }^{0}(t)$ are identically 0 and ad $y_{1}=$ ad y has the minimal polynomial λ on $A_{0}(x)$. Thus $A_{0}(x) \subset A_{0}(y)$, and since $A_{0}(L)=\bigcap_{y \in L} A_{0}(y)$, we have $A_{0}(x) \subset A_{0}(L)$. The reverse inclusion is obvious.

References

1. A. A. Albert, A structure theory for Jordan algebras, Ann. of Math. 48 (1947), 546-567.
2. D. M. Foster, On Cartan subalgebras of alternative algebras, Trans. Amer. Math. Soc. 162 (1971), 225-238.
3. I. N. Herstein, Noncommutative rings, Carus Mathematical Monographs, Math. Assoc. of Amer. (Wiley, New York, 1968).
4. N. Jacobson, Lie algebras (Wiley (Interscience), New York, 1962).
5. ——Cartan subalgebras of Jordan algebras, Nagoya Math. J. 27 (1966), 591-609.
6. —— Jordan algebras, Coll. Pub. 39 (Amer. Math. Soc., Providence, R.I., 1968).
7. F. W. Lemire, Weight spaces and irreducible representations of simple Lie algebras, Proc. Amer. Math. Soc. 22 (1969), 192-197.

University of British Columbia,
Vancouver, British Columbia;
Memorial University of Newfoundland,
St. John's, Nerefoundland

[^0]: Received March 13, 1973 and in revised form, September 17, 1973. This research constituted part of the author's Ph.D. thesis written at the University of British Columbia under the direction of Dr. C. T. Anderson.

