COVERING THEOREMS FOR CLASSES OF UNIVALENT FUNCTIONS

DOV AHARONOV AND W. E. KIRWAN

1. Introduction. Let \mathscr{S} denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in $U = \{z : |z| < 1\}$. \mathscr{S}^* and \mathscr{C} will denote the collection of $f \in \mathscr{S}$ that map U onto a domain that is respectively starlike with respect to the origin and convex.

In [4, p. 85] Hayman used Steiner symmetrization to solve a problem, a special case of which is the following. If $0 \leq x < \frac{1}{2}$, what is the minimum of the linear measure of $\{w : \operatorname{Re} w = x\} \cap f(U)$ for $f \in \mathscr{S}$ (if $x > \frac{1}{2}$ the solution is trivially 0)? In this paper we use Steiner symmetrization [4, p. 68] to solve this problem for the classes \mathscr{S}^* and \mathscr{C} .

We also solve the following covering problem for the class \mathscr{C} . Let $R(\phi) = \{w : \arg w = \phi\}$ and let $l(\phi)$ denote the linear measure of $R(\phi) \cap f(U)$. What is the minimum of $l(\phi_1) \cdot l(\phi_2)$ ($0 \leq \phi_1 \leq \phi_2 < 2\pi$) for $f \in \mathscr{C}$? The solution is complicated by the fact that (except in the case $\phi_1 = \phi_2$ and $\phi_2 = \phi_1 + \pi$) methods of symmetrization that preserve \mathscr{C} are of no use for this particular problem. If $\phi_1 = \phi_2$ our result reduces to a well-known result due to Löwner [8], and if $\phi_2 = \phi_1 + \pi$, it reduces to a result due to Strohhäcker [10].

In addition to Hayman's result mentioned above, the results of this paper are similar in spirit to [5] and [6].

2. Covering of vertical segments. In order to simplify the statement of the following theorem, we introduce the function

(2.1)
$$F(\lambda, \mu, s) = \int_0^1 \frac{1 - (1 - st)^{\mu}}{t^{\lambda}} dt$$

where s is a real number, $\mu > 0$ and $\lambda < 2$. $F(\lambda, \mu, s)$ is closely related to the Incomplete Beta Function [3, p. 104]

$$B(p,q,s) = \int_0^s t^{p-1} (1-t)^{q-1} dt \qquad (\operatorname{Re} p > 0, \operatorname{Re} q > 0).$$

In fact it is easy to show that

$$F_s(\lambda, \mu, s) = \mu s^{\lambda-2} B(2 - \lambda, \mu, s).$$

We will have occasion to use the following easily proved fact about $F(\lambda, \mu, s)$.

Received January 31, 1972 and in revised form, August 15, 1972. The research of the second named author was partially supported by NSF Grant GP-12547.

LEMMA 1. If $|s| \leq 1$, $\tau < 1$, $\sigma > 0$, then

$$\sum_{n=1}^{\infty} \left(\frac{\sigma}{n}\right) \frac{1}{n-\tau} s^n = -F(1+\tau,\sigma,-s).$$

We will also need the following known result.

LEMMA 2. Let D be a domain starlike with respect to w = 0. If D^{*} is the domain obtained from D by Steiner symmetrization, then D^{*} is also starlike with respect to w = 0.

The proof of this lemma follows immediately from the observation that if D is starlike and l(x) is the linear measure of $D \cap \{\operatorname{Re} w = x\}, 0 < x < \infty$, then l(x)/x is a decreasing function of x.

We now state the main result of this section.

THEOREM 1. Let $0 < x < \frac{1}{2}$ and let l(x) denote the linear measure of $f(U) \cap \{w : \text{Re } w = x\}$. Then,

(2.2)
$$\min_{f \in \mathscr{S}^*} l(x) = \frac{a^{\alpha}}{2} (1-a)^{\frac{1}{2}} \sin \alpha \pi \left[\frac{1}{\alpha} + F(1+\alpha, \frac{1}{2}+\alpha, 1) \right]$$

where (α, a) is the unique solution in $(0, \frac{1}{2}) \times (0, 1)$ of the equations

(2.3)
$$x = \frac{a^{\alpha}}{4} (1-a)^{\frac{1}{2}} \cos \alpha \pi \left[\frac{1}{\alpha} + F(\alpha+1,\alpha+\frac{1}{2},1) \right]$$
$$0 = \frac{1}{\alpha} + F\left(\alpha+1,\alpha+\frac{1}{2},\frac{a}{1-a}\right).$$

Notes. 1. If x = 0 the extremal function for this problem is $f(z) = z/(1 - z^2)$ since, as Hayman has shown [4, p. 85], this function is extremal for the class \mathscr{S} .

2. As we will show, the extremal function for this problem maps U onto a domain symmetric with respect to the real axis whose boundary in the upper half-plane consists of a radial and a vertical slit to ∞ emanating from the point $(x, x \tan \alpha \pi)$.

Proof of Theorem 1. For $0 < x < \frac{1}{2}$, let D(x, y) denote the domain symmetric with respect to the real axis whose boundary in the upper half-plane consists of a radial and a vertical slit to ∞ emanating from the point (x, y). Let r(y) denote the conformal mapping radius [4, p. 79] of D(x, y) with respect to 0 (in the sequel we write m.r. D(x, y) = r(y)). It follows from the Principle of Subordination and the Carathèodory Kernel Theorem that r(y) is a strictly increasing continuous function of y. Moreover, $\lim_{y\to 0} r(y) = 2x < 1$ and $\lim_{y\to+\infty} r(y) = +\infty$. Thus there exists a unique value of y = y(x), such that r[y(x)] = 1. The corresponding domain, which we denote D(x), is then the image of U under a function $g \in \mathscr{S}^*$. We claim that g is the extremal function for (2.2). Indeed, let f(z) be an extremal function for this problem and let D = f(U). Let $l = 2\rho$ denote the linear measure of $D \cap \{w : \text{Re } w = x\}$. If

 D^* is the domain obtained from the Steiner symmetrization of D, $D^* \cap \{w : \operatorname{Re} w = x\}$ consists of a single segment of length 2ρ that is symmetric with respect to the real axis. Since D^* is starlike with respect to 0 and Steiner symmetric with respect to the real axis,

$$D^* \subset D(x, \rho).$$

It follows from a result of Polya-Szegö [4, p. 81] and the Principle of Subordination that

$$1 = \text{m.r.} D(x) = \text{m.r.} D \leq \text{m.r.} D^* \leq \text{m.r.} D(x, \rho)$$

and hence $D(x) \subset D(x, \rho)$. But 2ρ is the extremal value for (2.2). This is possible only if $D(x) = D(x, \rho)$ and hence D(x) is an extremal domain for (2.2). It remains to determine explicitly the function g(z).

We begin by determining the map of the upper half-plane onto the infinite triangle whose "sides" are the real axis, the radial slit to ∞ and the vertical slit to ∞ emanating from the point $e^{i\alpha\pi}$ where $0 < \alpha < \frac{1}{2}$. It follows from the Schwarz-Christofel formula [9, p. 189] that

(2.4)
$$f(z) = -Ce^{i\alpha\pi} \int_0^z \frac{(1-z)^{\frac{1}{2}+\alpha}}{(z-a)^{1+\alpha}} dz,$$

where C > 0 and a, 0 < a < 1, are constants depending on α to be determined, maps the half-plane Im z > 0 onto the above triangle with $f(0) = 0, f(a) = \infty$, $f(1) = e^{i\alpha\pi}$ and $f(\infty) = \infty$.

The constants C and a are determined as follows. Since $f(1) = e^{i\alpha\pi}$, we have from (2.4)

(2.5)
$$-\frac{1}{C} = \int_0^1 \frac{(1-z)^{\frac{1}{2}+\alpha}}{(z-a)^{1+\alpha}} dz,$$

where the path of integration is contained in the closed upper half-plane avoiding the point z = 1 and is otherwise arbitrary. Any choice of C > 0 and a, 0 < a < 1, satisfying (2.5) determines a map (2.4) of the upper half-plane onto the triangle and since for a function of the form (2.4) where C satisfies $(2.5), f(\infty) = \infty, f(0) = 0$ and $f(1) = e^{i\alpha\pi}$, there is only one such map, i.e., there is a unique solution for C > 0 and a, 0 < a < 1, to (2.5). In order to place (2.5) in a more convenient form, we choose a specific path of integration, namely, the interval from 0 to $a - \epsilon$ ($\epsilon > 0$ small and positive) the semicircular arc from $a - \epsilon$ to $a + \epsilon$ and the interval from $a + \epsilon$ to 1. Letting I_1, I_2 and I_3 denote the integral over each of these intervals respectively, we have

$$-1/C = I_1 + I_2 + I_3.$$

Let $c, 0 \leq c < a$ be chosen so that c > 2a - 1. After an elementary calcula-

tion we have

$$I_{1} = \left[\int_{0}^{c} + \int_{c}^{a-\epsilon} \right] \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} dx$$

= $\int_{0}^{c} \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} dx - (1-a)^{\frac{1}{2}} e^{-i\alpha\pi} \left[\sum_{n=0}^{\infty} \left(\frac{1}{2} + \alpha \right) \frac{1}{n-\alpha} \left(\frac{a-c}{1-a} \right)^{n-\alpha} \right]$
 $- (1-a)^{\frac{1}{2}+\alpha} e^{-i\alpha\pi} \frac{1}{\alpha\epsilon^{\alpha}} + O(\epsilon^{1-\alpha}).$

Applying Lemma 1 and a similar calculation for I_2 and I_3 , we obtain

$$\begin{aligned} -\frac{1}{C} &= \int_0^c \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} dx \\ &+ (1-a)_t^{\frac{1}{2}} \left[\frac{a-c}{1-a} \right]^{-\alpha} e^{-i\alpha\pi} \left[\frac{1}{\alpha} + F\left(1+\alpha, \frac{1}{2}+\alpha, -\frac{a-c}{1-a} \right) \right] \\ &- (1-a)^{\frac{1}{2}} \left[\frac{1}{\alpha} + F(1+\alpha, \frac{1}{2}+\alpha, 1) \right]. \end{aligned}$$

Since the right-hand side of the above equation is continuous in c for c < a, the equation also holds for c = 0. Setting c = 0 and taking real and imaginary parts in the resulting equation, we obtain

(2.6)
$$0 = \frac{1}{\alpha} + F\left(1 + \alpha, \frac{1}{2} + \alpha, -\frac{a}{1-a}\right)$$

(2.7)
$$\frac{1}{C} = (1-a)^{\frac{1}{2}} \left[\frac{1}{\alpha} + F(1+\alpha, \frac{1}{2}+\alpha, 1) \right].$$

As noted above these equations uniquely determine (a, C) on $(0, 1) \times (0, \infty)$.

The function (2.4) maps the interval $(-\infty, a)$ onto the real axis. By the Schwarz Reflection Principle, f(z) maps the plane slit along $[a, +\infty)$ onto $D(\cos \alpha \pi, \sin \alpha \pi)$. If $h(z) = 4az/(1+z)^2$ then $f \circ h(z)$ maps U onto $D(\cos \alpha \pi, \sin \alpha \pi)$. Hence

(2.8)
$$g(z) = (a^{\alpha}/4C)f[h(z)]$$

belongs to \mathscr{G}^* and maps U onto D(x) where

(2.9)
$$x = \frac{a^{\alpha}}{4C} \cos \alpha \pi$$
$$= \frac{a^{\alpha}}{4} (1-a)^{\frac{1}{2}} \cos \alpha \pi \left[\frac{1}{\alpha} + F(1+\alpha, \frac{1}{2}+\alpha, 1)\right].$$

It is clear that given $x, 0 < x < \frac{1}{2}$, there is a unique pair $(a, \alpha) \in (0, 1) \times (0, \frac{1}{2})$ that satisfies (2.6) and (2.9). Indeed, a solution $(a, \alpha) \in (0, 1) \times (0, \frac{1}{2})$ to (2.6) and (2.9) determines a function in \mathscr{S}^* that maps U onto D(x) which,

as noted in the beginning of the proof, determines α uniquely. Finally it is clear from (2.7) and (2.8) that

$$2 \operatorname{Im} \frac{a^{\alpha}}{4c} f(1) = \frac{a^{\alpha}}{2} (1-a)^{\frac{1}{2}} \sin \alpha \pi \left[\frac{1}{\alpha} + F(1+\alpha, \frac{1}{2}+\alpha, 1) \right]$$

is the extreme value for $\min_{f \in \mathscr{S}^*} l(x)$ and the proof is complete.

We now consider the above problem for the class \mathscr{C} . Before stating the theorem, we introduce the function

(2.10)
$$f_a(z) = a \left[1 - \left(\frac{1-z}{1+z} \right)^{1/2a} \right]$$

where $\frac{1}{2} \leq a < +\infty$. $f_a \in \mathscr{C}$ and maps U onto an "infinite wedge" that is symmetric with respect to the real axis and has its vertex at the point a. The angular opening at a is $\pi/2a$. When $a = \frac{1}{2}$, the wedge degenerates to a half-plane and when a tends to $+\infty$, $f_a(z)$ approaches $\frac{1}{2} \log[(1+z)/(1-z)]$. Incorporating this value of a into the definition (2.10) we can state

THEOREM 2. If $0 \leq x < \frac{1}{2}$,

(2.11)
$$\inf_{f \in \mathscr{C}} l(x) = (a - x) \tan(\pi/4a)$$

where a is the unique solution of

(2.12)
$$(2a/\pi)\sin(\pi/2a) = (1 - x/a)$$

on $(\frac{1}{2}, \infty]$.

The proof follows the lines of the proof of Theorem 1 and consequently the details will be omitted. We note that one first shows, using Steiner symmetrization, that for given x, $0 \leq x < \frac{1}{2}$, a function of the form (2.10) is the extremal function for (2.11). An elementary calculation then shows that the value of a that yields the extremal value (2.11) is the unique solution to (2.12).

3. Covering of radial segments. Let $f(z) \in \mathcal{C}$, $R(\phi) = \{w : \arg w = \phi\}$ and $l(\phi)$ denote the linear measure of $R(\phi) \cap f(U)$. We consider the following question: What is the minimum over the class \mathcal{C} of $l(\phi_1) \cdot l(\phi_2)$ $(0 \le \phi_1 \le \phi_2 \le 2\pi)$?

It will be more convenient for us to reformulate this problem in an equivalent way, namely: Let $f(z) \in \mathcal{C}$, with $R(\phi)$ and $l(\phi)$ defined as above. What is the minimum over the class \mathcal{C} of $l(\phi) \cdot l(-\phi)$ for $0 \leq \phi \leq \pi/2$?

With $f_a(z)$ as defined in § 2, we have the following theorem.

THEOREM 3. Let $f(z) \in \mathscr{C}$ and $\phi \in [0, \pi/2]$. If

 $0 \leq \phi \leq \tan^{-1}(2/\pi)$

then

$$l(\phi) \cdot l(-\phi) \ge (1/4) \sec^2 \phi$$

with equality for f(z) = z/(1 + z). If $\tan^{-1}(2/\pi) < \phi \leq \pi/2$ then $l(\phi) \cdot l(-\phi)$ is minimized by $f_a(z)$ where $a = a(\phi)$ is the unique solution of the equation

(3.1)
$$\tan \phi = \frac{1 - \cos\left(\frac{\pi}{2a}\right)}{\frac{\pi}{2a} - \sin\left(\frac{\pi}{2a}\right)}.$$

Proof. Using the principle of subordination, we may deduce that the extremal function for this problem is an "infinite wedge." Using the transformation $g(z) = -\overline{f(-\bar{z})}$ we conclude that the vertex of the "infinite wedge" must be in the right half-plane. Our first aim is to show that for each ϕ , there exists an extremal function among the functions $f_a(z)$, $(a \ge \frac{1}{2})$.

Denote the polar coordinates of the vertex of the "infinite wedge" by (|L|, x) (so the vertex is the point $L = |L|e^{ix}$). Let the upper and lower sides of the wedge form angles α and β , respectively, with the segment joining the origin with the vertex. If $l_1 = l(\phi)$, $l_2 = l(-\phi)$ denote the linear measures defined as above, then

(3.2)
$$l_1 l_2 = \frac{|L|^2 \sin \alpha \sin \beta}{\sin (\phi - x + \alpha) \sin (\phi + x + \beta)}.$$

If we "fix" α , β , |L| and let x vary in the interval $-\pi/2 < x < \pi/2$, we find by a trivial calculation that for an extremal function

$$(3.3) x = (\alpha - \beta)/2.$$

The condition (3.3) implies that there exists an extremal function f(z) of the form

$$f(z) = g(z)/g'(0)$$

where

(3.4)
$$g(z) = L - \left[\frac{1 + \left[(\zeta + z)/(1 + \bar{\zeta}z)\right]e^{i\theta}}{1 - \left[(\zeta + z)/(1 + \bar{\zeta}z)\right]e^{i\theta}}\right]^{1/2a}$$

for some *L*, *a*, θ and ζ such that $|\zeta| < 1$, $0 \le \theta < 2\pi$ and $\frac{1}{2} \le a$. From (3.2) and (3.3) we have for $t = (\alpha + \beta)/2 = \pi/4a$,

(3.5)
$$l_1 \cdot l_2 = \frac{|L|^2 \sin(t+x) \sin(t-x)}{\sin^2(\phi+t)}.$$

Since g(0) = 0, it follows from (3.4) that

(3.6)
$$L = \left(\frac{1+\zeta e^{i\theta}}{1-\zeta e^{i\theta}}\right)^{1/2a}, \quad g'(0) = -\frac{1}{a} \left(\frac{1+\zeta e^{i\theta}}{1-\zeta e^{i\theta}}\right)^{1/2a-1} \frac{(1-|\zeta|^2)e^{i\theta}}{(1-\zeta e^{i\theta})^2}.$$

Denoting $\zeta e^{i\theta} = re^{i\mu}$ we obtain after an easy calculation

(3.7)
$$l_1(f) \cdot l_2(f) = \frac{(\sin^2 t - \sin^2 x)a^2}{\sin^2(\phi + t)\cos^2(2ax)}.$$

Since $\beta > 0$, $x = (\alpha - \beta)/2 < (\alpha + \beta)/2 = t = \pi/4a$. Let $T(x) = \frac{\sin^2 t - \sin^2 x}{\cos^2(2ax)}, \quad 0 \le x < t.$

It is not hard to show $T(x) \ge T(0)$ (0 < x < t) and hence for the extremal we may assume that x = 0 which together with (3.4), implies there exists an extremal function of the form $f_a(z)$. From (3.7) we have for this extremal function,

$$l_1 = l_2 = \frac{\pi}{4t} \frac{\sin t}{\sin(\phi + t)} = l(t).$$

This formula holds even if $a = \infty$; i.e., t = 0 if we interpret the right hand side as a limit. If we set

$$y(t) = 4/\pi l(t)$$

then the problem of minimizing l(t) for $0 \le t \le \pi/2$ (or $\frac{1}{2} \le a \le \infty$) is equivalent to maximizing the function

$$y(t) = \frac{t\sin(\phi + t)}{\sin t} \quad (0 \le t \le \pi/2).$$

It is readily seen that if $\tan \phi \leq 2/\pi$, y'(t) > 0 on $(0, \pi/2)$ and hence y(t) assumes its maximum at $t = \pi/2$ and hence for $a = \frac{1}{2}$. For this value of a, $f_a(z) = z/(1+z)$ and $l_1 = l_2 = \frac{1}{2} \sec \phi$. This proves the first assertion of the theorem.

If $\tan \phi > 2/\pi$, then it can be shown that there exists a unique $t_0 \in (0, \pi/2)$ such that $y'(t_0) = 0$. Moreover, y'(t) > 0 for $0 < t < t_0$ and y'(t) < 0 for $t_0 < t < \pi/2$. Thus t_0 is a unique maximum for y(t) on $[0, \pi/2]$. It follows that $l_1 = l_1(a)$ has a unique maximum at the point $a = \pi/4t_0$, where a is the unique solution of

$$\tan \phi = \frac{1 - \cos(\pi/2a)}{\pi/2a - \sin(\pi/2a)}$$

This completes the proof of the theorem.

Remarks. 1. Theorem 3 extends two results for the class \mathscr{C} . The case $\phi = 0$ is the well-known result due to Löwner [8] that for every function $f(z) \in \mathscr{C}$, $f(U) \supset \{|w| < \frac{1}{2}\}$. The case $\phi = \pi/2$ generalizes the result due to Strohhäcker [10] that if η and ϵ are the boundary points of f(U) that lie on a line through the origin, then max $(|\eta|, |\epsilon|) \ge \pi/4$. Indeed, if $\phi = \pi/2$, the solution of (3.1) is $a = \infty$ which implies that the extremal function is

$$f_{\infty}(z) = \frac{1}{2} \log \frac{1+z}{1-z}.$$

2. It is perhaps worth noting that the corresponding problems for the classes \mathscr{S} and \mathscr{S}^* follow quite easily from results in [1; 2; 6].

https://doi.org/10.4153/CJM-1973-041-9 Published online by Cambridge University Press

418

COVERING THEOREMS

References

- 1. D. Aharonov and W. E. Kirwan, A method of symmetrization and applications, Trans Amer. Math. Soc. (to appear).
- 2. —— A method of symmetrization and applications, II (to appear).
- 3. W. Frantz and A. Kratzer, *Tranzendente Functionen* (Akademische Verlagsgesellschaft, Leipzig, 1960).
- 4. W. K. Hayman, Multivalent functions (Cambridge University Press, Cambridge, 1958).
- 5. J. A. Jenkins, On values omitted by univalent functions, Amer. J. Math. 2 (1953), 406-408.
- 6. M. Klein, Estimates for the transfinite diameter with applications to conformal mapping, Pacific J. Math. 22 (1967), 267-279.
- 7. Z. Lewandowski, On circular symmetrization of starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 17 (1963), 35-37.
- K. Löwner, Untersuchengen über die Verzerrung bei konformen Abbildungen des Einheitskreises, die durch Functionen mit nicht Verschwindender Ableitung geliefert werden, Berichte Könige. Sächs. Ges. Wissen, Leipzig 69 (1917), 89-106.
- 9. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
- 10. E. Strohhäcker, Beiträge zur Theorie der Schlichten Functionen, Math. Z. 37 (1933), 356-380.

University of Maryland, College Park, Maryland