GOVERING THEOREMS FOR CLASSES OF UNIVALENT FUNGTIONS

DOV AHARONOV AND W. E. KIRWAN

1. Introduction. Let \mathscr{S} denote the class of functions $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n}$ that are analytic and univalent in $U=\{z:|z|<1\} . \mathscr{S}^{*}$ and \mathscr{C} will denote the collection of $f \in \mathscr{S}$ that map U onto a domain that is respectively starlike with respect to the origin and convex.

In [4, p. 85] Hayman used Steiner symmetrization to solve a problem, a special case of which is the following. If $0 \leqq x<\frac{1}{2}$, what is the minimum of the linear measure of $\{w: \operatorname{Re} w=x\} \cap f(U)$ for $f \in \mathscr{S}$ (if $x>\frac{1}{2}$ the solution is trivially 0)? In this paper we use Steiner symmetrization [4, p. 68] to solve this problem for the classes \mathscr{S}^{*} and \mathscr{C}.

We also solve the following covering problem for the class \mathscr{C}. Let $R(\phi)=$ $\{w: \arg w=\phi\}$ and let $l(\phi)$ denote the linear measure of $R(\phi) \cap f(U)$. What is the minimum of $l\left(\phi_{1}\right) \cdot l\left(\phi_{2}\right)\left(0 \leqq \phi_{1} \leqq \phi_{2}<2 \pi\right)$ for $f \in \mathscr{C}$? The solution is complicated by the fact that (except in the case $\phi_{1}=\phi_{2}$ and $\left.\phi_{2}=\phi_{1}+\pi\right)$ methods of symmetrization that preserve \mathscr{C} are of no use for this particular problem. If $\phi_{1}=\phi_{2}$ our result reduces to a well-known result due to Löwner [8], and if $\phi_{2}=\phi_{1}+\pi$, it reduces to a result due to Strohhäcker [10].

In addition to Hayman's result mentioned above, the results of this paper are similar in spirit to [5] and [6].
2. Covering of vertical segments. In order to simplify the statement of the following theorem, we introduce the function

$$
\begin{equation*}
F(\lambda, \mu, s)=\int_{0}^{1} \frac{1-(1-s t)^{\mu}}{t^{\lambda}} d t \tag{2.1}
\end{equation*}
$$

where s is a real number, $\mu>0$ and $\lambda<2 . F(\lambda, \mu, s)$ is closely related to the Incomplete Beta Function [3, p. 104]

$$
B(p, q, s)=\int_{0}^{s} t^{p-1}(1-t)^{q-1} d t \quad(\operatorname{Re} p>0, \operatorname{Re} q>0) .
$$

In fact it is easy to show that

$$
F_{s}(\lambda, \mu, s)=\mu s^{\lambda-2} B(2-\lambda, \mu, s) .
$$

We will have occasion to use the following easily proved fact about $F(\lambda, \mu, s)$.

[^0]Lemma 1. If $|s| \leqq 1, \tau<1, \sigma>0$, then

$$
\sum_{n=1}^{\infty}\left(\frac{\sigma}{n}\right) \frac{1}{n-\tau} s^{n}=-F(1+\tau, \sigma,-s)
$$

We will also need the following known result.
Lemma 2. Let D be a domain starlike with respect to $w=0$. If D^{*} is the domain obtained from D by Steiner symmetrization, then D^{*} is also starlike with respect to $w=0$.

The proof of this lemma follows immediately from the observation that if D is starlike and $l(x)$ is the linear measure of $D \cap\{\operatorname{Re} w=x\}, 0<x<\infty$, then $l(x) / x$ is a decreasing function of x.

We now state the main result of this section.
Theorem 1. Let $0<x<\frac{1}{2}$ and let $l(x)$ denote the linear measure of $f(U) \cap\{w: \operatorname{Re} w=x\}$. Then,

$$
\begin{equation*}
\min _{f \in \mathscr{S}^{*}} l(x)=\frac{a^{\alpha}}{2}(1-a)^{\frac{1}{2}} \sin \alpha \pi\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha, 1\right)\right] \tag{2.2}
\end{equation*}
$$

where (α, a) is the unique solution in $\left(0, \frac{1}{2}\right) \times(0,1)$ of the equations

$$
\begin{align*}
& x=\frac{a^{\alpha}}{4}(1-a)^{\frac{1}{2}} \cos \alpha \pi\left[\frac{1}{\alpha}+F\left(\alpha+1, \alpha+\frac{1}{2}, 1\right)\right] \tag{2.3}\\
& 0=\frac{1}{\alpha}+F\left(\alpha+1, \alpha+\frac{1}{2}, \frac{a}{1-a}\right) .
\end{align*}
$$

Notes. 1. If $x=0$ the extremal function for this problem is $f(z)=z /\left(1-z^{2}\right)$ since, as Hayman has shown [4, p. 85], this function is extremal for the class \mathscr{S}.
2. As we will show, the extremal function for this problem maps U onto a domain symmetric with respect to the real axis whose boundary in the upper half-plane consists of a radial and a vertical slit to ∞ emanating from the point $(x, x \tan \alpha \pi)$.

Proof of Theorem 1. For $0<x<\frac{1}{2}$, let $D(x, y)$ denote the domain symmetric with respect to the real axis whose boundary in the upper half-plane consists of a radial and a vertical slit to ∞ emanating from the point (x, y). Let $r(y)$ denote the conformal mapping radius [4, p. 79] of $D(x, y)$ with respect to 0 (in the sequel we write m.r. $D(x, y)=r(y))$. It follows from the Principle of Subordination and the Carathèodory Kernel Theorem that $r(y)$ is a strictly increasing continuous function of y. Moreover, $\lim _{y \rightarrow 0} r(y)=2 x<1$ and $\lim _{y \rightarrow+\infty} r(y)=+\infty$. Thus there exists a unique value of $y=y(x)$, such that $r[y(x)]=1$. The corresponding domain, which we denote $D(x)$, is then the image of U under a function $g \in \mathscr{S}^{*}$. We claim that g is the extremal function for (2.2). Indeed, let $f(z)$ be an extremal function for this problem and let $D=f(U)$. Let $l=2 \rho$ denote the linear measure of $D \cap\{w: \operatorname{Re} w=x\}$. If
D^{*} is the domain obtained from the Steiner symmetrization of D, $D^{*} \cap\{w: \operatorname{Re} w=x\}$ consists of a single segment of length 2ρ that is symmetric with respect to the real axis. Since D^{*} is starlike with respect to 0 and Steiner symmetric with respect to the real axis,

$$
D^{*} \subset D(x, \rho)
$$

It follows from a result of Polya-Szegö [4, p. 81] and the Principle of Subordination that

$$
1=\mathrm{m} . \mathrm{r} . D(x)=\mathrm{m} . \mathrm{r} . D \leqq \mathrm{~m} . \mathrm{r} . D^{*} \leqq \mathrm{~m} . \mathrm{r} . D(x, \rho)
$$

and hence $D(x) \subset D(x, \rho)$. But 2ρ is the extremal value for (2.2). This is possible only if $D(x)=D(x, \rho)$ and hence $D(x)$ is an extremal domain for (2.2). It remains to determine explicitly the function $g(z)$.

We begin by determining the map of the upper half-plane onto the infinite triangle whose "sides" are the real axis, the radial slit to ∞ and the vertical slit to ∞ emanating from the point $e^{i \alpha \pi}$ where $0<\alpha<\frac{1}{2}$. It follows from the Schwarz-Christofel formula [9, p. 189] that

$$
\begin{equation*}
f(z)=-C e^{i \alpha \pi} \int_{0}^{z} \frac{(1-z)^{\frac{1}{2}+\alpha}}{(z-a)^{1+\alpha}} d z \tag{2.4}
\end{equation*}
$$

where $C>0$ and $a, 0<a<1$, are constants depending on α to be determined, maps the half-plane $\operatorname{Im} z>0$ onto the above triangle with $f(0)=0, f(a)=\infty$, $f(1)=e^{i \alpha \pi}$ and $f(\infty)=\infty$.

The constants C and a are determined as follows. Since $f(1)=e^{i \alpha \pi}$, we have from (2.4)

$$
\begin{equation*}
-\frac{1}{C}=\int_{0}^{1} \frac{(1-z)^{\frac{1}{2}+\alpha}}{(z-a)^{1+\alpha}} d z \tag{2.5}
\end{equation*}
$$

where the path of integration is contained in the closed upper half-plane avoiding the point $z=1$ and is otherwise arbitrary. Any choice of $C>0$ and $a, 0<a<1$, satisfying (2.5) determines a map (2.4) of the upper half-plane onto the triangle and since for a function of the form (2.4) where C satisfies (2.5), $f(\infty)=\infty, f(0)=0$ and $f(1)=e^{i \alpha \pi}$, there is only one such map, i.e., there is a unique solution for $C>0$ and $a, 0<a<1$, to (2.5). In order to place (2.5) in a more convenient form, we choose a specific path of integration, namely, the interval from 0 to $a-\epsilon(\epsilon>0$ small and positive) the semicircular arc from $a-\epsilon$ to $a+\epsilon$ and the interval from $a+\epsilon$ to 1 . Letting I_{1}, I_{2} and I_{3} denote the integral over each of these intervals respectively, we have

$$
-1 / C=I_{1}+I_{2}+I_{3}
$$

Let $c, 0 \leqq c<a$ be chosen so that $c>2 a-1$. After an elementary calcula-
tion we have

$$
\begin{aligned}
I_{1}= & {\left[\int_{0}^{c}+\int_{c}^{a-\epsilon}\right] \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} d x } \\
= & \int_{0}^{c} \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} d x-(1-a)^{\frac{1}{2}} e^{-i \alpha \pi}\left[\sum_{n=0}^{\infty}\binom{\frac{1}{2}+\alpha}{n} \frac{1}{n-\alpha}\left(\frac{a-c}{1-a}\right)^{n-\alpha}\right] \\
& -(1-a)^{\frac{1}{2}+\alpha} e^{-i \alpha \pi} \frac{1}{\alpha \epsilon^{\alpha}}+O\left(\epsilon^{1-\alpha}\right) .
\end{aligned}
$$

Applying Lemma 1 and a similar calculation for I_{2} and I_{3}, we obtain
$-\frac{1}{C}=\int_{0}^{c} \frac{(1-x)^{\frac{1}{2}+\alpha}}{(x-a)^{1+\alpha}} d x$

$$
\begin{aligned}
& +(1-a)^{\frac{1}{2}}\left[\frac{a-c}{1-a}\right]^{-\alpha} e^{-i \alpha \pi}\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha,-\frac{a-c}{1-a}\right)\right] \\
& -(1-a)^{\frac{1}{2}}\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha, 1\right)\right] .
\end{aligned}
$$

Since the right-hand side of the above equation is continuous in c for $c<a$, the equation also holds for $c=0$. Setting $c=0$ and taking real and imaginary parts in the resulting equation, we obtain

$$
\begin{gather*}
0=\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha,-\frac{a}{1-a}\right) \tag{2.6}\\
\frac{1}{C}=(1-a)^{\frac{1}{2}}\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha, 1\right)\right] . \tag{2.7}
\end{gather*}
$$

As noted above these equations uniquely determine (a, C) on $(0,1) \times(0, \infty)$.
The function (2.4) maps the interval ($-\infty, a$) onto the real axis. By the Schwarz Reflection Principle, $f(z)$ maps the plane slit along $[a,+\infty)$ onto $D(\cos \alpha \pi, \sin \alpha \pi)$. If $h(z)=4 a z /(1+z)^{2}$ then $f \circ h(z)$ maps U onto $D(\cos \alpha \pi, \sin \alpha \pi)$. Hence

$$
\begin{equation*}
g(z)=\left(a^{\alpha} / 4 C\right) f[h(z)] \tag{2.8}
\end{equation*}
$$

belongs to \mathscr{S}^{*} and maps U onto $D(x)$ where

$$
\begin{equation*}
x=\frac{a^{\alpha}}{4 C} \cos \alpha \pi \tag{2.9}
\end{equation*}
$$

$$
=\frac{a^{\alpha}}{4}(1-a)^{\frac{1}{2}} \cos \alpha \pi\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha, 1\right)\right] .
$$

It is clear that given $x, 0<x<\frac{1}{2}$, there is a unique pair $(a, \alpha) \in(0,1) \times$ $\left(0, \frac{1}{2}\right)$ that satisfies (2.6) and (2.9). Indeed, a solution $(a, \alpha) \in(0,1) \times\left(0, \frac{1}{2}\right)$ to (2.6) and (2.9) determines a function in \mathscr{S}^{*} that maps U onto $D(x)$ which,
as noted in the beginning of the proof, determines α uniquely. Finally it is clear from (2.7) and (2.8) that

$$
2 \operatorname{Im} \frac{a^{\alpha}}{4 c} f(1)=\frac{a^{\alpha}}{2}(1-a)^{\frac{1}{2}} \sin \alpha \pi\left[\frac{1}{\alpha}+F\left(1+\alpha, \frac{1}{2}+\alpha, 1\right)\right]
$$

is the extreme value for $\min _{f_{\epsilon} \mathscr{q}_{*} l(x)}$ and the proof is complete.
We now consider the above problem for the class \mathscr{C}. Before stating the theorem, we introduce the function

$$
\begin{equation*}
f_{a}(z)=a\left[1-\left(\frac{1-z}{1+z}\right)^{1 / 2 a}\right] \tag{2.10}
\end{equation*}
$$

where $\frac{1}{2} \leqq a<+\infty . f_{a} \in \mathscr{C}$ and maps U onto an "infinite wedge" that is symmetric with respect to the real axis and has its vertex at the point a. The angular opening at a is $\pi / 2 a$. When $a=\frac{1}{2}$, the wedge degenerates to a half-plane and when a tends to $+\infty, f_{a}(z)$ approaches $\frac{1}{2} \log [(1+z) /(1-z)]$. Incorporating this value of a into the definition (2.10) we can state
Theorem 2. If $0 \leqq x<\frac{1}{2}$,

$$
\begin{equation*}
\inf _{f \in \mathcal{G}} l(x)=(a-x) \tan (\pi / 4 a) \tag{2.11}
\end{equation*}
$$

where a is the unique solution of

$$
\begin{equation*}
(2 a / \pi) \sin (\pi / 2 a)=(1-x / a) \tag{2.12}
\end{equation*}
$$

on $\left(\frac{1}{2}, \infty\right]$.
The proof follows the lines of the proof of Theorem 1 and consequently the details will be omitted. We note that one first shows, using Steiner symmetrization, that for given $x, 0 \leqq x<\frac{1}{2}$, a function of the form (2.10) is the extremal function for (2.11). An elementary calculation then shows that the value of a that yields the extremal value (2.11) is the unique solution to (2.12).
3. Covering of radial segments. Let $f(z) \in \mathscr{C}, R(\phi)=\{w: \arg w=\phi\}$ and $l(\phi)$ denote the linear measure of $R(\phi) \cap f(U)$. We consider the following question: What is the minimum over the class \mathscr{C} of $l\left(\phi_{1}\right) \cdot l\left(\phi_{2}\right)\left(0 \leqq \phi_{1} \leqq\right.$ $\left.\phi_{2} \leqq 2 \pi\right)$?
It will be more convenient for us to reformulate this problem in an equivalent way, namely: Let $f(z) \in \mathscr{C}$, with $R(\phi)$ and $l(\phi)$ defined as above. What is the minimum over the class \mathscr{C} of $l(\phi) \cdot l(-\phi)$ for $0 \leqq \phi \leqq \pi / 2$?
With $f_{a}(z)$ as defined in $\S 2$, we have the following theorem.
Theorem 3. Let $f(z) \in \mathscr{C}$ and $\phi \in[0, \pi / 2]$. If

$$
0 \leqq \phi \leqq \tan ^{-1}(2 / \pi)
$$

then

$$
l(\phi) \cdot l(-\phi) \geqq(1 / 4) \sec ^{2} \phi
$$

with equality for $f(z)=z /(1+z)$. If $\tan ^{-1}(2 / \pi)<\phi \leqq \pi / 2$ then $l(\phi) \cdot l(-\phi)$ is minimized by $f_{a}(z)$ where $a=a(\phi)$ is the unique solution of the equation

$$
\begin{equation*}
\tan \phi=\frac{1-\cos \left(\frac{\pi}{2 a}\right)}{\frac{\pi}{2 a}-\sin \left(\frac{\pi}{2 a}\right)} \tag{3.1}
\end{equation*}
$$

Proof. Using the principle of subordination, we may deduce that the extremal function for this problem is an "infinite wedge." Using the transformation $g(z)=-\overline{f(}-\bar{z})$ we conclude that the vertex of the "infinite wedge" must be in the right half-plane. Our first aim is to show that for each ϕ, there exists an extremal function among the functions $f_{a}(z),\left(a \geqq \frac{1}{2}\right)$.

Denote the polar coordinates of the vertex of the "infinite wedge" by $(|L|, x)$ (so the vertex is the point $\left.L=|L| e^{i x}\right)$. Let the upper and lower sides of the wedge form angles α and β, respectively, with the segment joining the origin with the vertex. If $l_{1}=l(\phi), l_{2}=l(-\phi)$ denote the linear measures defined as above, then

$$
\begin{equation*}
l_{1} l_{2}=\frac{|L|^{2} \sin \alpha \sin \beta}{\sin (\phi-x+\alpha) \sin (\phi+x+\beta)} . \tag{3.2}
\end{equation*}
$$

If we "fix" $\alpha, \beta,|L|$ and let x vary in the interval $-\pi / 2<x<\pi / 2$, we find by a trivial calculation that for an extremal function

$$
\begin{equation*}
x=(\alpha-\beta) / 2 \tag{3.3}
\end{equation*}
$$

The condition (3.3) implies that there exists an extremal function $f(z)$ of the form

$$
f(z)=g(z) / g^{\prime}(0)
$$

where

$$
\begin{equation*}
g(z)=L-\left[\frac{1+[(\zeta+z) /(1+\bar{\zeta} z)] e^{i \theta}}{1-[(\zeta+z) /(1+\bar{\zeta} z)] e^{i \theta}}\right]^{1 / 2 a} \tag{3.4}
\end{equation*}
$$

for some L, a, θ and ζ such that $|\zeta|<1,0 \leqq \theta<2 \pi$ and $\frac{1}{2} \leqq a$.
From (3.2) and (3.3) we have for $t=(\alpha+\beta) / 2=\pi / 4 a$,

$$
\begin{equation*}
l_{1} \cdot l_{2}=\frac{|L|^{2} \sin (t+x) \sin (t-x)}{\sin ^{2}(\phi+t)} . \tag{3.5}
\end{equation*}
$$

Since $g(0)=0$, it follows from (3.4) that

$$
\begin{equation*}
L=\left(\frac{1+\zeta e^{i \theta}}{1-\zeta e^{i \theta}}\right)^{1 / 2 a}, \quad g^{\prime}(0)=-\frac{1}{a}\left(\frac{1+\zeta e^{i \theta}}{1-\zeta e^{i \theta}}\right)^{1 / 2 a-1} \frac{\left(1-|\zeta|^{2}\right) e^{i \theta}}{\left(1-\zeta e^{i \theta}\right)^{2}} \tag{3.6}
\end{equation*}
$$

Denoting $\zeta e^{i \theta}=r e^{i \mu}$ we obtain after an easy calculation

$$
\begin{equation*}
l_{1}(f) \cdot l_{2}(f)=\frac{\left(\sin ^{2} t-\sin ^{2} x\right) a^{2}}{\sin ^{2}(\phi+t) \cos ^{2}(2 a x)} \tag{3.7}
\end{equation*}
$$

Since $\beta>0, x=(\alpha-\beta) / 2<(\alpha+\beta) / 2=t=\pi / 4 a$. Let

$$
T(x)=\frac{\sin ^{2} t-\sin ^{2} x}{\cos ^{2}(2 a x)}, \quad 0 \leqq x<t
$$

It is not hard to show $T(x) \geqq T(0)(0<x<t)$ and hence for the extremal we may assume that $x=0$ which together with (3.4), implies there exists an extremal function of the form $f_{a}(z)$. From (3.7) we have for this extremal function,

$$
l_{1}=l_{2}=\frac{\pi}{4 t} \frac{\sin t}{\sin (\phi+t)}=l(t)
$$

This formula holds even if $a=\infty$; i.e., $t=0$ if we interpret the right hand side as a limit. If we set

$$
y(t)=4 / \pi l(t)
$$

then the problem of minimizing $l(t)$ for $0 \leqq t \leqq \pi / 2$ (or $\frac{1}{2} \leqq a \leqq \infty$) is equivalent to maximizing the function

$$
y(t)=\frac{t \sin (\phi+t)}{\sin t} \quad(0 \leqq t \leqq \pi / 2)
$$

It is readily seen that if $\tan \phi \leqq 2 / \pi, y^{\prime}(t)>0$ on $(0, \pi / 2)$ and hence $y(t)$ assumes its maximum at $t=\pi / 2$ and hence for $a=\frac{1}{2}$. For this value of a, $f_{a}(z)=z /(1+z)$ and $l_{1}=l_{2}=\frac{1}{2} \sec \phi$. This proves the first assertion of the theorem.

If $\tan \phi>2 / \pi$, then it can be shown that there exists a unique $t_{0} \in(0, \pi / 2)$ such that $y^{\prime}\left(t_{0}\right)=0$. Moreover, $y^{\prime}(t)>0$ for $0<t<t_{0}$ and $y^{\prime}(t)<0$ for $t_{0}<t<\pi / 2$. Thus t_{0} is a unique maximum for $y(t)$ on $[0, \pi / 2]$. It follows that $l_{1}=l_{1}(a)$ has a unique maximum at the point $a=\pi / 4 t_{0}$, where a is the unique solution of

$$
\tan \phi=\frac{1-\cos (\pi / 2 a)}{\pi / 2 a-\sin (\pi / 2 a)} .
$$

This completes the proof of the theorem.
Remarks. 1. Theorem 3 extends two results for the class \mathscr{C}. The case $\phi=0$ is the well-known result due to Löwner [8] that for every function $f(z) \in \mathscr{C}$, $f(U) \supset\left\{|w|<\frac{1}{2}\right\}$. The case $\phi=\pi / 2$ generalizes the result due to Strohhäcker [10] that if η and ϵ are the boundary points of $f(U)$ that lie on a line through the origin, then $\max (|\eta|,|\epsilon|) \geqq \pi / 4$. Indeed, if $\phi=\pi / 2$, the solution of (3.1) is $a=\infty$ which implies that the extremal function is

$$
\mathrm{f}_{\infty}(z)=\frac{1}{2} \log \frac{1+z}{1-z}
$$

2. It is perhaps worth noting that the corresponding problems for the classes \mathscr{S} and \mathscr{S}^{*} follow quite easily from results in $[\mathbf{1 ; 2 ; 6]}$.

References

1. D. Aharonov and W. E. Kirwan, A method of symmetrization and applications, Trans Amer. Math. Soc. (to appear).
2. - A method of symmetrization and applications, II (to appear).
3. W. Frantz and A. Kratzer, Tranzendente Functionen (Akademische Verlagsgesellschaft, Leipzig, 1960).
4. W. K. Hayman, Multivalent functions (Cambridge University Press, Cambridge, 1958).
5. J. A. Jenkins, On values omitted by univalent functions, Amer. J. Math. 2 (1953), 406-408.
6. M. Klein, Estimates for the transfinite diameter with applications to conformal mapping, Pacific J. Math. 2Q (1967), 267-279.
7. Z. Lewandowski, On circular symmetrization of starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 17 (1963), 35-37.
8. K. Löwner, Untersuchengen über die Verzerrung bei konformen Abbildungen des Einheitskreises, die durch Functionen mit nicht Verschwindender Ableitung geliefert werden, Berichte Könige. Sächs. Ges. Wissen, Leipzig 69 (1917), 89-106.
9. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
10. E. Strohhäcker, Beiträge zur Theorie der Schlichten Functionen, Math. Z. 37 (1933), 356-380.

University of Maryland, College Park, Maryland

[^0]: Received January 31, 1972 and in revised form, August 15, 1972. The research of the second named author was partially supported by NSF Grant GP-12547.

