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Abstract

We study the genealogy of so-called immortal branching processes, i.e. branching
processes where each individual upon death is replaced by at least one new individual,
and conclude that their marginal distributions are compound geometric. The result also
implies that the limiting distributions of properly scaled supercritical branching processes
are compound geometric. We exemplify our results with an expression for the marginal
distribution for a class of branching processes that have recently appeared in the theory
of coalescent processes and continuous stable random trees. The limiting distribution
can be expressed in terms of the Fox H -function, and in special cases by the Meijer
G-function.
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1. Introduction

A branching process is a Markov process in continuous time. Heuristically it can be
considered as the number of particles in a population where the particles behave independently
of each other, live for exponentially distributed periods of time, and at death give birth to new
particles according to some distribution on the nonnegative integers. Usually the population is
assumed to start with one particle. The name ‘branching process’ is appropriate since we can
describe the evolution of the population by drawing a family tree in which the lifetime of each
particle corresponds to a particular branch.

We shall mainly consider branching processes where each particle gives birth to at least two
new particles. We call such processes immortal branching processes since they cannot become
extinct. Our main result is that the number of individuals in an immortal branching processes
has a compound geometric distribution. We obtain a corollary which states that the limiting
distributions of properly scaled supercritical branching processes are compound geometric.

We will start by recalling some well-known results about branching processes and compound
distributions in Sections 2 and 3, respectively. In Section 4, we give a proof and a new
interpretation of the old result that immortal branching processes are infinitely divisible. With
a detailed study in Section 5 of the so-called Yule process, we can in Section 6 give our main
result, Theorem 2, a similar proof and interpretation as in Section 4.
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Genealogy for supercritical branching processes 1067

It is generally hard to find explicit expressions for marginal distributions for branching
processes. In Section 7, we exemplify our results with a branching process that has recently
appeared in the theory of coalescent processes and continuous stable random trees.

2. Branching processes

We can describe the dynamics of a branching process Z = {Zt }t≥0, where the number of
new particles at each birth has the distribution {pk}k≥0, as follows (see [1]). The process starts
with Z0 = 1. If the process is in state i at any time, then it remains there for an amount of time
which is exponentially distributed with parameter iµ, where µ is the intensity of the process,
and then jumps into state j ≥ i − 1 with probability pj−i+1. It then stays in state j for an
exponentially distributed time with parameter jµ, and jumps to state k ≥ j −1 with probability
pk−j+1, and so on.

Let f (s) = ∑∞
k=0 pks

k be the generating function (GF) of the distribution {pk}. The
expected number of new particles at each birth is given by m = f ′(1). A necessary and
sufficient condition for the process described above not to explode in finite time almost surely,
i.e. P(Zt < ∞) = 1, is that ∫ 1

1−ε

ds

f (s) − s
(1)

diverges for all ε, 0 < ε < 1; see [5]. A sufficient condition for this to hold is m < ∞.
The Kolmogorov forward equation for the GF F(s, t) = E[sZt ] is

∂

∂t
F (s, t) = µ(f (s) − s)

∂

∂s
F (s, t).

From this equation, we see that it is no loss of generality to assume that p1 = 0 since, if Z is
a branching process with p1 > 0 and intensity µ, then it is distributed in the same way as the
branching process Z∗ with intensity µ∗ = µ(1 − p1) and GF for the offspring

f ∗(s) = f (s) − p1s

1 − p1
=

∞∑
k=0

p∗
k s

k,

where p∗
1 = 0 and p∗

k = pk/(1 − p1) for k = 0, 2, 3, . . . . We henceforth exclude the trivial
case p1 = 1 from our analysis. Thus, we can, and will, assume that p1 = 0.

As t → ∞, the branching process almost surely either dies out, i.e. Zt → 0, or explodes, i.e.
Zt → ∞. The behaviour we will observe depends only on the expected number of offspring
of each particle. If m ≤ 1 then the process dies out almost surely. If m > 1 then there is a
positive probability, 1 − q, of explosion at infinity and the process is called supercritical. It is
easily shown that q, the probability of extinction, is the smallest nonnegative root of q = f (q).

Our first result shows that, in the case of a supercritical branching process, we can scale it
in time to obtain a nontrivial random variable in the limit.

Proposition 1. With notation as above, let λ = µ(m − 1), with 1 < m < ∞. There exists a
nonnegative random variable W such that

e−λtZt → W almost surely (2)

as t → ∞. Furthermore, W �≡ 0 if and only if
∞∑

k=2

pkk log k < ∞. (3)
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1068 A. N. LAGERÅS AND A. MARTIN-LÖF

For a proof of Proposition 1, see [1].
We shall, in particular, study branching processes with p0 = 0. We call such processes

immortal branching processes, since they are nondecreasing and, thus, q = 0. Since {pk} is a
distribution on {2, 3, . . .}, we can write its GF as f (s) = sg(s) = s2k(s), where g(s) and k(s)

are GFs for distributions on N and N0 (the nonnegative integers), respectively. The Kolmogorov
backward equation for the GF can thus be written as

∂

∂t
F (s, t) = µ(f (F (s, t)) − F(s, t))

= µF(s, t)(g(F (s, t)) − 1) (4)

= µF(s, t)(F (s, t)k(F (s, t)) − 1). (5)

There is a connection between supercritical processes conditioned on exploding and immortal
branching processes. Consider the supercritical branching process Z. At any given time this
process will have individuals of two types, those who will have an infinite line of descent
and those who will not. Let Z̃t be the number of the former individuals at time t . Since
the individuals behave independently, conditional on Zt = n we have Z̃t ∼ Bin(n, 1 − q);
furthermore, Z̃ = {Z̃t }t≥0 is itself an immortal branching process if it is positive (see [1]).

The exact relation between the limiting distribution of Proposition 1 for an exploding
branching process Z and the associated immortal process Z̃ is given by the following result.

Proposition 2. The proportion Z̃t /Zt will, conditional on Z exploding, converge almost surely
to 1−q as t → ∞, where q is the extinction probability of the supercritical branching process.

For a proof of Proposition 2, see [1, Sections I.12 and III.7]. Because of this result, it
is sufficient to study immortal branching processes to understand the limiting behaviour of
supercritical branching processes conditioned on exploding.

3. Compound distributions

We recall some results about compound distributions. All random variables in this section
are assumed to be nonnegative. More details can be found in [8]. A random variable X is
compound-N if

X
d=

N∑
i=1

Yi,

where ‘
d=’ denotes equality in distribution, N is a random variable with distribution on N0, and

Y1, Y2, . . . are independent and identically distributed (i.i.d.). The empty sum is defined to be
zero. Let gN(s) = E[sN ] be the GF of N and let LY (θ) = E[e−θY1 ] be the Laplace–Stieltjes
transform of the distribution of Y1. Then the Laplace–Stieltjes transform (of the distribution)
of X is

LX(θ) = E[e−θX] = E[E[e−θX | N ]] = E[LY (s)N ] = gN(LY (θ)).

If Y1 has a distribution on N0, then we can write the GF as gX(s) = gN(gY (s)). Some examples
of discrete compound distributions are the compound Poisson distribution with GF

F(s) = exp(ν(G(s) − 1)), ν > 0, (6)

and the compound geometric distribution with GF

F(s) = 1 − p

1 − pH(s)
, 0 < p < 1, (7)
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where G(s) and H(s) are some GFs. Since

1 − p

1 − pH(s)
= exp

(
− log(1 − p)

(
log(1 − pH(s))

log(1 − p)
− 1

))
= exp(− log(1 − p)(gN(H(s)) − 1)),

where gN(s) is the GF of the logarithmic distribution, we see that all compound geometric
random variables are also compound Poisson. Note that if X has GF F(s) then F̃ (s) =
(F (s) − F(0))/(1 − F(0)) is the GF of X, given that X > 0, with F̃ (0) = 0. By rescaling
ν and p, we can always choose G(0) = H(0) = 0 in (6) and (7), respectively.

The probability distribution of the random variable X is said to be infinitely divisible
if, for all positive integers n, there exist some i.i.d. random variables X1, . . . , Xn such that
X

d= X1 + · · · + Xn. This is equivalent to LX(θ) = LX1(θ)n, where LX1(θ) is the Laplace–
Stieltjes transform of X1. The compound Poisson distributions are important in part due to the
following proposition, a proof of which can be found in [8].

Proposition 3. All infinitely divisible random variables X with P(X = 0) > 0 are compound
Poisson, and all infinitely divisible distributions can be obtained as the weak limit of compound
Poisson distributions. Furthermore, all weak limits of infinitely divisible distributions are
infinitely divisible.

For a noninteger-valued random variableN , we defineX, a compound-N variable, as follows.
Let Y be infinitely divisible. Thus, LY (θ)a is a Laplace–Stieltjes transform for all a > 0. We
define X by its Laplace–Stieltjes transform

LX(θ) = E[LY (θ)N ] = E[exp(N log LY (θ))] = LN(− log LY (θ)).

If N is infinitely divisible then so is X. The compound exponential distribution has Laplace–
Stieltjes transform

LX(θ) = λ

λ − log LY (θ)
= 1

1 − log LY (θ)1/λ
,

which we obtain with N ∼ Exp(λ). Note that we can always choose λ = 1 by changing Y .
Compound exponential distributions are infinitely divisible, since the exponential distribution
is infinitely divisible. The following result is an analogue of Proposition 3 for compound
exponential and compound geometric distributions.

Proposition 4. All compound exponential random variables X with P(X = 0) > 0 are
compound geometric, and all compound exponential distributions can be obtained as the
weak limit of compound geometric distributions. Furthermore, all weak limits of compound
exponential distributions are compound exponential.

The second and third statements of this proposition can be proved, for example, by using
the continuity theorem for Laplace–Stieltjes transforms. The first statement is easily checked.
Since

0 < P(X = 0) = lim
θ→∞ LX(θ) = lim

θ→∞
1

1 − log LY (θ)
,

we obtain limθ→∞ LY (θ) = P(Y = 0) > 0. Since Y is infinitely divisible, it follows, by
Proposition 3, that Y is compound Poisson, so LY (θ) = exp(ν(LV (θ) − 1)) for some random
variable V . We obtain

LX(θ) = 1

1 − log LY (θ)
= 1

1 − ν(LV (θ) − 1)
= 1 − ν/(1 + ν)

1 − (ν/(1 + ν))LV (θ)
.
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We will also need the following result.

Lemma 1. If X, given that X > 0, is compound exponential, then X is compound geometric.

Proof. Let p = P(X > 0). We obtain

LX(θ) = (1 − p)LX | X=0(θ) + pLX | X>0(θ)

= 1 − p + p

1 − log LY (θ)

= 1 − p

1 − p(1/(1 − p))/(1/(1 − p) − log LY (θ))

= 1 − p

1 − pLV (θ)
,

where

LV (θ) = 1/(1 − p)

1/(1 − p) − log LY (θ)

clearly is a Laplace–Stieltjes transform of a compound exponential probability distribution.

4. Infinite divisibility

Theorem 1. All immortal branching processes are infinitely divisible.

Proof. From (4), we obtain

∂

∂t
log

(
F(s, t)

s

)
= µ(g(F (s, t)) − 1)

and

F(s, t)

s
= exp

(
µ

(∫ t

0
g(F (s, u)) du − t

))

= exp

(
µt

(∫ t

0
g(F (s, t − r))

dr

t
− 1

))
, (8)

which is the GF of a compound Poisson distribution since
∫ t

0 g(F (s, t − r)) dr/t is a GF. Since
Zt − 1 is compound Poisson, it is infinitely divisible; thus, Zt is infinitely divisible.

The distribution (8) has an interesting probabilistic interpretation. Imagine that the ancestor
has a certain title that he passes on to only one of his offspring when he dies. Each individual
who has the title passes it on in the same way when he dies. Up to time t , the title will have been
passed on a number of times which is Poisson distributed with mean µt . The distribution of the
number of siblings of a title-bearer will have GF g(s), and if a title-bearer was born at time r ,
then each of his siblings will be an ancestor of a number of individuals with GF F(s, t − r)

at time t . Thus, the total contribution of a birth of a title-bearer at time r to the final size of
the branching process at time t will have GF g(F (s, t − r)). We finally note that each time of
birth of a title-bearer will be uniformly distributed over (0, t), with probability density 1/t , if
we disregard the order of the times.

Corollary 1. Let Z be a supercritical branching process and W be the limiting random variable
of Proposition 1. Assume that (3) holds. Then W , given that W > 0, has an infinitely divisible
distribution.
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Proof. Let Ŵ have the distribution of W , given that W > 0, and let Z̃ be the branching
process whose individuals are those individuals of Z that have an infinite line of descent. As
noted earlier, Z̃ is an immortal branching process. Since Z̃t is infinitely divisible for all t , so is
e−λt Z̃t , which, by Proposition 3, implies that W̃ = limt→∞ e−λt Z̃t is also infinitely divisible.
Now, Ŵ = W̃/(1 − q), where q = P(W = 0); thus, even Ŵ

d= (W | W > 0) is infinitely
divisible.

Remark 1. Earlier proofs of the infinite divisibility of an immortal branching process and its
limiting random variable can be found in [3]. Our proof is different, and our interpretation of
the result also prepares us for proving further results, such as Theorem 2.

5. The Yule process

The simplest example of an immortal branching process is the so-called Yule process, with
p2 = 1. The Yule process is one of a few branching processes whose marginal distribution
can be found explicitly. One way of finding the distribution is by solving the Kolmogorov
backward equation, but a more direct approach provides the joint distribution of the number of
individuals in the process at time t , and their times of birth. This additional information will
be useful later on. Let 0 = τ(0) < τ(1) < · · · be the times of birth in the Yule process.

Lemma 2. The distribution of Zt −1 is geometric with parameter 1−e−µt , and the distribution
of (τ(1), . . . , τ(n)) conditional on Zt − 1 = n is the same as an ordered sample of i.i.d. random
variables τ1, . . . , τn with probability density

h(r) = P(τk ∈ dr)

dr
= µe−µ(t−r)

1 − e−µt
. (9)

Proof. Let (t1, . . . , tn+1) ∈ (0, t)n+1 and let (t(1), . . . , t(n+1)) be the ordered sample of
(t1, . . . , tn+1); set t(0) = 0. Recall that τ(k) − τ(k−1) ∼ Exp(kµ) for k ≥ 1. We obtain

P(τ(1) ∈ dt(1), . . . , τ(n) ∈ dt(n), τ(n+1) > t)

=
n∏

k=1

P(τ(k) ∈ dt(k) | τ(k−1) = t(k−1)) P(τ(n+1) > t | τ(n) = t(n))

=
n∏

k=1

kµ exp(−kµ(t(k) − t(k−1))) exp(−(n + 1)µ(t − t(n))) dt(1) · · · dt(n)

= n! µn exp

(
−µ

(
(n + 1)t −

n∑
k=1

t(k)

))
dt(1) · · · dt(n)

= n! e−µt
n∏

k=1

µ exp(−µ(t − t(k))) dt(1) · · · dt(n)

= e−µt (1 − e−µt )nn!
n∏

k=1

h(t(k)) dt(1) · · · dt(n) (10)

= e−µt (1 − e−µt )n
n∏

k=1

h(tk) dt1 · · · dtn. (11)
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Since P(Zt − 1 = n) = P(τ(n) ≤ t < τ(n+1)), we see from (10) or (11) that Zt − 1 has a
geometric distribution with parameter 1 − e−µt . Furthermore, we see from (10) that the joint
distribution of the times of birth has the density n! ∏n

k=1 h(t(k)); thus, they can be seen as an
ordered sample of i.i.d. random variables τ1, . . . , τn with probability density h(r).

We note that τk
d= t −ε conditional on ε < t for an ε ∼ Exp(µ). This suggests the following

algorithm for generating the ages of the individuals in a Yule process at time t .

• Draw i.i.d. random variables ε1, ε2, . . . from Exp(µ).

• Stop as soon as any εn > t .

• Set Zt = n and let the ages of the individuals be the realizations of εk for 1 ≤ k ≤ n− 1,
with the original ancestor of course having age t .

The GF for the distribution of Zt − 1 is

F(s, t)

s
= e−µt

1 − (1 − e−µt )s
, (12)

which we also could have found by solving the Kolmogorov backward equation. More
generally, we can also find the distribution when pk+1 = 1 for k ≥ 2. Here we have

F(s, t)

s
=

(
e−µkt

1 − (1 − e−µkt )sk

)1/k

,

so Zt −1 has the distribution of a multiple of a negative binomial random variable. We can also
find the distribution of the limiting variable W of Proposition 1. We note that limt→∞ e−λtZt =
limt→∞ e−λt (Zt − 1) and that λ = µ(m − 1) = µk. The Laplace–Stieltjes transform of W is
given by

LW(θ) = lim
t→∞ E[exp(−θe−µkt (Zt − 1))]

= lim
t→∞

(
e−µkt

1 − (1 − e−µkt ) exp(−kθe−µkt )

)1/k

=
(

1

1 + kθ

)1/k

,

so the distribution is gamma, and, in particular, the distribution is exponential for the limit of
the Yule process.

6. Further distributional properties

The results of Section 5 are in concordance with Theorem 1 and Corollary 1, but we note that
the distributions obtained are not only infinitely divisible but also compound geometric, and
compound exponential in the limit. This is in fact true for all immortal branching processes.

Theorem 2. All immortal branching processes have compound geometric distributions.

Proof. We make the ansatz (compare with (12))

F(s, t)

s
= e−µt

1 − (1 − e−µt )H(s, t)
,
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0 Time t

Figure 1: A realization of an immortal branching process. The open circles denote the times when the
title is passed on under the scheme in Section 4; thus, they form a realization of a Poisson process. The
crosses denote the times when the title is passed on under the system in Section 6; they have probability
density h(r). The lineages of individuals with the title under the second scheme are denoted by solid

lines, and lineages without the title are denoted by dotted lines.

where H(s, t) is a GF. Differentiating with respect to t gives us

∂

∂t
F (s, t) = µF(s, t)

(
F(s, t)

s

(
H(s, t) + eµt − 1

µ

∂

∂t
H(s, t)

)
− 1

)
.

By comparing this with (5), we get

H(s, t) + eµt − 1

µ

∂

∂t
H(s, t) = sk(F (s, t)),

which has the solution

H(s, t) = µs

1 − e−µt

∫ t

0
e−µuk(F (s, u)) du = s

∫ t

0
k(F (s, t − r))h(r) dr,

which really is a GF since k(F (s, t)) is a GF (h(r) is the probability density defined by (9)).

We can give a nice probabilistic interpretation of this result if we compare the general
immortal branching processes with the simpleYule process. Imagine, as before, that the ancestor
has a certain title that he passes on, but let us change the rules of inheritance so that two of
the offspring inherit the title. Now we can consider the group of individuals that have the
title at any given time t . This group will form a Yule process Ẑ with intensity µ. Thus,
Ẑt − 1 has a geometric distribution with parameter 1 − e−µt . The rest of the population
originates from siblings of individuals in the Yule process Ẑ. The number of siblings of two
individuals who were given the title has GF k(s), and each of those siblings will produce a
subtree of its own with total size having GF F(s, t − r), if that sibling is born at time r .
Thus, the size of all subtrees of siblings of a given pair of title-bearers, born at time r , has GF
k(F (s, t − r)). Finally, we know from Lemma 2 that the unconditional distribution of a time
of birth in the Yule process Ẑt has distribution h(r). See Figure 1 for an illustration.

Theorem 2 also provides information about the limiting random variable W of Proposition 1.

Corollary 2. Let Z be a supercritical branching process and W be the limiting random variable
of Proposition 1. Assume that (3) holds. Then W has a compound geometric distribution and
W , given that W > 0, has a compound exponential distribution.
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Proof. If we repeat the proof of Corollary 1 with the information that Z̃t is not only infinitely
divisible but also compound geometric, we obtain, using Proposition 4, the result that W , given
that W > 0, has a compound exponential distribution. By Lemma 1, this implies that W has a
compound geometric distribution.

7. Another branching distribution

So far, we have only seen quite trivial immortal branching processes with pk = 1 for some
k ≥ 2. There is another class of immortal branching processes whose marginal distribution can
be found explicitly. Let

pk = (γ + 1)�(k − 1 − γ )

k! �(1 − γ )
= (γ + 1)

(1 − γ )(2 − γ ) · · · (k − 2 − γ )

k! ,

for 0 < γ < 1 and k ≥ 2. For γ = 1 we set p2 = 1, and for γ = 0 we set pk = 1/(k(k − 1)).
The GF is

f (s) =
⎧⎨
⎩(1 − s)

(1 − s)γ − 1

γ
+ s for 0 < γ ≤ 1,

(1 − s) log(1 − s) + s for γ = 0.

We note that γ = 1 is the ordinary Yule case, so this family of branching processes can be seen
as a generalization of the Yule process.

In the case γ = 0, the expected number of offspring at each birth is infinite, i.e. m = f ′(1) =
∞, so Proposition 1 does not hold and there is no limiting random variable W . Nonetheless,
the integral in (1) diverges, so the branching process does not explode in finite time almost
surely. The solution of the Kolmogorov backward equation (4) when γ = 0 is

F(s, t) = 1 − (1 − s)exp(−µt).

A branching process with offspring distribution {pk} with 0 < γ < 1 has appeared in the
theory of coalescent processes [2] and continuous (stable) random trees [4]. The solution of
(4) is now, when 0 < γ ≤ 1, given by

F(s, t) = 1 − 1

(1 − e−µt + e−µt (1 − s)−γ )1/γ
.

We see that this result is in concordance with (12) for γ = 1.
The expected number of offspring at each birth is m = f ′(1) = 1 + 1/γ . The limiting

random variable W of (2) has Laplace–Stieltjes transform

LW(θ) = lim
t→∞ E[exp(−θe−µt/γ Zt )]

= lim
t→∞ F(exp(−θe−µt/γ ), t)

= lim
r→0

F

(
e−θr , −γ

µ
log r

)

= lim
r→0

(
1 − 1

(1 − rγ + rγ (1 − e−θr )−γ )1/γ

)

= 1 − 1

(1 + θ−γ )1/γ
. (13)
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Let Fγ (x) be the distribution function of W , and fγ (x) its probability density, with Laplace
transform LW(θ). Then 1 − Fγ (x) has Laplace transform

1

θ
− 1

θ
LW(θ) = 1

(1 + θγ )1/γ

= θ−1(1 + θ−γ )−1/γ

=
∞∑

k=0

(−1/γ

k

)
θ−γ k−1.

By inverting this series term by term we obtain

1 − Fγ (x) =
∞∑

k=0

(−1/γ

k

)
xγ k

�(1 + γ k)

= 1

�(1/γ )

∞∑
k=0

�(1/γ + k)

�(1 + γ k)

(−xγ )k

k! .

We note that F1(x) = 1 − e−x , as expected. When 0 < γ < 1, this series is a special case of
several different special functions. With the notation of [6, Equation (1.7.8)],

1 − Fγ (x) = 1

�(1/γ )
1	1

[
(1/γ, 1);
(1, γ ); − xγ

]

= 1

�(1/γ )
H

1,1
1,2

[
xγ

∣∣∣∣ (1 − 1/γ, 1)

(0, 1) (0, γ )

]
,

where 	 is a certain generalization of the hypergeometric function and H is the Fox H -function.
For rational values of γ , 1 − Fγ (x) can be expressed with the Meijer G-function, which has
the advantage of being implemented in software packages such as MATHEMATICA® and
MAPLE®. For example, if γ = p/q with p and q, p < q, being two relatively prime positive
integers, then, by [7, Equation (8.3.2.22)],

1 − Fp/q(x) = qq/p

�(q/p)
√

p(
√

2π)2q−p−1

× G
q,q
q,p+q

((
x

p

)p ∣∣∣∣ 1/q − 1/p, 2/q − 1/p, . . . , 1 − 1/p

0, 1/q, . . . , (q − 1)/q, 0, 1/p, . . . , (p − 1)/p

)
.

Remark 2. The limit distribution (13) also appears for critical branching processes with infinite
variance for the offspring distribution, conditioned on nonextinction; see [9].
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