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Abstract

We prove a general formula for the p-adic heights of Heegner points on modular abelian
varieties with potentially ordinary (good or semistable) reduction at the primes above
p. The formula is in terms of the cyclotomic derivative of a Rankin–Selberg p-adic L-
function, which we construct. It generalises previous work of Perrin-Riou, Howard, and
the author to the context of the work of Yuan–Zhang–Zhang on the archimedean Gross–
Zagier formula and of Waldspurger on toric periods. We further construct analytic
functions interpolating Heegner points in the anticyclotomic variables, and obtain a
version of our formula for them. It is complemented, when the relevant root number
is +1 rather than −1, by an anticyclotomic version of the Waldspurger formula. When
combined with work of Fouquet, the anticyclotomic Gross–Zagier formula implies one
divisibility in a p-adic Birch and Swinnerton-Dyer conjecture in anticyclotomic families.
Other applications described in the text will appear separately.
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1. Introduction

The main results of this paper are the general formula for the p-adic heights of Heegner points
of Theorem B below, and its version in anticyclotomic families (contained in Theorem C). They
are preceded by a flexible construction of the relevant p-adic L-function (Theorem A), and
complemented by a version of the Waldspurger formula in anticyclotomic families (presented in
Theorem C as well). In Theorem D, we give an application to a version of the p-adic Birch and
Swinnerton-Dyer conjecture in anticyclotomic families. In Theorem E, we state a result on the
generic non-vanishing of p-adic heights on CM abelian varieties, as a special case of a theorem
to appear in joint work with Burungale.

Our theorems are key ingredients of a new Gross–Zagier formula for exceptional zeros [Dis16],
and of a universal p-adic Gross–Zagier formula specialising to analogues of Theorem B in all
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The p-adic Gross–Zagier formula on Shimura curves

weights. These will be given in separate works. Here we would just like to mention that all of
them, as well as Theorem E, make essential use of the new generality of the present work.

The rest of this introductory section contains the statements of our results, followed by an
outline of their proofs. To avoid interrupting the flow of exposition, the discussion of previous
and related works (notably by Perrin-Riou and Howard) has mostly been concentrated in § 1.6.

1.1 Heegner points and multiplicity one
Let A be a simple abelian variety of GL2-type over a totally real field F ; recall that this means
that M := End0(A) is a field of dimension equal to the dimension of A. One knows how to
systematically construct points on A when A admits parametrisations by Shimura curves in
the following sense. Let B be a quaternion algebra over the adèle ring A = AF of F , and
assume that B is incoherent, i.e. that its ramification set ΣB has odd cardinality. We further
assume that ΣB contains all the archimedean places of F . Under these conditions there is a
tower of Shimura curves {XU} over F indexed by the open compact subgroups U ⊂ B∞×; let
X = X(B) := lim

←−UXU . For each U , there is a canonical Hodge class ξU ∈ Pic(XU )Q having

degree 1 in each connected component, inducing a compatible family ιξ = (ιξ,U )U of quasi-
embeddings1 ιξ,U : XU ↪→ JU := AlbXU . We write J := lim

←− JU . The M -vector space

π = πA = πA(B) := lim−→U
Hom0(JU , A)

is either zero or a smooth irreducible admissible representation of B∞×. It comes with a natural
stable lattice πZ ⊂ π, and its central character

ωA : F×\A×→M×

corresponds, up to twist by the cyclotomic character, to the determinant of the Tate module
under the class field theory isomorphism. When πA is non-zero, A is said to be parametrised by
X(B). Under the conditions we are going to impose on A, the existence of such a parametrisation,
for a suitable choice of B (see below), is equivalent to the modularity conjecture. Recall that
the latter asserts the existence of a unique M -rational (Definition 1.2.1 below) automorphic
representation σA of weight 2 such that there is an equality of L-functions L(A, s + 1/2) =
L(s, σA). The conjecture is known to be true for ‘almost all’ elliptic curves A (see [LeH14]), and
when AF has complex multiplication.

Heegner points. Let A be parametrised by X(B) and let E be a CM extension of F admitting an
A∞-embedding EA∞ ↪→B∞, which we fix; we denote by η the associated quadratic character and
by DE its absolute discriminant. Then E× acts on X and by the theory of complex multiplication
each closed point of the subscheme XE× is defined over Eab, the maximal abelian extension of
E. We fix one such CM point P . Let L(χ) be a field extension of M and let

χ : E×\E×A∞ → L(χ)×

be a finite-order Hecke character such that

ωA · χ|A∞,× = 1.

We can view χ as a character of GE := Gal(E/E) via the reciprocity map of class field theory
(normalised, in this work, by sending uniformisers to geometric Frobenii). For each f ∈ πA, we

1 By ‘quasi-embedding’, we mean an element of Hom(XU , JU )⊗Q, a multiple of which is an embedding.
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then have a Heegner point

P (f, χ) =

∫
Gal(Eab/E)

f(ιξ(P )τ )⊗ χ(τ) dτ ∈ A(χ).

Here the integration uses the Haar measure of total volume 1, and

A(χ) := (A(Eab)⊗M L(χ)χ)Gal(Eab/E),

where L(χ)χ denotes the one-dimensional Galois module L(χ) with action given by χ. The
functional f 7→ P (f, χ) defines an element of

HomE×A∞
(π ⊗ χ,L(χ))⊗L(χ) A(χ).

A foundational local result of Tunnell and Saito [Tun83, Sai93] asserts that, for any irreducible
representation π of B×, the L(χ)-dimension of

H(π, χ) = HomE×A∞
(π ⊗ χL(χ))

is either zero or one. It is one exactly when, for all places v of F , the local condition

ε(1/2, πE,v ⊗ χv) = χv(−1)ηv(−1)ε(Bv) (1.1.1)

holds, where πE is the base-change of π to E, η = ηE/F is the quadratic character of A×

associated to E, and ε(Bv) = +1 if Bv is split and −1 if Bv is ramified. In this case, denoting
by π∨ the M -contragredient representation, there is an explicit generator

Q =
∏
v-∞

Qv ∈ H(π, χ)⊗L(χ) H(π∨, χ−1)

defined by integration of local matrix coefficients

Qv(f1,v, f2,v, χ) =
L(1, ηv)L(1, πv, ad)

ζF,v(2)L(1/2, πE,v ⊗ χv)

∫
E×v /F

×
v

χv(tv)(π(tv)f1,v, f2,v)v dtv (1.1.2)

for a decomposition (·, ·) =
⊗

v(·, ·)v of the pairing π ⊗M π∨ → M , and Haar measures dtv
assigning to O×E,v/O

×
Fv

the volume 1 if v is unramified in E and 2 if v ramifies in E. The
normalisation is such that given f1, f2, all but finitely many terms in the product are equal
to 1. The pairings Qv in fact depend on the choice of decomposition, which in general needs an
extension of scalars; the global pairing is defined over M and independent of choices.

Note that the local root numbers are unchanged if one replaces π by its Jacquet–Langlands
transfer to another quaternion algebra, and that when π = πA they equal the local root numbers
ε(AE,v, χv) of the motive H1(A×SpecF SpecE)⊗M χ [Gro91]. In this way one can view the local
conditions

ε(AE,v, χv) = χv(−1)ηv(−1)ε(Bv)

as determining a unique totally definite quaternion algebra B ⊃ EA over A, which is incoherent
precisely when the global root number ε(AE , χ) = −1. In this case, A is parametrised by X(B) in
the sense described above if and only if A is modular in the sense that the Galois representation
afforded by its Tate module is attached to a cuspidal automorphic representation of GL2(AF )
of parallel weight 2. We assume this to be the case.
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Gross–Zagier formulas. There is a natural identification π∨ = πA∨ , where A∨ is the dual abelian
variety (explicitly, this is induced by the perfect M = End0(A)-valued pairing f1,U ⊗ f2,U 7→
vol(XU )−1f1,U ◦ f∨2 using the canonical autoduality of JU for any sufficiently small U ; the
normalising factor vol(XU ) ∈ Q× is the hyperbolic volume of XU (Cτ ) for any τ : F ↪→ C;
see [YZZ12, § 1.2.2]). Similarly to the above, we have a Heegner point functional P∨(·, χ−1) ∈
H(π∨, χ−1) ⊗L A∨(χ−1). Then the multiplicity-one result of Tunnell and Saito implies that for
each bilinear pairing

〈 , 〉 : A(χ)⊗L(χ) A
∨(χ−1)→ V

with values in an L(χ)-vector space V , there is an element L ∈ V such that

〈P (f1, χ), P (f2, χ
−1)〉 = L ·Q(f1, f2, χ)

for all f1 ∈ π, f2 ∈ π∨.
In this framework, we may call the ‘Gross–Zagier formula’ a formula for L in terms of

L-functions. When 〈 , 〉 is the Néron–Tate height pairing valued in C
ι
←↩ M for an archimedean

place ι, the generalisation by Yuan–Zhang–Zhang [YZZ12] of the classical Gross–Zagier formula
[GZ86, Zha01a, Zha01b, Zha04] yields

L =
cE
2
·
π2[F :Q]|DF |1/2L′(1/2, σιA,E ⊗ χι)

2L(1, η)L(1, σιA, ad)
, (1.1.3)

where

cE :=
ζF (2)

(π/2)[F :Q]|DE |1/2L(1, η)
∈ Q× (1.1.4)

and, in the present Introduction, L-functions are as usual Euler products over all the finite
places.2 (However in the main body of the paper we will embrace the convention of [YZZ12] of
including the archimedean factors.) The most important factor is the central derivative of the
L-function L(s, σιA,E ⊗ χ).

When 〈 , 〉 is the product of the v-adic logarithms on A(Fv) and A∨(Fv), for a prime v of
F which splits in E, the v-adic Waldspurger formula of Liu–Zhang–Zhang [LZZ15] (generalising
[BDP13]) identifies L with the special value of a v-adic Rankin–Selberg L-function obtained by
interpolating the values L(1/2, σA,E ⊗ χ′′) at anticyclotomic Hecke characters χ′′ of E of higher
weight at v (in particular, the central value for the given character χ lies outside the range of
interpolation).

The object of this paper is a formula for L when 〈 , 〉 is a p-adic height pairing. In this
case L is given by the central derivative of a p-adic Rankin–Selberg L-function obtained by
interpolation of L(1/2, σA,E , χ

′) at finite-order Hecke characters of E, precisely up to the factor
cE/2 of (1.1.3). We describe in more detail the objects involved.

1.2 The p-adic L-function
We construct the relevant p-adic L-function as a function on a space of p-adic characters (which
can be regarded as an abelian eigenvariety), characterised by an interpolation property at locally

2 In [YZZ12], the formula has a slightly different appearance from (1.1.3), owing to the following conventions
adopted there: the L- and zeta functions are complete including the archimedean factors; the functional Q includes
archimedean factors Qv(f1,v, f2,v, χ), which can be shown to be equal to 1/π; and finally the product Haar measure
on E×A∞/A

∞,× equals |DE |−1/2 times our measure (cf. [YZZ12, § 1.6.1]). (When ‘π’ appears as a factor in a
numerical formula, it denotes π = 3.14 . . .; there should be no risk of confusion with the representation πA.)
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constant characters. It further depends on a choice of local models at p (in the present case,
additive characters); this point is relevant for the study of fields of rationality and does not seem
to have received much attention in the literature on p-adic L-functions.

Definition 1.2.1. An M -rational3 cuspidal automorphic representation of GL2 of weight 2 is a
representation σ∞ of GL2(A∞) on a rational vector space Vσ∞ with EndGL2(A∞) σ

∞ = M (then

Vσ∞ acquires the structure of an M -vector space), such that σ∞⊗Qσ
(2)
∞ =

⊕
ι:M↪→C σ

ι is a direct

sum of irreducible cuspidal automorphic representations; here σ
(2)
∞ , a complex representation of

GL2(F∞) ∼= GL2(R)[F :Q], is the product of a discrete series of parallel weight 2 and a trivial
central character.

We fix from now on a rational prime p.

Definition 1.2.2. Let Fv and L be finite extensions of Qp, let σv be a smooth irreducible
representation of GL2(Fv) on an L-vector space, and let αv : F×v → O×L be a smooth character
valued in the units of L. We say that σv is nearly ordinary for weight 2 with unit character αv if σv
is an infinite-dimensional subrepresentation of the un-normalised principal series Ind(| · |vαv, βv)
for some other character βv : F×v → L×. (Concretely, σv is then either an irreducible principal
series or special of the form St(αv) := St⊗(αv ◦ det), where St is the Steinberg representation.)

If M is a number field, p is a prime of M above p, and σv is a representation of GL2(Fv) on
an M -vector space, we say that σv is nearly p-ordinary for weight 2 if there is a finite extension
L of Mp such that σv ⊗M L is nearly p-ordinary for weight 2.

In the rest of this paper we omit the clause ‘for weight 2’.4

Fix an M -rational cuspidal automorphic representation σ∞ of GL2(A∞) of weight 2; if there
is no risk of confusion we will lighten the notation and write σ instead of σ∞. Let ω : F×\A×→
M× be the central character of σ, which is necessarily of finite order.

Fix moreover a prime p of M above p and assume that for all v|p the local components σv of
σ are nearly p-ordinary with respective characters αv; we write α to denote the collection (αv)v|p.
We replace L by its subfield Mp(α) generated by the values of all the αv, and we similarly let
M(α) ⊂ L be the finite extension of M generated by the values of all the αv.

Spaces of p-adic and locally constant characters. Fix throughout this work an arbitrary compact
open subgroup V p ⊂ Ôp,×

E :=
∏
w-p O×E,w. Let

Γ = E×A∞/E
×V p, ΓF = A∞,×/F×Ôp,×

F .

Then we have rigid spaces Y ′ = Y ′ω(V p), Y = Yω(V p), YF of respective dimensions [F : Q]+1+δ,
[F : Q], 1 + δ (where δ > 0 is the Leopoldt defect of F , conjectured to be zero) representing the
functors on L-affinoid algebras

Y ′ω(V p)(A) = {χ′ : Γ→ A× : ω · χ′|
Ôp,×F

= 1},
Yω(V p)(A) = {χ : Γ→ A× : ω · χ|A∞,× = 1},

YF (A) = {χF : ΓF → A×},

3 See [YZZ12, § 3.2.2] for more details on this notion.
4 Which we have introduced in order to avoid misleading the reader into thinking of ordinariness of an automorphic
representation as a purely local notion (but see [Eme06] for how to approach it as such).
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where the sets on the right-hand sides are intended to consist of continuous homomorphisms.
The inclusion Y ⊂ Y ′ sits in the Cartesian diagram

Y //

��

Y ′

��
{1} // YF

(1.2.1)

where the vertical maps are given by χ′ 7→ χF = ω · χ′|A∞,× . When ω = 1, Y1 is a group object
(the ‘Cartier dual’ of Γ/ΓF ); in general, Yω is a principal homogeneous space for Y1 under the
action χ0 · χ = χ0χ.

Let µQ denote the ind-scheme over Q of all roots of unity and µM its base-change to M .

Then there are ind-schemes Y ′ l.c., Y l.c., Y l.c.
F , ind-finite over M , representing the functors on

M -algebras

Y ′ l.c.(A) = {χ′ : Γ→ µM (A) : ω · χ′|
Ôp,×F

= 1},
Y l.c.(A) = {χ : Γ→ µM (A) : ω · χ|A∞,× = 1},
Y l.c.
F (A) = {χF : ΓF → µM (A)},

where the sets on the right-hand sides are intended to consist of locally constant (equivalently,
finite-order) characters.

Definition 1.2.3. Let Y ? be one of the above rigid spaces and Y ?,l.c.,an ⊂ Y ? be the (ind-)rigid

space which is the analytification of Y ?,l.c.
L := Y ?,l.c.×SpecM SpecL. For any finite extension M ′

of M contained in L, there is a natural map of locally M ′-ringed spaces jM ′ : Y ?,l.c.,an
→ Y ?,l.c.

M ′ .
Let M ′ be a finite extension of M contained in L. We say that a section G of the structure sheaf
of Y ? is algebraic on Y ?,l.c.

M ′ if its restriction to Y ?,l.c.,an equals j]M ′G
′ for a (necessarily unique)

section G′ of the structure sheaf of Y ?,l.c.
M ′ .5

In the situation of the definition, we will abusively still denote by G the function G′ on Y ?,l.c.
M ′ .

Local additive character. Let v be a non-archimedean place of F , pv ⊂ OF,v the maximal ideal,
and dv ⊂ OF,v the different. We define the space of additive characters of Fv of level 0 to be

Ψv := Hom(Fv/d
−1
v OF,v,µQ)−Hom(Fv/p

−1
v d−1

v OF,v,µQ),

where we regard Hom(Fv/p
n
vOF,v,µQ) as a profinite group scheme over Q.6 The scheme Ψv

is a torsor for the action of O×F,v (viewed as a constant profinite group scheme over Q) by
a.ψ(x) := ψ(ax).

If ω′v : O×F,v → O(X )× is a continuous character for a scheme or rigid space X , we denote
by OX ×Ψv(ω

′
v) ⊂ OX ×Ψv the subsheaf of functions G satisfying G(x, a.ψ) = ω′v(a)(x)G(x, ψ) for

a ∈ O×F,v. By the defining property, we can identify OX ×Ψv(ω
′
v) with pX ∗OX ×Ψv(ω

′
v) (where

5 To avoid all confusions due to the clash of notation, Y l.c.
F will always denote the M -scheme of locally constant

characters of ΓF introduced above, and not the ‘base-change of Y l.c. to F ’ (which is not defined as M is not a
subfield of F in the generality adopted here).
6 If Fv = Qp, then Hom(Fv/OF,v,µQ) = TpµQ, the p-adic Tate module of roots of unity. One could also construct
and use a scheme parametrising all non-trivial characters of Fv.
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pX : X × Ψv → X is the projection), a locally free rank-1 OX -module with action by GQ :=
Gal(Q/Q). Finally, we denote Ψp :=

∏
v|p Ψv and, if ω′p =

∏
v|p ω

′
v : O×F,p→ O(X )×,

OX ×Ψp(ω
′
p) =

⊗
v|p

OX ×Ψv(ω
′
v),

where the tensor product is in the category of OX -modules. Its space of global sections over X
will be denoted by OX ×Ψp(X ×Ψp, ω

′
p) or simply OX ×Ψp(X , ω′p).

These sheaves will appear in the next theorem with ω′v = ωvχ
−1
F,univ,v : O×F,v → O(Y ′)×,

where ωv is the central character of σv and χF,univ,v : O×F,v→ O(YF )×→ O(Y ′)× comes from the

restriction of the universal O(YF )×-valued character of ΓF . As Ψp is a scheme over Q and χF,univ

is obviously algebraic on Y l.c.
F , the notion of Definition 1.2.3 extends to define Y ′ l.c.M ′ -algebraicity

of sections of OY ′×Ψp(ω
′
v) (and we use the terminology ‘algebraic on Y ′ l.c.M ′ ×Ψp(ω

′
v)’).

As a last preliminary, we introduce notation for bounded functions: if X is a rigid space,
then OX (X )b ⊂ OX (X ) is the space of global sections G such that supx∈X |G(x)| is finite;
similarly, in the above situation, we let

OX ×Ψp(X , ω′p)
b :=

{
G ∈ OX ×Ψp(X , ω′p) : sup

x∈X
|G(x, ψ)| is finite for some ψ ∈ Ψp

}
.

As ω′p is continuous, ω′p(a) is bounded in a ∈ O×F,p: we could then equivalently replace ‘is finite
for some ψ ∈ Ψp’ with ‘is uniformly bounded for all ψ ∈ Ψp’.

Theorem A. There is a bounded analytic function

Lp,α(σE) ∈ OY ′×Ψp(Y
′, ω−1

p χF,univ,p)
b

uniquely determined by the following property: Lp,α(σE) is algebraic on Y ′ l.c.M(α) × Ψp and, for
each C-valued geometric point

(χ′, ψp) ∈ Y ′ l.c.M(α) ×Ψp(C),

letting ι : M(α) ↪→ C be the embedding induced by the composition Spec C
χ′
→ Y ′ l.c.M(α) →

SpecM(α), we have

Lp,α(σE)(χ′, ψp) =
∏
v|p

Z◦v (χ′v, ψv)
π2[F :Q]|DF |1/2L(1/2, σιE ⊗ χ′)

2L(1, η)L(1, σι, ad)

in C. The interpolation factor is explicitly

Z◦v (χ′v, ψv) :=
ζF,v(2)L(1, ηv)

2

L(1/2, σE,v ⊗ χ′v)
∏
w|v

Zw(χ′w, ψv)

with

Zw(χ′w, ψv) =


αv($v)

−v(D)χ′w($w)−v(D) 1− αv($v)
−fwχ′w($w)−1

1− αv($v)fwχ′w($w)q−fwF,v

if χ′w · αv ◦ qw is unramified,

τ(χ′w · αv ◦ q, ψEw)

if χ′w · αv ◦ qw is ramified.
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Here d, D ∈ A∞,× are generators of the different of F and the relative discriminant of E/F ,
respectively, qw is the relative norm of E/F , fw is the inertia degree of w|v, and qF,v is the
cardinality of the residue field at v; finally, for any character χ̃′w of E×w of conductor f,

τ(χ̃′w, ψEw) :=

∫
w(t)=−w(f)

χ̃′w(t)ψE,w(t) dt

with dt the additive Haar measure on Ew giving vol(OEw , dt) = 1, and ψE,w = ψF,v ◦ TrEw/Fv .

Remark 1.2.4. It follows from the description of Lemma A.1.1 that the interpolation factors
Z◦v , Zw are sections of OY ′ l.c.v ×Ψv(ωvχ

−1
F,univ,v), where Y ′ l.c.v is the ind-finite reduced ind-scheme

over M(α) representing µM(α)-valued characters of E×v . (Later, we will also similarly denote by

Y l.c.
v ⊂ Y ′ l.c.v the subscheme of characters satisfying χv|F×v = ω−1

v .)

In fact, we only construct Lp,α(σE) as a bounded section of OY ′×Ψp(ω
−1
p χF,univ,p)(D),

where D is a divisor on Y ′ supported away from Y (i.e. for any polynomial function G
on Y ′ with divisor of zeroes > D, the function G · Lp,α(σE) is a bounded global section
of OY ′×Ψp(ω

−1
p χF,univ,p));

7 see Theorem 3.7.1 together with Proposition A.2.2 for the precise
statement. This is sufficient for our purposes and to determine Lp,α(σE) uniquely. One can then
deduce that it is possible to take D = 0 by comparing our p-adic L-function to some other
construction where this difficulty does not arise. One such construction has been announced by
David Hansen.

1.3 p-adic Gross–Zagier formula
Let us go back to the situation in which A is a modular abelian variety of GL2-type, associated
with an automorphic representation σA of ResF/QGL2 of character ω = ωA.

p-adic heights. Several authors (notably Mazur–Tate, Schneider, Zarhin, Nekovář) have defined
p-adic height pairings on A(F )×A∨(F ) for an abelian variety A. These pairings are analogous to
the classical Néron–Tate height pairings: in particular, they admit a decomposition into a sum
of local symbols indexed by the (finite) places of F ; for v - p such symbols can be calculated
from intersections of zero-cycles and degree-zero divisors on the local integral models of A.

In the general context of Nekovář [Nek93], adopted in this paper and recalled in § 4.1, height
pairings can be defined for any geometric Galois representation V over a p-adic field; we are
interested in the case V = VpA ⊗Mp L, where M = End0A and L is a finite extension of a
p-adic completion Mp of M . Different from the Néron–Tate heights, p-adic heights are associated
with the auxiliary choice of splittings of the Hodge filtration on DdR(V |GFv ) for the primes v|p;
in our case, DdR(V |GFv ) = H1

dR(A∨/Fv) ⊗Mp L. When V |GFv is potentially ordinary, meaning
that it is reducible in the category of de Rham representations (see more precisely Definition
4.1.1),8 there is a canonical such choice. If A is modular corresponding to an M -rational cuspidal
automorphic representation σ∞A , it follows from [Car86, Théorème A], together with [Nek06,
(proof of) Proposition 12.11.5(iv)], that the restriction of V = VpA ⊗ L to GFv is potentially
ordinary if and only if σA,v ⊗ L is nearly p-ordinary.

We assume this to be the case for all v|p. One then has a canonical p-adic height pairing

〈 , 〉 : A(F )Q ⊗M A∨(F )Q→ ΓF ⊗̂L, (1.3.1)

7 A similar difficulty is encountered for example by Hida in [Hid91].
8 This is a p-partial version of the notion of AFv acquiring ordinary (good or semistable) reduction over a finite
extension of Fv.
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whose precise definition will be recalled at the end of § 4.1. Its equivariance properties under the
action of GF = Gal(F/F ) allow us to deduce from it pairings

〈 , 〉 : A(χ)⊗L(χ) A
∨(χ−1)→ ΓF ⊗̂L(χ) (1.3.2)

for any character χ ∈ Y l.c.
L .

Remark 1.3.1. Suppose that ` : ΓF → L(χ) is any continuous homomorphism such that, for all
v|p, `v|O×F,v 6= 0; we then call ` a ramified logarithm. Then it is conjectured, but not known in

general, that the pairings deduced from (1.3.2) by composition with ` are non-degenerate. See
Theorem E for a new result in this direction.

Remark 1.3.2. If χ is not exceptional in the sense of the next definition, then (1.3.2) is known to
coincide with the norm-adapted height pairings à la Schneider [Sch82, Nek93], by [Nek93], and
with the Mazur–Tate [MT83] height pairings, by [IW03].

Definition 1.3.3. A locally constant character χw of E×w is said to be not exceptional if
Zw(χw) 6= 0.9 A character χ ∈ Y l.c.

M(α) is said to be not exceptional if for all w|p, χw is not
exceptional.

The formula. Let Y = Yω ⊂ Y ′ = Y ′ω be the rigid spaces defined above. Denote by IY ⊂ OY ′ the
ideal sheaf of Y and by N ∗

Y /Y ′ = (IY /I
2
Y )|Y the conormal sheaf. By (1.2.1), it is canonically

trivial:
N ∗

Y /Y ′
∼= OY ⊗ T ∗1YF ∼= OY ⊗ (ΓF ⊗̂L).

For a section G of IY , denote by dFG ∈N ∗
Y /Y ′ its image; it can be thought of as the differential

in the 1 + δ cyclotomic variable(s).
Let χ ∈ Y l.c.,an be a character such that ε(AE , χ) = −1; denote by L(χ) its residue field.

By the interpolation property, the complex functional equation, and the constancy of local root
numbers, the p-adic L-function Lp,α(σA,E) is a section of IY in the connected component of
χ ∈ Y ′ (see Lemma 10.2.2). Let B be the incoherent quaternion algebra determined by (1.1.1)
and let πA = πA(B), πA∨ = πA∨(B).

Theorem B. Suppose that:

– for all v|p, A/Fv has potentially p-ordinary good or semistable reduction;

– for all v|p, Ev/Fv is split;

– the sign ε(AE , χ) = −1 and χ is not exceptional (Definition 1.3.3).

Then for all f1 ∈ πA, f2 ∈ πA∨ , we have

〈P (f1, χ), P∨(f2, χ
−1)〉 =

cE
2
·
∏
v|p

Z◦v (χv)
−1 · dFLp,α(σA,E)(χ) ·Q(f1, f2, χ)

in N ∗
Y /Y ′ |χ

∼= ΓF ⊗̂L(χ). Here cE is as in (1.1.4).

In the right-hand side, we have considered Remark 1.2.4 and used the canonical isomorphism
OΨp(ω

−1
p )⊗M OΨp(ωp) = M .

9 As a function on Ψv; by Remark 1.2.4, this is equivalent to Zw(χw, ψv) 6= 0 for every ψv ∈ Ψv.
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1.4 Anticyclotomic theory
Consider the setup of § 1.2. Recall that in the case ε(1/2, σE , χ) = +1, the definite quaternion
algebra B defined by (1.1.1) is coherent, i.e. it arises as B = B ⊗F AF for a quaternion algebra
B over F ; we may assume that the embedding EA ↪→ B arises from an embedding i : E ↪→
B. Let π be the automorphic representation of B× attached to σ by the Jacquet–Langlands
correspondence; it is realised in the space of locally constant functions B×\B× → M , and this
gives a stable lattice πOM ⊂ π. Then, given a character χ ∈ Y l.c., the formalism of § 1.1 applies
to the period functional p ∈ H(π, χ) defined by

p(f, χ) :=

∫
E×\E×A∞

f(i(t))χ(t) dt (1.4.1)

and to its dual p∨(·, χ−1) ∈ H(π∨, χ−1). Here dt is the Haar measure of total volume 1.
The formula expressing the decomposition of their product was proved by Waldspurger (see

[Wal85] or [YZZ12]): for all finite-order characters χ : E×\E×A→M(χ)× valued in some extension
M(χ) ⊃M , and for all f1 ∈ π, f2 ∈ π∨, we have

p(f1, χ)p∨(f2, χ
−1) =

cE
4
· π

2[F :Q]|DF |1/2L(1/2, σE ⊗ χ)

2L(1, η)L(1, σ, ad)
·Q(f1, f2, χ) (1.4.2)

in M(χ). Notice that here we could trivially modify the right-hand side to replace the complex
L-function with the p-adic L-function, thanks to the interpolation property defining the latter.

The L-function terms of both the Waldspurger and the p-adic Gross–Zagier formulas thus
admit an interpolation as analytic functions (or sections of a sheaf) on Yω. We can show that
the other terms do as well.

Let π be the M -rational representation of the (coherent or incoherent) quaternion algebra
B× ⊃ E×A considered above, with central character ω. It will be convenient to denote π+ = π,
π− = π∨, p+ = p, p− = p∨, Y± = Yω±1 , and, in the incoherent case, A+ = A, A− = A∨, P+ = P ,
P− = P∨, σ = σA.

We have a natural isomorphism Y+
∼= Y− given by inversion. If F is a sheaf on Y−, we

denote by F ι its pullback to a sheaf on Y+; the same notation is used to transfer sections of
such sheaves.

Big Selmer groups and heights. Let χ±univ : Γ → (O(Y±)b)× be the tautological character such
that χ±univ(t)(χ) = χ(t)±1 for all χ ∈ Y±, and define an O(Y±)b-module

Sp(A
±
E , χ

±
univ,Y±)b := H1

f (E, VpA
±
E ⊗ O(Y±)b(χ±univ)),

where O(Y±)b(χ±univ) denotes the module of bounded global sections O(Y±)b with GE-action by
χ±univ. Here, for a topological Qp[GE ]-module V which is potentially ordinary at all w|p in the
sense of Definition 4.1.1 below, with exact sequences 0→ V +

w → Vw→ V −w → 0, the (Greenberg)
Selmer group H1

f (E, V ) ⊂ H1(E, V ) := H1(GE , V ) is the group of those continuous cohomology
classes c which are unramified away from p and such that, for every w|p, the restriction of c to
a decomposition group at a w is in the kernel of

H1(Ew, V )→ H1(Ew, V
−).

(In the case at hand, V −w = VpA
±
E |−GE,w is the maximal potentially unramified quotient of

VpA
±
E |GE,w ; cf. § 4.1.) For every non-exceptional χ± ∈ Y l.c.

± , the specialisation Sp(A
±
E , χ

±
univ,

Y±)b ⊗ L(χ) is isomorphic to the target of the Kummer map

κ : A±E(χ±)→ H1
f (E, VpAE ⊗ L(χ±)χ±). (1.4.3)
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The work of Nekovář [Nek06] explains the exceptional specialisations and provides a height
pairing on the big Selmer groups. The key underlying object is the Selmer complex

R̃Γf (E, VpA
±
E ⊗ O(Y ◦± )b(χ±univ)), (1.4.4)

an object in the derived category of O(Y±)b-modules defined as in [Nek06, § 0.8] taking T =
VpA

±
E⊗O(Y ◦± )b(χ±univ) and U+

w = VpA
±
E |+GEw ⊗O(Y ◦± )b(χ±univ) in the notation of [Nek06]. Its first

cohomology group
H̃1
f (E, VpA

±
E ⊗ O(Y ◦± )b(χ±univ))

satisfies the following property. For every L-algebra quotient R of O(Y ◦+ )b, letting χ±R : Γ→ R×

be the character deduced from χ±univ, there is an exact sequence [Nek06, (0.8.0.1)]

0→
⊕
w|p

H0(Ew, VpA
±
E |−GE,w ⊗R(χ±R))

→ H̃1
f (E, VpA

±
E ⊗ O(Y ◦+ )b(χ±univ))⊗R→ H1

f (E, VpA
±
E ⊗R(χ±R))→ 0. (1.4.5)

When R = O(Y±)b itself, each group H0(Ew, VpA
±
E |−GE,w ⊗O(Y±)b(χ±univ)) vanishes as χuniv,w is

infinitely ramified; hence,

H̃1
f (E, VpA

±
E ⊗ O(Y ◦± )b(χ±univ)) ∼= Sp(A

±
E , χ

±
univ,Y±)b.

When R = L(χ) with χ ∈ Y l.c., the group H0(Ew, VpA
±
E |−GE,w ⊗ L(χ±)χ±) vanishes unless

χw · αv ◦ qw = 1 on E×w , that is, unless χw is exceptional.
Finally, by [Nek06, ch. 11], there is a big height pairing

〈 , 〉 : Sp(A
+
E , χ

+
univ,Y+)b ⊗OY+

Sp(A
−
E , χ

−
univ,Y−)b,ι

→ N ∗
Y+/Y ′+

(Y+)b (1.4.6)

interpolating the height pairings on H1
f (E, VpA ⊗ L(χ±)χ±) for non-exceptional χ ∈ Y l.c. (and

more generally certain ‘extended’ pairings on H̃1
f (E, VpA⊗L(χ±)χ±) for all χ ∈ Y l.c.; these will

play no role here).

Heegner–theta elements and anticyclotomic formulas. Keep the assumptions that for all v|p,
Ev/Fv is split and πv ∼= σv is p-nearly ordinary with unit character αv. Then, after tensoring
with OΨp(Ψp) (in order to use Kirillov models at p), we will have a decomposition π± ∼= π±,p⊗π±p ,
which is an isometry with respect to pairings ( , )p, ( , )p on each of the factors. By (1.1.2), for
each χ = χpχp ∈ Y l.c.

M we can then define a toric period

Qp(f+,p, f−,p, χ) ∈M(χ)⊗ OΨp(ω
−1
p ). (1.4.7)

Given f±,p ∈ π±,p, we will construct an explicit pair of elements

f±α = (f±α,Vp) = (f±,p ⊗ f±α,p,Vp)Vp ∈ π
±,p
M(α) ⊗ lim

←−
Vp

π
±,Vp
p , (1.4.8)

where the inverse system is indexed by compact open subgroups Vp ⊂ E×p ⊂ B×p containing

Ker(ωp), with transition maps being given by averages under their π±p -action, and f±α,p,Vp are

suitable elements of π
±,Vp
p . We compute in Lemma 10.1.2 that we have

Qp(f
+
α,p, f

−
α,p) = ζF,p(2)−1

∏
v|p

Z◦v
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as sections of
⊗

v|p OY l.c.
v ×Ψv(ωv), where the left-hand side in the above expression is computed,

for each χp ∈
∏
v|p Y l.c.

v , as the limit of Qp(f
+
α,p,Vp

, f−α,p,Vp) as Vp→ Ker(ωp).

For the following theorem, note that all the local signs in (1.1.1) extend to locally constant
functions of Y+ (this is a simple special case of [PX14, Proposition 3.3.4]); the quaternion algebra
over A determined by (1.1.1) is then also constant along the connected components of Y+. We
will say that a connected component Y ◦+ ⊂ Y+ is of type ε ∈ {±1} if ε(1/2, σE , χ) = ε along Y ◦.

Theorem C. Let Y ◦+ ⊂ Y+ be a connected component of type ε, let B be the quaternion algebra
determined by (1.1.1), and let π± be the representations of B× constructed above. Finally, let
Y ◦− ⊂ Y− be the image of Y ◦+ under the inversion map.

(1) (Heegner–theta elements.) For each f±,p ∈ π±,p, there are elements

Θ±α (f±,p) ∈ OY+(Y ◦± )b if ε = +1,

P±
α (f±,p) ∈ Sp(A

±
E , χ

±
univ,Y

◦
± )b if ε = −1

uniquely determined by the property that, for any compact open subgroup Vp ⊂ E×p and
any Vp-invariant character χ± ∈ Y ◦± , we have

Θ±α (f±,p)(χ±) = p(f±α,Vp , χ
±),

P±
α (f±,p)(χ±) = κ(P (f±α,Vp , χ

±)),

where f±α is the element (1.4.8), p(·) is the period integral (1.4.1), and κ is the Kummer
map (1.4.3).

(2) There is an element

Q = ζF,p(2)−1
∏
v-p

Qv ∈ HomO(Y ◦+ )b[E×
Ap∞ ](π

+,p ⊗ π−,p ⊗ O(Y ◦+ )b,O(Y ◦+ )b ⊗ OΨp(ω
−1
p ))

uniquely determined by the property that, for all f±,p ∈ π±,p and all χ ∈ Y ◦ l.c.
+ , we have

Q(f+,p, f−,p)(χ) = ζF,p(2)−1 ·Qp(f+,p, f−,p, χp).

(3) (Anticyclotomic Waldspurger formula.) If ε = +1, we have

Θ+
α (f+,p) ·Θ−α (f−,p)ι =

cE
4
· Lp,α(σE) ·Q(f+,p, f−,p)

in O(Y ◦+ )b.

(4) (Anticyclotomic Gross–Zagier formula.) If ε = −1 and A has potentially p-ordinary
reduction at all v|p, we have

〈P+
α (f+,p),P−

α (f−,p)ι〉 =
cE
2
· dFLp,α(σE) ·Q(f+,p, f−,p)

in N ∗
Y+/Y ′+

(Y ◦+ )b.

In parts (3) and (4), we have used the canonical isomorphism OΨp(ωp) ⊗ OΨp(ω
−1
p ) ∼= M .

The height pairing of part (4) is (1.4.6).

Remark 1.4.1. Theorem C(4) specialises to 0 = 0 at any exceptional character χ ∈ Y l.c., and
in fact by the archimedean Gross–Zagier formula of [YZZ12] it follows that the ‘pair of points’
P+
α (f+,p)⊗P−

α (f−,p)ι itself vanishes there. The leading term of Lp,α at exceptional characters
is studied in [Dis16].
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1.5 Applications
Theorem B has by now standard applications to the p-adic and the classical Birch and
Swinnerton-Dyer conjectures; the interested reader will have no difficulty in obtaining them as in
[Per87, Dis15]. We obtain in particular one p-divisibility in the classical Birch and Swinnerton-
Dyer conjecture for a p-ordinary CM elliptic curve A over a totally real field as in [Dis15, Theorem
D] without the spurious assumptions of [Dis15] on the behaviour of p in F . In the rest of this
subsection, we describe two other applications.

On the p-adic Birch and Swinnerton-Dyer conjecture in anticyclotomic families. The next
theorem, which can be thought of as a case of the p-adic Birch and Swinnerton-Dyer conjecture
in anticyclotomic families, combines Theorem C(4) with work of Fouquet [Fou13] to generalise a
result of Howard [How05] towards a conjecture of Perrin-Riou [Per87]. We first introduce some
notation: let Λ := O(Y ◦+ )b, and let the anticyclotomic height regulator

R ⊂ Λ ⊗̂ Symr ΓF (1.5.1)

be the discriminant of (1.4.6) on the Λ-module

Sp(A
+
E , χ

+
univ,Y

◦
+ )b ⊗Λ Sp(A

−
E , χ

−
univ,Y

◦
− )b,ι,

where the integer r in (1.5.1) is the generic rank of the finite-type Λ-module Sp(A
+
E , χ

+
univ,

Y ◦+ )b. Recall that this module is the first cohomology of the Selmer complex R̃Γf (E, VpA
+ ⊗

O(Y ◦+ )b(χ+
univ)) of (1.4.4). Let

H̃2
f (E, VpA

+ ⊗ O(Y )b(χuniv))tors

be the torsion part of the second cohomology group. Its characteristic ideal in Λ can roughly
be thought of as interpolating the p-parts of the rational terms (order of the Tate–Shafarevich
group, Tamagawa numbers) appearing on the algebraic side of the Birch and Swinnerton-Dyer
conjecture for A(χ).

Theorem D. In the situation of Theorem C(4), assume furthermore that:

– p > 5;

– VpA is potentially crystalline as a GFv -representation for all v|p;
– the character ω is trivial and Y ◦ is the connected component of 1 ∈ Y ;

– the residual representation ρ : GF → AutFp(TpA⊗Fp) is irreducible (where Fp is the residue
field of Mp), and it remains irreducible when restricted to the Galois group of the Hilbert
class field of E;

– for all v|p, the image of ρ|GF,v is not scalar.

Then

Sp(AE , χuniv,Y
◦)b, Sp(AE , χ

−1
univ,Y

◦)bι

both have generic rank 1 over Λ, a non-torsion element of their tensor product over Λ is given
by any P+

α (f+,p)⊗P−
α (f−,p)ι such that Q(f+,p, f−,p) 6= 0, and

(dFLp,α(σE)|Y ◦) ⊂ R · charΛ H̃
2
f (E, VpA⊗ Λ(χuniv))tors (1.5.2)

as Λ-submodules of Λ ⊗̂ΓF .
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The ‘potentially crystalline’ assumption for VpA, which is satisfied if A has potentially good

reduction at all v|p, is imposed in order for VpA⊗ O(Y ◦)b to be ‘non-exceptional’ in the sense

of [Fou13] (which is more restrictive than ours); the assumption on ω allows us to invoke the

results of [CV05, AN10] on the non-vanishing of anticyclotomic Heegner points, and to write

A = A+ = A−, Y = Y+ = Y− = Y1. See [Fou13, Theorem B(ii)] for the exact assumptions

needed, which are slightly weaker.

The proof of Theorem D will be given in § 10.3.

Remark 1.5.1. When F = Q, the converse divisibility to (1.5.2) was recently proved by Wan

[Wan14] under some assumptions.

Generic non-vanishing of p-adic heights on CM abelian varieties. The non-vanishing of

(cyclotomic) p-adic heights is in general, as we have mentioned, a deep conjecture (or a ‘strong

suspicion’) of Schneider [Sch85]. The following result provides some new evidence towards it. It is

a corollary of Theorem C(4) together with the non-vanishing results for Katz p-adic L-functions of

Hida [Hid10], Hsieh [Hsi14], and Burungale [Bur15] (via a factorisation of the p-adic L-function).

The result is a special case of a finer one to appear in forthcoming joint work with Burungale.

For CM elliptic curves over Q, it was known as a consequence of different non-vanishing results

of Bertrand [Ber83] and Rohrlich [Roh84] (see [AH06, Appendix A, by K. Rubin]).

Theorem E. In the situation of Theorem C(4), suppose that AE has complex multiplication10

and that p - 2DFh
−
E , where h−E = hE/hF is the relative class number. Let 〈 , 〉cyc be the pairing

deduced from (1.4.6) by the map NY /Y ′(Y
◦)b ∼= O(Y ◦)b ⊗̂ΓF → O(Y ◦)b ⊗̂Γcyc, where Γcyc =

ΓQ viewed as a quotient of ΓF via the adèlic norm map.

Then, for any f±,p such that Q(f+,p, f−,p) 6= 0 in O(Y ◦)b, we have

〈P+
α (f+,p),P−

α (f−,p)ι〉cyc 6= 0 in O(Y ◦)b ⊗̂Γcyc.

1.6 History and related work

We briefly discuss previous work towards our main theorems, and some related works. We will

loosely term the ‘classical context’ the following specialisation of the setting of our main results:

A is an elliptic curve over Q with conductor N and good ordinary reduction at p; p is odd; the

quadratic imaginary field E has discriminant coprime to N and it satisfies the Heegner condition:

all primes dividing N split in E (this implies that B∞ is split); the parametrisation f : J →

A factors through the Jacobian of the modular curve X0(N); the character χ is unramified

everywhere, or unramified away from p.

Ancestors. In the classical context, Theorems A and B were proved by Perrin-Riou [Per87];

intermediate steps towards the present generality were taken in [Dis15, Ma16]. When E/F is

split above p, Theorem A can essentially be deduced from a general theorem of Hida [Hid91]

(cf. [Wan15, § 7.3]), except for the location of the possible poles. Theorems C(4) and D in the

classical context are due to Howard [How05] (in fact, Theorems B and C(4) were first envisioned

by Mazur [Maz83] in that context, whereas Perrin-Riou [Per87] had conjectured the equality in

(1.5.2)). Theorem C(3) is hardly new and has many antecedents in the literature: see e.g. [Van12]

and references therein.

10 In the strict sense that the algebra End0(AE) of endomorphisms defined over E is a CM field.
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Relatives. Some analogues of Theorem B were proven in situations which differ from the classical

context in directions which are orthogonal to those of the present work: Nekovář [Nek95] and

Shnidman [Shn16] dealt with the case of higher weights; Kobayashi [Kob13] dealt with the case

of elliptic curves with supersingular reduction.

Friends. We have already mentioned two other fully general Gross–Zagier formulas in the sense of

§ 1.1, namely the original archimedean one of [YZZ12] generalising [GZ86], and a different p-adic

formula proved in [LZZ15] generalising [BDP13]. The panorama of existing formulas of this type

is complemented by a handful of results, mostly in the classical context, valid in the presence of

an exceptional zero (the case excluded in Theorem B). We refer the reader to [Dis16], where we

prove a new such formula for p-adic heights and review other ones due to Bertolini–Darmon. It

is to be expected that all of those results should be generalisable to the framework of § 1.1.

Children. Finally, explicit versions of any Gross–Zagier formula in the framework of § 1.1 can be

obtained by the explicit computation of the local integrals Qv. This is carried out in [CST14],

where it is applied to the cases of the archimedean Gross–Zagier formula and of the Waldspurger

formula; the application to an explicit version of Theorem B can be obtained in exactly the same

manner. An explicit version of the anticyclotomic formulas of Theorem C can also be obtained

as a consequence: see [Dis16] for a special case.

1.7 Outline of proofs and organisation of the paper

Let us briefly explain the main arguments and at the same time the organisation of the paper.

For the sake of simplicity, the notation used in this introductory discussion slightly differs

from that of the body text, and we ignore powers of π, square roots of discriminants, and choices

of additive character.

Construction of the p-adic L-function (§ 3). It is crucial for us to have a flexible construction

which does not depend on choices of newforms. The starting point is Waldspurger’s [Wal85]

Rankin–Selberg integral

(ϕ, I(φ, χ′))Pet

2L(1, σ, ad)/ζF (2)
=
L(1/2, σE ⊗ χ′)

L(1, η)

∏
v

R\v(ϕv, φv, χ
′
v), (1.7.1)

where ϕ ∈ σ, I(φ, χ′) is a mixed theta-Eisenstein series depending on a choice of an adèlic

Schwartz function φ, and R\v(ϕv, φv, χ
′) are normalised local integrals (almost all of which are

equal to 1). Then, after dividing both sides by the period 2L(1, σ, ad), we can:

– interpolate the kernel χ′ 7→ I(0, φ, χ′) to a Y ′-family I (φp∞;χ′) of p-adic modular forms

for any choice of the components φp∞, and a well-chosen φp∞ (we will set φv(x, u) to be

‘standard’ at v|∞, and close to a delta function in x at v|p);
– interpolate the functional ‘Petersson product with ϕ’ to a functional `ϕp,α on p-adic modular

forms, for any ϕ ∈ σ which is a ‘Uv-eigenvector of eigenvalue αv’ at the places v|p, and is

antiholomorphic at infinity;

– interpolate the normalised local integrals χ′ 7→ R\v(ϕv, φv, χ
′
v) to functions R\

v(ϕv, φv) for

all v - p∞ and any ϕv, φv.
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To conclude, we cover Y ′ by finitely many open subsets Ui; for each i, we choose appropriate
ϕp, φp and we define11

Lp,α(σE)|Ui =
`ϕp,α(I (ϕp∞))∏
v-p∞R\

v(ϕv, φv)
.

The explicit computation of the local integrals at p (in the Appendix) and at infinity yields the
interpolation factor.

Proof of the Gross–Zagier formula and its anticyclotomic version. We outline the main arguments
of our proof, with an emphasis on the reduction steps.

Multiplicity one. We borrow or adapt many ideas (and calculations) from [YZZ12], in particular
the systematic use of the multiplicity-one principle of § 1.1. As both sides of the formula are
functionals in the same one-dimensional vector space, it is enough to prove the result for one
pair f1, f2 with Q(f1, f2, χ) 6= 0; finding such f1 ⊗ f2 is a local problem. It is equivalent to
choosing functions ϕv ⊗ φ′v = θ−1(f1 ⊗ f2) as just above, by the Shimizu lift θ realising the
Jacquet–Langlands correspondence (§ 5.1). For v|p, we thus have an explicit choice of such,
corresponding to the one made above.12 For v - p, we can introduce several restrictions on
(ϕv, φv) as in [YZZ12], with the effect of simplifying many calculations of local heights (§ 6).

Arithmetic theta lifting and kernel identity (§ 5). In [YZZ12], the authors introduce an
arithmetic–geometric analogue of the Shimizu lift, by means of which they are able to write also
the Heegner-points side of their formula as a Petersson product with ϕ of a certain geometric
kernel. We can adapt without difficulty their results to reduce our formula to the assertion13

that

dFI (φp∞;χ)− 2L(p)(1, η)Z̃(φ∞, χ)

is killed by the p-adic Petersson product `ϕp,α. Here Z̃(φ∞, χ) is a modular form depending on
φ encoding the height pairings of CM points on Shimura curves and their Hecke translates; it
generalises the classical generating series

∑
m〈ιξ(P )[χ], T (m)ιξ(P )〉qm.

Decomposition and comparison (§§ 7–8). Both terms in the kernel identity are sums of local terms
indexed by the finite places of F . For v - p, we compute both sides and show that the difference
essentially coincides with the one computed in [YZZ12]: it is either zero or, at bad places, a
modular form orthogonal to all forms in σ. In fact, we can show this only for a certain restricted
set of q-expansion coefficients; as the global kernels are p-adic modular forms, this will suffice by
a simple approximation argument (Lemma 2.1.2).

p-adic Arakelov theory or analytic continuation. The argument just sketched relies on calculations
of arithmetic intersections of CM points; this in general does not suffice, as we need to consider
the contribution of the Hodge classes in the generating series too. It will turn out that such
contribution vanishes; two approaches can be followed to show this. The first one, in analogy
with [Zha01a, YZZ12] and already used in a simpler context in [Dis15], is to make use of Besser’s
p-adic Arakelov theory14 [Bes05] in order to separate such contribution.

11 This is the point which possibly produces poles.
12 The notation φ′ refers to the application to φ of a local operator at v|p appearing in the interpolation of the
Petersson product.
13 Together with a comparison of local terms at p described below.
14 Recall that an Arakelov theory is an arithmetic intersection theory which allows us to pair cycles of any degree,
recovering the height pairing for cycles of degree zero.
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We will follow an alternative approach (see Proposition 10.2.3), which exploits the generality
of our context and the existence of extra variables in the p-adic world. Once having constructed
the Heegner–theta element P±, the anticyclotomic formula of Theorem C(4) is essentially a
corollary of Theorem B for all finite-order characters χ: we only need to check the compatibility
Qv(f

+
α,v, f

−
α,v, χ) = ζF,v(2)−1 · Zv(χv) for all v|p by explicit computation. Conversely, thanks to

the multiplicity-one result, it is also true that Theorem B for any χ is obtained as a corollary
of Theorem C(4) by specialisation. We make use of both of these observations: we first prove
Theorem B for all but finitely many finite-order characters χ; this suffices to deduce Theorem
C(4) by an analytic continuation argument, which finally yields Theorem B for the remaining
characters χ as well. The initially excluded characters are those (such as the trivial character
when it is contemplated) for which the contribution of the Hodge classes is not already annihilated
by χ-averaging; for all other characters the Arakelov-theoretic arguments just mentioned are then
unnecessary.

Annihilation of p-adic heights (§ 9). We are left to deal with the contribution of the places v|p.
We can show quite easily that this is zero for the analytic kernel. As in the original work of
Perrin-Riou [Per87], the vanishing of the contribution of the geometric kernel is the heart of the
argument. We establish it via an elaboration of a method of Nekovář [Nek95] and Shnidman
[Shn16]. The key new ingredient in adapting it to our semistable case is a simple integrality
criterion for local heights in terms of intersections, introduced in § 4.3, after a review of the
theory of heights.

Local toric period. Finally, in the Appendix we compute the local toric period Q(θ(ϕv ⊗ φ′v), χv)
for v|p and compare it to the interpolation factor of the p-adic L-function. Both are highly
ramified local integrals, and they turn out to differ by the multiplicative constant L(1, ηv); this
completes the comparison between the kernel identity and Theorem B.

1.8 Notation
We largely follow the notation and conventions of [YZZ12, § 1.6].

L-functions. In the rest of the paper (and unlike in the Introduction, where we adhere to the more
standard convention), all complex L- and zeta functions are complete including the Γ-factors at
the infinite places. (This is to facilitate referring to the results and calculations of [YZZ12], where
this convention is adopted.)

Fields and adèles. The fields E and F will be as fixed in the Introduction unless otherwise noted.
The adèle ring of F will be denoted AF or simply A; it contains the ring A∞ of finite adèles.
We let DF and DE be the absolute discriminants of F and E, respectively. We also choose an
idèle d ∈ A∞,× generating the different of F/Q, and an idèle D ∈ A∞,× generating the relative
discriminant of E/F .

We use standard notation to restrict adèlic objects (groups, L-functions, and so on) away
from a finite set of places S, e.g. AS :=

∏′
v/∈S Fv, whereas FS :=

∏
v∈S Fv. When S is the set of

places above p (respectively∞), we use this notation with ‘S’ replaced by ‘p’ (respectively ‘∞’).
We denote by F+

∞ ⊂ F∞ the group of (xτ )τ |∞ with xτ > 0 for all τ , and we let A×+ := A∞,×F+
∞,

F×+ := F× ∩ F+
∞.

For a non-archimedean prime v of a number field F , we denote by qF,v the cardinality of the
residue field and by $v a uniformiser.

Subgroups of GL2. We consider GL2 as an algebraic group over F . We denote by P ,
respectively P 1, the subgroup of GL2, respectively SL2, consisting of upper-triangular matrices;
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by A ⊂ P ⊂ GL2 the diagonal torus; and by N ⊂ P ⊂ GL2 the unipotent radical of P . We let
n(x) :=

(
1 x

1

)
and

w :=

(
1

−1

)
.

Quadratic torus. We let T := ResE/FGm; the embedding T (A∞) ⊂ B× is fixed. We let Z :=
Gm,F , and view it both as a subgroup of T and as the centre of GL2.

Automorphic quotients. If G is a reductive group over the totally real field F , we denote

[G] := G(F )\G(A)/Z(A).

Measures. We choose local and global Haar measures as in [YZZ12]. In particular, we have

vol(GL2(OF,v)) = |d|2vζF,v(2)−1

for all non-archimedean v.
We denote by dt the local and global measures on T/Z of [YZZ12], which give

vol([T ], dt) = 2L(1, η). The global measure

d◦t := |DF |1/2|DE/F |1/2 dt

gives vol([T ], d◦t) ∈ Q×.

Regularised averages and integration. We borrow some notation from [YZZ12, § 1.6.7]. If G is a
topological group with a left Haar measure dg with finite volume, we define

−
∫
G
f dg :=

1

vol(G)

∫
G
f(g) dg.

(This reduces to the usual average when G is a finite group.)
If F is a totally real field and f is a function on F×\A× invariant under F×∞, we denote

−
∫
A×

f(z) dz := −
∫
F×\A×/F×τ

f(z) dz,

where τ is any archimedean place of F . If f is further invariant under a compact open subgroup
U , this reduces to the average over F×\A×/F×∞U .

Finally, let G be a reductive group over F with an embedding of Gm/F into the centre G,
and assume that dg is a left Haar measure giving finite volume to [G] = G(F )\G(A)/Z(A). Let
f be a function on G(F )\G(A)/Z(F∞); then we define∫ ∗

[G]
f(g) dg :=

∫
[G]
−
∫
Z(A)

f(zg) dz dg

and

−
∫

[G]
f(g) dg :=

1

vol([G])

∫
[G]
−
∫
Z(A)

f(zg) dz dg.

Note in particular that for functions which factor through a compact quotient of G(F )\G(A) and
are locally constant there, the regularised integration reduces to a finite sum and, when using
Q-valued measures such as the measure d◦t on T , it makes sense for functions taking p-adic
values as well.
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Multi-indices. If S is a set and r ∈ ZS , p ∈ GS for some group G, we often write pr :=
∏
v∈S p

rv
v .

This will typically be applied in the following situation: S = Sp is the set of places of F above
p, G is the (semi)group of ideals of OF , and pv is the ideal corresponding to v.

Functions of p-adic characters. When Y ? is one of the rigid spaces introduced above and G(A) ∈
O(Y ?) is a function on Y ? depending on other ‘parameters’ A (e.g. a p-adic L-function), we
write G(A;χ) for the evaluation G(A)(χ).

2. p-adic modular forms

2.1 Modular forms and their q-expansions

Let K ⊂ GL2(ÔF ) be an open compact subgroup. Recall that a Hilbert automorphic form of
level K is a smooth function of moderate growth

ϕ : GL2(F )\GL2(A)/K → C.

Let k ∈ ZHom(F,R). Then an automorphic form is said to be of weight k if it satisfies

ϕ(grθ) = ϕ(g)ψ∞(k · θ)

for all rθ =
((

cos 2πθv sin 2πθv
− sin 2πθv cos 2πθv

))
v|∞ ∈ SO2(F∞). It is said to be holomorphic of weight k if for all

g ∈ GL2(A∞), the function of z∞ = (xv + iyv)v|∞ ∈ hHom(F,R),

z∞ 7→ |y∞|−k/2∞ ϕ
(
g
(y∞ x∞

1

))
,

is holomorphic. Holomorphic Hilbert automorphic forms will be simply called modular forms.
Let ω : F×\A× → C× be a finite-order character. Then ϕ is said to be of character ω if it

satisfies ϕ(zg) = ω(z)ϕ(g) for all z ∈ Z(A) ∼= A×. We denote by Mk(K,C) the space of modular
forms of level K and weight k, and by Sk(K,C) its subspace of cuspforms. We further denote
by Mk(K,ω,C), Sk(K,ω,C) the subspaces of forms of character ω. We identify a scalar weight

k ∈ Z>0 with the corresponding parallel weight (k, . . . , k) ∈ Z
Hom(F,R)
>0 .

For v a finite place of F and N an ideal of OF,v, we define subgroups of GL2(OF,v) by

K0(N)v =

{(
a b
c d

) ∣∣∣∣ c ≡ 0 mod N

}
,

K1(N)v =

{(
a b
c d

) ∣∣∣∣ c, d− 1 ≡ 0 mod N

}
,

K1(N)v =

{(
a b
c d

) ∣∣∣∣ c, a− 1 ≡ 0 mod N

}
,

K1
1 (N)v =

{(
a b
c d

) ∣∣∣∣ c, a− 1, d− 1 ≡ 0 mod N

}
,

K(N)v =

{(
a b
c d

) ∣∣∣∣ b, c, a− 1, d− 1 ≡ 0 mod N

}
.

If N is an ideal of OF and ∗ ∈ {0, 1,
1, 1

1,∅}, we define subgroups K∗(N) of GL2(ÔF ) by

K∗(N) =
∏
vK∗(N)v. If p is a rational prime and r ∈ Z

{v|p}
>0 , we further define K∗(pr)p =∏

vK∗($rv
v )v ⊂ GL2(OF,p).
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Fix a non-trivial character ψ : A/F → C×. Any automorphic form ϕ admits a Fourier–
Whittaker expansion ϕ(g) =

∑
a∈F Wa(g), where Wa(g) = Wϕ,ψ,a(g) satisfies Wa(n(x)g)

=ψ(ax)Wa(g) for all x ∈ A. If ϕ is holomorphic of weight k, we can further write Wa(g) =

Wa∞(g∞)Wa,∞(g∞) with Wa,∞(g) =
∏
v|∞Wa,v(g), where Wa,v = W

(kv)
a,v is the standard

holomorphic Whittaker function of weight k given by (suppressing the subscripts and using
the Iwasawa decomposition)

W (k)
a

((
z
z

)(y x
1

)
rθ
)

=

{
|y|k/2ψ(a(x+ iy))ψ(kθ)1R+(ay) if a 6= 0,

|y|k/2ψ(kθ)1R+(y) if a = 0.
(2.1.1)

(Similarly, we have a description in terms of the standard antiholomorphic Whittaker function

W (−k)
a

((
z
z

)(y x
1

)
rθ
)

=

{
|y|k/2ψ(a(x+ iy))ψ(−kθ)1R+(−ay) if a 6= 0,

|y|k/2ψ(−kθ)1R+(−y) if a = 0,
(2.1.2)

for antiholomorphic forms of weight −k < 0.)
In this case we have an expansion

ϕ

((
y x

1

))
= |y|k/2∞

∑
a∈F>0

W∞a
((
y∞

1

))
ψ∞(iay∞)ψ(ax)

for all y ∈ A×+, x ∈ A; here F>0 denotes the set of a ∈ F satisfying τ(a) > 0 for all τ : F ↪→ R.
For a field L, let the space of formal q-expansions C∞(A∞,×, L)JqF>0K◦ be the set of those

formal sums W =
∑

a∈F>0
Waq

a with coefficients Wa ∈ C∞(A∞,×, L) such that, for some

compact subset AW ⊂ A∞, we have Wa(y) = 0 unless ay ∈ AW .
Let ϕ be a holomorphic automorphic form. The expression

qϕ(y) :=
∑
a∈F

W∞ϕ,a
((y

1

))
qa, y ∈ A∞,× (2.1.3)

belongs to C∞(A∞,×,C)JqF>0K◦ and it is called the formal q-expansion of ϕ. The space of
formal q-expansions is an algebra in the obvious way, compatibly with the algebra structure on
automorphic forms.

Proposition 2.1.1 (q-expansion principle). Let K ⊂ GL2(ÔF ) be an open compact subgroup

and let k ∈ Z
Hom(F,R)
>0 . The q-expansion map defined by (2.1.3)

Mk(K,C)→ C∞(A∞,×,C)JqF>0K◦

ϕ 7→ qϕ

is injective.

We say that a formal q-expansion is modular if it belongs to the image of the q-expansion
map.

Proof. This is (a weak form) of the q-expansion principle of [Rap78, Théorème 6.7(i)]. In fact,
our modular forms ϕ are identified with tuples (ϕc)c∈Cl(F )+ of Hilbert modular forms in the
sense of [Rap78]. Then the non-vanishing of qϕ for ϕ 6= 0 is obtained by applying the result
of [Rap78] to each ϕc. See [Rap78, Lemme 6.12] for the comparison between various notions of
Hilbert modular forms used there. 2

2007

https://doi.org/10.1112/S0010437X17007308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007308


D. Disegni

The spaces of formal q-expansions introduced so far will often be convenient for us in terms of
notation, but they are redundant: if k ∈ Z>0, ϕ ∈Mk(K,C), we have Wa

((y
1

))
= W1

((ay
1

))
for

all a ∈ F×, y ∈A×+. Moreover, if K ⊂K(N), then |y∞|−k/2W0

((
y∞

1

))
and |y∞|−k/2W∞1

((
y∞

1

))
are further invariant under the action of UF (N) = {u ∈ Ô×F | u ≡ 1 mod N} by multiplication on
y (see [Hid91, Theorem 1.1]). We term reducible of weight k those formal q-expansions satisfying
these conditions for some N .

Define the space of reduced q-expansions (of level N) with values in a ring A to be

M ′(K(N), L) := C(A∞,×/F×+UF (N), L)× LA∞,×/UF (N);

if K is any compact open subgroup, we define M ′(K,L) := M ′(K(N), L) for the largest subgroup
K(N) ⊂ K. Let M ′(L) :=

⋃
N M

′(K(N), L) and M ′(Kp, L) :=
⋃
rM

′(KpKp(p
r), L).

Given a reducible q-expansion W of weight k, we can then define the associated reduced
q-expansion (W \

0(y), (W \
a)a∈A∞×) ∈M ′(L) by

W \
0(y) := |y|−k/2W∞0

((y
1

))
, W \

a := |a|−k/2W∞1
((
a

1

))
.

If A ⊂ C is a subring, we denote by Mk(K,A) ⊂ Mk(K,C), Sk(K,A) ⊂ Sk(K,C) the
subspaces of forms with reduced q-expansion coefficients in A. If A is any Q-algebra, we let
Mk(K,A) = Mk(K,Q) ⊗ A, Sk(K,A) = Sk(K,Q) ⊗ A. Then it makes sense to talk about the
q-expansion of an element of those spaces.

If ϕ is a modular form, we still denote by qϕ its reduced q-expansion; in cases where the
distinction is significant, the precise meaning of the expression qϕ will be clear from its context.

p-adic modular forms. Let N ⊂ OF be a non-zero ideal prime to p, UF (Np∞) =
⋂
r>0 UF (Npr).

We endow the quotient A∞,×/F×+UF (Np∞) with the profinite topology. Let L be a complete
Banach ring with norm | · |. We define the space of p-adic reduced q-expansions with values in L
to be

M ′(Kp(N), L) := C(A∞,×/F×+UF (Np∞), L)× LA∞,×/UF (Np∞).

If Kp⊂GL2(Ap∞) is a compact open subgroup in general, we define M′(Kp, L) := M′(Kp(N), L)
for the largest subgroup Kp(N) ⊂ Kp.

Define a ‘norm’ (possibly taking the value ∞) ‖·‖ on M ′(Kp(N), L) by

‖(W \
0 , (W

\
a)a∈A∞,×/UF (Np∞))‖ := sup

(y,a)
{|W \

0(y)|, |W \
a|}. (2.1.4)

It induces a ‘norm’ on the (isomorphic) space of reducible q-expansions with values in L. Let
M ′(Kp, L)◦ ⊂ M ′(Kp, L) be the set of elements on which ‖ ‖ is finite. We define the Banach
space of p-adic reduced q-expansions

M′(Kp, L)

to be the completion of M ′(Kp, L)◦ with respect to the norm ‖·‖. We denote by S′(L) ⊂M′(L)
the space of reduced q-expansions with vanishing constant coefficients; when there is no risk of
confusion we shall omit L from the notation.

Suppose that L is a field extension of Qp. The space of p-adic modular forms of tame

level Kp ⊂ GL2(Ôp
F ) with coefficients in L, denoted by M(Kp, L), is defined to be the

closure in M′(Kp, L) of the subspace generated by the reduced q-expansions of elements of
M2(KpK1(p∞)p, L) =

⋃
r>0M2(KpK1(pr)p, L). Tame levels and coefficient rings will be omitted
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from the notation when they are understood from context. We denote by S := M∩S′ the space
of p-adic modular cuspforms.

Approximation. The q-expansion principle of Proposition 2.1.1 is complemented by the following
(obvious) result to provide a p-adic replacement for the approximation argument in [YZZ12].

Lemma 2.1.2 (Approximation). Let S be a finite set of finite places of F , not containing any
place v above p. Let ϕ be a p-adic modular cuspform all of whose reduced q-expansion coefficients
W \
a,ϕ are zero for all a ∈ F×AS∞,×. Then ϕ = 0.

Proof. The form ϕ has some tame level Kp; then its coefficients are invariant under the action
of some compact open UpF ⊂ A∞,× on the indices a. Since F×AS∞,×UpF = A∞,×, the lemma
follows. 2

Let S′ be the quotient of S′ by the subspace of reduced q-expansions which are zero at all
a ∈ F×AS∞,×, and let S be the image of S in S′ (these notions depend on the set S, which in
our uses will be clear from the context). Then the lemma says that in

S→S ↪→ S′, (2.1.5)

the first map is an isomorphism and the composition is an injection. We use the notation SS(Kp),
S′S(Kp) if we want to specify the set of places S and the tame level Kp.

Families. Let Y ? be one of the rigid spaces defined in the Introduction, and Kp ⊂ GL2(Ap∞)
be a compact open subgroup.

Definition 2.1.3. A Y ?-family of q-expansions of modular forms of tame level Kp is a reduced
q-expansion ϕ with values in O(Y ?), whose coefficients are algebraic on Y ?l.c., and such that for

every point χ ∈ Y ?l.c., ϕ(χ) is the reduced q-expansion of a classical modular form ϕ(χ) of level
KpK1(p∞)p with coefficients in M(χ). We say that ϕ is bounded if it is bounded for the norm
(2.1.4).

Twisted modular forms. It will be convenient to consider the following relaxation of the notion
of modular forms.

Definition 2.1.4. A twisted Hilbert automorphic form of weight k ∈ Z
Hom(F,R)
>0 and level K ⊂

GL2(ÔF ) is a smooth function

ϕ̃ : GL2(A)/K ×A×→ C

satisfying:

– for all γ ∈ GL2(F ), rθ ∈ SO2(F∞),

ϕ̃(γgrθ, u) = ϕ̃(g,det(γ)−1u)ψ∞(k · θ);

– ϕ̃ is of moderate growth in the variable g ∈GL2(A) and, for all g ∈GL2(A), u = u∞u
∞ 7→

ϕ̃(g, u) is the product of a function of the variable u∞ and of the function 1F+
∞

(u∞) of the
variable u∞;

– there exists a compact open subgroup UF ⊂ A∞,× such that for all g, ϕ̃(g, ·) is invariant
under UF ;
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– for each g ∈ GL2(A), there is an open compact subset Kg ⊂ A∞,× such that ϕ̃(g, ·) is

supported in KgF
+
∞.

Let ω : F×\A×→ C× be a finite-order character. We say that a twisted automorphic form

ϕ̃ has central character ω if it satisfies

ϕ̃(zg, u) = ω(z)ϕ̃(g, z−2u)

for all z ∈ Z(A) ∼= A×. We say that it is holomorphic (of weight k) or simply a twisted modular

form if z∞ 7→ |y∞|−k/2∞ ϕ̃
(
g
(y∞ x∞

1

)
, u
)

is holomorphic in z∞ = (xv + iyv)v|∞ ∈ hHom(F,R) for all

u ∈ A×.

We let M tw
k (K,C) denote the space of twisted modular forms of weight k and M tw

k (K,ω,C)

its subspace of forms with central character ω. We omit the K from the notation if we do not

wish to specify the level.

If ϕ̃ is a twisted modular form, then, for each g, u, the function x 7→ ϕ(n(x)g, u) descends to

F\A and therefore it admits a Fourier–Whittaker expansion in the usual way. To the restriction

of ϕ̃ to GL2(A)× F× we then attach a twisted formal q-expansion∑
a∈F
|y|k/2∞ W∞a

((y
1

)
, u
)
qa ∈ C∞(A∞,× × F×,C)JqF>0K◦

such that

ϕ̃

((
y x

1

)
, u

)
= |y|k/2∞

∑
a∈F>0

W∞a
((
y∞

1

)
, u
)
ψ∞(iay∞)ψ(ax)

for all y ∈A×+, x ∈A, u ∈ F×. Here the space C∞(A∞,××F×,C)JqF>0K◦ consists of q-expansions

W whose coefficients Wa(y, u) vanish for ay outside of some compact open subset AW ⊂ A∞.

Let ϕ̃ be a twisted modular form, let UF ⊂ A∞,× be a compact open subgroup satisfying

the condition of the previous definition, and let µUF = F× ∩ UF . Then the sum

ϕ(g) :=
∑

u∈µ2
UF
\F×

ϕ̃(g, u)

is finite for each g (if Kg ⊂ A∞,× is a compact subset such that KgF
×
∞ contains the support of

ϕ̃(g, ·), the sum is supported on µ2
UF
\(F× ∩Kg), which is commensurable with the finite group

µ2
UF
\O×F ). It defines a modular form in the usual sense, with formal q-expansion

qϕ(y) =
∑

u∈µ2
UF
\F×

qϕ̃(y, u).

One can, similarly to the above, define a norm on the space of twisted formal q-

expansion coefficients of a fixed parallel weight k with values in a Banach ring L, namely

‖W‖ := sup(a,y∞,u) |y∞|−k/2|W∞a (y, u)|. The p-adic completion Mtw
k (Kp, L) of the subspace of

q-expansions of twisted modular forms (of some tame level Kp) is called the space of p-adic

twisted modular forms (of tame levelKp). Finally, there is a notion of a Y ?-family of q-expansions

of twisted modular forms.
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2.2 Hecke algebra and operators Uv

Let L be a field and let

H (L) = C∞c (GL2(A∞), L)

be the Hecke algebra of smooth compactly supported functions with the convolution operation
(denoted by ∗ ) and, for any finite set of non-archimedean places S, let H S(L) =C∞c (GL2(AS∞), L),
HS(L) = C∞c (GL2(FS), L). When L = Q it will be omitted from the notation.

The group GL2(A∞) has a natural left action on automorphic forms by right multiplication.
This action is extended to elements f ∈H ⊗C by

T (f)ϕ(g) =

∫
GL2(A∞)

f(h)ϕ(gh) dh,

where dh =
∏
dhv with dhv the Haar measure on GL2(Fv) assigning volume 1 to GL2(OF,v). If

K ⊂ GL2(A∞) is a compact open subgroup, we define eK = T (vol(K)−11K) ∈ H . It acts as

a projector on K-invariant forms. If g ∈ GL2(A∞) and K, K ′ ⊂ GL2(ÔF ) are open compact
subgroups, we define the operator [KgK ′] := T (1KgK′).

By the strong multiplicity-one theorem, for each level K, each M -rational automorphic
representation σ which is a discrete series of weight 2 at all infinite places, and each finite
set of non-archimedean places S such that K is maximal away from S, there are spherical (that
is, K(1)S-bi-invariant) elements T (σ) ∈ H S(M) whose action on M2(K,M) is given by the
idempotent projection eσ onto σK ⊂M2(K,M).

On the space M(Kp, L) of p-adic modular forms, with Kp ⊃ K(N)p, there is a continuous
action of Z(Np∞) := A∞,×/F×UF (Np∞), extending the central action z.ϕ(g) = ϕ(gz) on
modular forms. For a continuous character ω : Z(Np∞) → L×, we denote by M(Kp, ω, L)
the set of p-adic modular forms ϕ satisfying z.ϕ = ω(z)ϕ, and by S(Kp, ω, L) its subspace of
cuspidal forms. If ω is the restriction of a finite-order character of Z(A∞)/UF (Np∞), then we
have M2(KpK(p∞)p, ω, L) ⊂M(Kp, ω, L).

The action of H Sp = C∞c (GL2(ASp∞),Q) extends continuously to the space S(Kp, ω, L) if

Kp is maximal away from S; explicitly, if ϕ is the q-expansion with reduced coefficients W \
a,ϕ

and h(x) = 1
K(1)Np

(
$v

1

)
K(1)Np

, we have

W \
a,T (h)ϕ = W \

a$v ,ϕ + ω−1($v)W
\
a/$v ,ϕ

. (2.2.1)

Moreover, if S′ is another set of finite places not containing those above p and S′′ = S ∪ S′, the
action of H S′′p extends in the same way to the space S′ = S

′
S′(K

p) defined after Lemma 2.1.2.

Operators Uv. Let v be a finite place of F , $v ∈ Fv a uniformiser, and Kv ⊂GL2(Ôv
F ) a compact

open subgroup. For each r > 1, we define Hecke operators

U∗v,r = [KvK1
1 ($r

v)v
($v

1

)
KvK1

1 ($r
v)v],

Uv,∗,r = [KvK1
1 ($r

v)v
(1

$−1
v

)
KvK1

1 ($r
v)v].

They depend on the choice of uniformisers $v, although a sufficiently high (depending on r)
integer power of them does not. They are compatible with changing r in the sense that
Uv,∗,reK1($r

′
v )v

= Uv,∗r′ for r′ 6 r and similarly for U∗v,r; we will hence omit the r from the

notation. If ϕ ∈ S2(KpK1(pr)p, ω) has reduced q-expansion coefficients W \
ϕ,a for a ∈ A∞,×, then

Uv,∗ϕ has reduced q-expansion coefficients W \
Uv,∗ϕ,a

= ω−1($v)W
\
ϕ,aωv . By this formula we can
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extend Uv,∗ to a continuous operator on p-adic reduced q-expansions, and in particular on p-adic
modular forms.

Atkin–Lehner operators. Let v be a finite place and fix the same uniformiser $v as in the previous
paragraph. Then we define elements

wr,v :=

(
1

−$r
v

)
∈ GL2(Fv) ⊂ GL2(A)

for r > 0, and denote by the same names the operators they induce on automorphic forms by
right multiplication. We have w−1

r,vK
1
1 ($s)vwr,v = K1

1 ($s
v)v.

If r = (rv)v|p, we define wr = (wrv ,v)v|p ∈ GL2(Fp) =
∏
v|p GL2(Fv), and similarly w−1

r .

2.3 Universal Kirillov and Whittaker models
Let Fv be a non-archimedean local field, and recall the space Ψv of abstract additive characters of
level 0 of Fv defined in § 1.2. Let ψuniv,v : Fv → O(Ψv)

× be the tautological character, which we
identify with an action of the unipotent subgroup N = N(Fv) ∼= Fv ⊂GL2(Fv) on the sheaf OΨv .
Let σv be an infinite-dimensional representation of GL2(Fv) on a vector space over a number
field M . A Whittaker model over M ⊗ OΨv for σv ⊗Q OΨv is a non-trivial GL2(Fv)-equivariant

map σv ⊗ OΨv → M ⊗ Ind
GL2(Fv)
N ψuniv,v of free sheaves over M ⊗ OΨv . We will often identify

this map with its image.
Let P0 ⊂GL2(Fv) be the mirabolic group of matrices

(
a b

1

)
. A Kirillov model over M ⊗OΨv

for σv ⊗Q OΨv is a non-trivial P0-equivariant map σv ⊗ OΨv → M ⊗ IndP0
N ψuniv,v. We will

often identify this map with its image and the image with a subsheaf of C∞(F×v ,M)⊗ OΨv by
restricting functions from P0 to {

(
a

1

)
| a ∈ F×v } ∼= F×v .

Lemma 2.3.1. Let σv be an irreducible admissible infinite-dimensional representation of GL2(Fv)
on a rational vector space, M = End(σv). Then σv ⊗Q OΨv admits a Whittaker model
W (σv, ψuniv,v) (respectively, a Kirillov model K (σv, ψuniv,v)) over M ⊗ OΨv , unique up to
(M ⊗OΨv)

×, whose specialisation at every closed point ψv ∈ Ψv is the unique Whittaker model
W (σv, ψv) (respectively, the unique Kirillov model K (σv, ψv)) of σv ⊗Q(ψv).

If we view W (σv, ψuniv,v) (respectively, K (σv, ψuniv,v)) as a subsheaf of C∞(GL2(Fv),M)⊗
OΨv (respectively, as a subsheaf of C∞(F×v ,M) ⊗ OΨv), then the restriction map W 7→ f ,
f(y) := W

((y
1

))
, induces an isomorphism W (σv, ψuniv,v)→ K (σv, ψuniv,v).

We call W (σv, ψuniv,v) (respectively, K (σv, ψuniv,v)) the universal Whittaker model
(respectively, the universal Kirillov model) for σv. The universal Kirillov model admits a natural
M -structure, that is, an M -vector space15

K (σv, ψuniv,v)M ⊂ C∞(F×v ,M)

such that K (σv, ψuniv,v)M ⊗ OΨv = K (σv, ψuniv,v).

Proof. The proof of existence and uniqueness of Whittaker models given e.g. in [Bum97, § 4.4]
carries over to our context after replacing C by M ⊗OΨv and the fixed C×-valued character ψv
of [Bum97] with ψuniv,v. The analogous result for Kirillov models, together with the isomorphism
W (σv, ψuniv,v) → K (σv, ψuniv,v), follows formally from Frobenius reciprocity as in [BH06,
Corollary 36.2]. We prove the assertion on the M -structure for K (σv, ψuniv,v), after dropping
subscripts v.

15 Which is not stable under the action of GL2(Fv).
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As in the classical case, the space of Schwartz functions S (F×,M) ⊗ OΨ is an irreducible
P0-representation (see [BH06, Corollary 8.2]) and hence contained in K := K (σι, ψuniv) ⊂
C∞(F×,M) ⊗ OΨ. Moreover, K := K /S (F×,M) ⊗ OΨ is a free sheaf over M ⊗ OΨ of rank
d 6 2 depending on the type of σ (as can be checked on the points of Ψ by the classical theory).
Since the space S (F×,M)⊗OΨ has the obvious M -structure S (F×,M), it suffices to describe
d generators for K represented by functions in C∞(F×,M).

If σ is supercuspidal, then d = 0 and there is nothing to prove. If σ = St(µ| · |−1) is special
with M×-valued central character µ2| · |−2, then d = 1 and a generator for K is fµ(y) :=
µ(y)1OF−{0}(y). If σ is an irreducible principal series Ind(µ1, µ2| · |−1) (plain un-normalised

induction) with M×-valued characters µ1, µ2, then d = 2; if µ1 6= µ2, a pair of generators for K
is {fµ1 , fµ2}. If µ1 = µ2 = µ, a pair of generators is {fµ, f ′µ} with f ′µ(y) := v(y)µ(y)1OF−{0}(y). 2

We will often slightly abusively identify Whittaker and Kirillov models by W 7→ f , f(y) =
W
((y

1

))
.

If σ∞ is an M -rational automorphic representation of weight 2, then after choosing any
embedding ι : M ↪→C and any non-trivial character ψ : A/F →C×, the q-expansion coefficients
of any ϕ ∈ σ∞ can be identified with the product of the local Kirillov restrictions fv of the
Whittaker function W = Wv of ϕι (when W is indeed factorisable). Equivalently, the fv belong
to the M -rational subspaces and are therefore independent of the choice of additive character.

Lemma 2.3.2. In the situation of the previous lemma, there is a pairing

( , )v : K (σv, ψuniv,v)⊗M K (σ∨v , ψ
−1
univ,v)→M ⊗ OΨv

such that for any f1, f2 in the M -rational subspaces K (σv, ψuniv,v)M , respectively,
K (σ∨v , ψ

−1
univ,v)M , the pairing (f1, f2)v ∈M , and for any ι : M ↪→ C, we have

ι(f1, f2)v =
ζF,v(2)

L(1, σιv × σι∨v )

∫
F×v

ιf1(y)ιf2(y)
d×y

|d|1/2v

. (2.3.1)

The right-hand side is understood in the sense of analytic continuation to s = 0 for the
function of s defined, for <(s) sufficiently large, by the normalised convergent integral

ζF,v(2)

L(1 + s, σιv × σι∨v )

∫
F×

ιf1(y)ιf2(y)|y|s d×y

|d|1/2v

.

The normalisation is such that the pairing equals 1 when σv is an unramified principal series
and the fi are normalised new vectors.

Proof. We use the notation of the proof of Lemma 2.3.1, dropping all subscripts v. We simply
need to show that the given expression belongs to ιM if f1, f2 belong to the M -rational subspace
of K and that any pole of the integral Is(f1, f2) :=

∫
F× ιf1(y)ιf2(y)|y|s (d×y/|d|1/2) is cancelled

by a pole of L(1 + s, σι × σι∨). If either of fi ∈ S (F×,M), the integral is just a finite sum
of elements in ιM . Then we only need to compute the integral when f1, f2 are among the
M -rational generators of K , which is a standard calculation.

In our application there will be no poles by the Weil conjectures, so we limit ourselves
to proving the statement in the case where σ = Ind(µ1, µ2| · |−1) is a principal series with
µ1 6= µ2. (The other cases are similar; cf. also the proof of Proposition 3.6.1.) Then σ∨ =
Ind(µ′1, µ

′
2| · |−1) with µ′1 = µ−1

1 | · |, µ′2 = µ−1
2 | · |, and (dropping also the ι from the notation)
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L(1 + s, σ × σ∨) = (1− q−1−s
F )−2(1− µ1µ

′
2(v)q−sF )−1(1− µ′1µ2(v)q−sF )−1, where µ(v) := µ($v) if

µ is an unramified character and µ(v) := 0 otherwise.

Assume that f1 = fµ1 (the case f1 = fµ2 is similar). If f2 = fµ′1 , then Is(f1, f2) = (1−q−1−s
F )−1

has no pole at s = 0. If f2 = fµ′2 , then Is(f1, f2) = (1− µ1µ
′
2(v)q−sF )−1, whose inverse is a factor

of L(1 + s, σv × σ∨v )−1 in M [q−sF ]. 2

2.4 p-critical forms and the p-adic Petersson product

As in [Dis15], we introduce the following notion.

Definition 2.4.1. Let W = (0, (Wa)) ∈ S′(L) be a reduced q-expansion without constant term,

with values in a p-adic field L, and let v|p. We say that W is v-critical if for some integer r, the

following condition is satisfied: there is c ∈ Z such that, for each a ∈ A∞,× with v(a) = r and

s ∈ N,

Wa$sv ∈ qs−cF,v OL.

We say that W is p-critical if it is a sum of v-critical q-expansions for v|p.

For each v|p, we define ordinary projectors ev and e on M(Kp, ω, L) by

ev(ϕ
′) = lim

n→∞
Un!
v,∗ϕ

′, e :=
∏
v

ev.

They are independent of the choice of uniformisers. The image of ev is contained in

M2(KpK1
1 (p∞), ω, L). It is clear that v-critical forms belong to the kernel of ev.

p-adic Petersson product. Let M be a number field, and let σ∞ be an M -rational cuspidal

automorphic representation of GL2 of weight 2 as in Definition 1.2.1, with central character

ω : F×\A→M×.

Following Hida, we will define a p-adic analogue of the Petersson inner product with a form

ϕ in σ∞ when σp is p-ordinary for a prime p|p of M . First we define an algebraic version of the

Petersson product, which requires no ordinariness assumption. If ι : M ↪→C, let ϕι := ιϕ⊗ϕ∞ ∈
σι be the automorphic form whose Whittaker function at infinity is antiholomorphic of smallest

K∞-type.

Lemma 2.4.2. There is a unique pairing

( , )σ∞ : σ∞ ⊗M M2(ω−1,M)→M

such that for any ϕ1 ∈ σ∞, ϕ2 ∈M2(ω−1,M), and ι : M ↪→ C, we have

(ϕ1, ϕ2)σ =
|DF |1/2ζF (2)

L(1, σι, ad)
(ϕι1, ιϕ2),

where

(ϕ′1, ϕ
′
2) :=

∫
GL2(F )Z(A)\GL2(A)

ϕ′1(g)ϕ′2(g) dg

is the usual Petersson product on complex automorphic forms with respect to the Tamagawa

measure dg.
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Proof. Note first that if such a pairing exists, it annihilates forms on the right-hand side which
are orthogonal (under the complex Petersson product in any embedding) to forms in σ. Then
we just need to use a well-known formula for the adjoint L-value in terms of Petersson product;
we quote it in the version given in [TYZ14, p. 55]: for an antiholomorphic form ϕ′1 in the space
of σι and a holomorphic form ϕ′2 in the space of σ∨,ι, both rational over ιM , with factorisable
Whittaker functions W ι

i , we have

|DF |1/2ζF (2)(ϕ′1, ϕ
′
2)

2L(1, σι, ad)
=
∏
v

(W ι
1,v,W

ι
2,v)v (2.4.1)

where for all v the local pairings are given by the right-hand side of (2.3.1) and do not depend
on the choice of additive characters. Each local factor in the product is rational over ιM and
almost all of them are equal to 1. 2

Remark 2.4.3. If ϕ2 ∈ M2(M) does not have central character ω−1, we can still define
(ϕ1, ϕ2)σ∞ := (ϕ1, ϕ2,ω−1)σ∞ , where

ϕ2,ω−1(g) := −
∫
Z(F )\Z(A)

ϕ2(zg)ω(z) dz.

Now fix a prime p|p of M and a finite extension L of Mp, and assume that for all v|p, σv ⊗L
is nearly p-ordinary with unit character αv : F×v → O×L in the sense of Definition 1.2.2. Fix a
Whittaker functional Wp =

∏
v Wv at p and let ϕ ∈ σ∞ ⊗M M(α) be a form in the space of σ∞

whose image under Wv is the function (viewed in the M(α)-rational part of any Kirillov model)

Wv(y) = 1OF−{0}(y)|y|αv(y). (2.4.2)

Note that Wv, viewed in a Kirillov model associated to an additive character of level 0, satisfies
U∗vWv = αv($v)Wv.

In the next proposition, we use the notation α($)r :=
∏
v|p αv($v)

rv .

Proposition 2.4.4. There exists a unique bounded linear functional

`ϕp,α : M(Kp, ω−1, L)→ L

satisfying the following.

(1) Let r = (rv)v|p ∈ Z
{v|p}
>1 . The restriction of `ϕp,α to M2(KpK1(pr)p,M(α)) is given by

`ϕp,α(ϕ′) = α($)−r(wrϕ,ϕ
′)σ∞ = α($)−r(ϕ,w−1

r ϕ′)σ∞ ∈M(α) (2.4.3)

for any choice of uniformisers $v in the definitions of Uv,∗, U∗v, wr.

(2) We have
`ϕp,α(Uv,∗ϕ

′) = αv($v)`ϕp,α(ϕ′)

for all v|p and all ϕ′.

(3) `ϕp,α vanishes on p-critical forms.

(4) Let T (σ∨) ∈H S(M) (where S is any sufficiently large set of finite places containing those
dividing p) be any element whose image T (σ)ι ∈H S(M)⊗M,ιC acts on S2(KpK1(pr)p,C)

as the idempotent projector onto (σ∨,ι)K
pK1(pr)p for any ι : M ↪→ C and r > 1. Let Tιp(σ∨)

be the image of T (σ∨) in H S(M)⊗M,ιp L. Then

`ϕp,α ◦ Tιp(σ∨) = `ϕp,α.
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Proof. By property (2), for each v we must have

`ϕp,α(evϕ
′) = lim

n→∞
`ϕp,α(Un!

v,∗ϕ
′) = lim

n→∞
αv($v)

n!`ϕp,α(ϕ′) = `ϕp,α(ϕ′) (2.4.4)

as αv($v) is a p-adic unit; note that this expression does not depend on the choice of uniformisers.
It follows that `ϕp,α must factor through the ordinary projection

e : M(Kp, ω−1, L)→M2(KpK1(p∞)p, ω
−1, L),

which implies property (3). On the image of e, `ϕp,α must be defined defined by (2.4.3), which
makes uniqueness and property (4) clear.

It remains to show the existence (that is, that (2.4.3) is compatible with changing r) and
that the first equality in (2.4.3) holds for all r for the functional `ϕp,α just defined (the second
one is trivial). For the latter, we have

(wrϕ,Uv,∗ϕ
′) = (wrϕ,K

1($rv
v )v

(1
$−1
v

)
ϕ′) =

((
1
$v

)
K1($rv

v )vwrϕ,ϕ
′)

= (wrK1($rv
v )v

($v
1

)
ϕ,ϕ′) = (wrU

∗
vϕ,ϕ

′) = αv($v)(wrϕ,ϕ
′). (2.4.5)

The compatibility with change of r can be seen by a similar calculation. 2

We still use the notation `ϕp,α for the linear form deduced from `ϕp,α by extending scalars
to some L-algebra. The analogous remark will apply to ( , )σ∞ .

3. The p-adic L-function

3.1 Weil representation
We start by recalling from [Wal85, YZZ12] the definition of the Weil representation for groups
of similitudes.

Local case. Let V = (V, q) be a quadratic space of even dimension over a local field F of
characteristic not 2. Fix a non-trivial additive character ψ of F . For simplicity, we assume
that V has even dimension. For u ∈ F×, we denote by Vu the quadratic space (V, uq). We let
GL2(F ) ×GO(V ) act on the usual space of Schwartz functions16S (V × F×) as follows (here
ν : GO(V )→ Gm denotes the similitude character):

– r(h)φ(x, u) = φ(h−1x, ν(h)u) for h ∈ GO(V );

– r(n(b))φ(x, u) = ψ(buq(x))φ(x, u) for n(b) ∈ N(F ) ⊂ GL2(F );

– r
((
a
d

))
φ(x, u) = χVu(a)|a/d|dimV/4φ(at, d−1a−1u);

– r(w)φ(x, u) = γ(Vu)φ̂(x, u) for w =
(

1
−1

)
.

Here χV = χ(V,q) is the quadratic character attached to V , γ(V, q) is a fourth root of unity,

and φ̂ denotes the Fourier transform in the first variable with respect to the self-dual measure
for the character ψu(x) = ψ(ux). We will need to note the following facts (see e.g. [JL70]): χV
is trivial if V is a quaternion algebra over F or V = F ⊕ F , and χV = η if V is a separable
quadratic extension E of F with associated character η; and γ(V ) = +1 if V is the space of 2×2
matrices or V = F ⊕ F , γ(V ) = −1 if V is a non-split quaternion algebra.

We state here a lemma which will be useful later.

16 The notation is only provisional for the archimedean places; see below.
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Lemma 3.1.1. Let F be a non-archimedean local field and φ ∈ S (V ×F×) a Schwartz function
with support contained in

{(x, u) ∈ V × F× : uq(x) ∈ OF }.
Suppose that the character ψ used to construct the Weil representation has level 0. Then φ is
invariant under K1

1 ($r) ⊂GL2(OF ) for sufficiently large r. If moreover φ(x, u) depends only on
x and on the valuation v(u), then φ is invariant under K1($r).

Proof. By continuity of the Weil representation, for the first assertion it suffices to show the
invariance under N(OF ). This follows from the observation that under our assumption, in the
formula

r(n(b))φ(x, u) = ψ(ubq(x))φ(x, u),

the multiplier ψ(ubq(x)) = 1 whenever (x, u) is in the support of φ. The second assertion is then

equivalent to the invariance of φ under the subgroup
(1

O×F

)
⊂ GL2(OF ), which is clear. 2

Fock model and reduced Fock model. Assume that F = R and V is positive definite. Then we will
prefer to consider a modified version of the previous setting. Let the Fock model S (V ×R×,C)
be the space of functions spanned by those of the form

H(u)P (x)e−2π|u|q(x),

where H is a compactly supported smooth function on R× and P is a complex polynomial
function on V . This space is not stable under the action of GL2(R), but it is so under
the restriction of the induced (gl2,R,O2(R))-action on the usual Schwartz space (see [YZZ12,
§ 2.1.2]).

We will also need to consider the reduced Fock space S (V ×R×) spanned by functions of
the form

φ(x, u) = (P1(uq(x)) + sgn(u)P2(uq(x)))e−2π|u|q(x),

where P1, P2 are polynomial functions with rational coefficients. It contains the standard Schwartz
function

φ(x, u) = 1R+(u)e−2π|u|q(x),

which for x 6= 0 satisfies

r(g)φ(x, u) = W
(d)
uq(x)(g) (3.1.1)

if V has dimension 2d and W (d) is the standard holomorphic Whittaker function (2.1.1) (see
[YZZ12, § 4.1.1]).

By [YZZ12, §§ 4.4.1 and 3.4.1], there is a surjective quotient map

S (V ×R×,C) → S (V ×R×)⊗Q C

Φ 7→ φ(x, u) = Φ(x, u) =

∫
R×
−
∫
O(V )

r(ch)Φ(x, u) dh dc.
(3.1.2)

We let S (V ×R×) ⊂S (V ×R×,C) be the preimage of S (V ×R×). For the sake of uniformity,
when F is non-archimedean we set S (V × F×) := S (V × F×).

Global case. Let (V, q) be an even-dimensional quadratic space over the adèles A = AF of a
totally real number field F , and suppose that V∞ is positive definite; we say that V is coherent
if it has a model over F and incoherent otherwise. Given an ÔF -lattice V ⊂ V, we define the
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space S (V×A×) as the restricted tensor product of the corresponding local spaces, with respect
to the spherical elements

φv(x, u) = 1Vv(x)1$nvv (u),

if ψv has level nv. We call such φv the standard Schwartz function at a non-archimedean place v.
We define similarly the reduced space S (V ×A×), which admits a quotient map

S (V ×A×)→ S (V ×A×) (3.1.3)

defined by the product of the maps (3.1.2) at the infinite places and of the identity at the finite
places. The Weil representation of GL2(A∞) × GO(V∞) × (gl2,F∞ ,O(V∞)) is the restricted
tensor product of the local representations.

3.2 Eisenstein series
Let V2 be a two-dimensional quadratic space over AF , totally definite at the archimedean places.
Consider the Eisenstein series

Er(g, u, φ2, χF ) =
∑

γ∈P 1(F )\SL2(F )

δχF ,r(γgwr)r(γg)φ2(0, u),

where

δχF ,r(g) =

{
χF (d)−1 if g =

(
a b
d

)
k with k ∈ K1

1 (pr),

0 if g /∈ PK0(pr)

and φ2 ∈ S (V2 × A×). (The defining sum is in fact not absolutely convergent, so it must be
interpreted in the sense of analytic continuation at s = 0 from the series obtained by replacing
δχF,r with δχF,rδs, where δs(g) = |a/d|s if g =

(
a b
d

)
k, k ∈ K0(1).) It belongs to the space

M tw
1 (ηχ−1

F ,C) of twisted modular forms of parallel weight 1 and central character ηχ−1
F .

After a suitable modification, we study its Fourier–Whittaker expansion and show that it
interpolates to a YF -family of q-expansions of twisted modular forms.

Proposition 3.2.1. We have

L(p)(1, ηχF )Er
((y x

1

)
, u, φ2, χF

)
=
∑
a∈F

Wa,r(
(y

1

)
, u, φ2, χF )ψ(ax),

where
Wa,r(g, u, φ2, χF ) =

∏
v

Wa,r,v(g, u, φ2,v, χF,v),

with, for each v and a ∈ Fv,

Wa,r,v(g, u, φ2,v, χF,v) = L(p)(1, ηvχF,v)

∫
Fv

δχF ,v,r(wn(b)gwr)r(wn(b)g)φ2,v(0, u)ψv(−ab) db.

Here L(p)(s, ξv) := L(s, ξv) if v - p and L(p)(s, ξv) := 1 if v|p, and we use the convention that
rv = 0 if v - p.

Proof. The standard expansion of Eisenstein series reads

Er(gwr, u, φ2, χF ) = δχF ,r(gwr)r(g)φ2(0, u) +
∑
a∈F

W ∗a,r(g, u, φ2, χF )ψ(ax),

where W ∗a,r = L(p)(1, ηχF )−1Wa,r; but it is easy to check that δχF,r
((y x

1

)
wr
)

= 0. 2
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We choose convenient normalisations for the local Whittaker functions: let γu,v = γ(V2,v, uq)
be the Weil index and, for a ∈ F×v , set

W ◦a,r,v(g, u, φ2,v, χF,v) := γ−1
u,vWa,r,v(g, u, φ2,v, χF,v).

For the constant term, set

W ◦0,r,v(g, u, φ2,v, χF,v) :=
γ−1
u,v

L(p)(0, ηvχF,v)
W0,r,v(g, u, φ2,v, χF,v).

Then for the global Whittaker functions we have

Wa,r(g, u, φ2, χF ) = −ε(V2)
∏
v

W ◦a,r,v(g, u, φ2,vχF,v) (3.2.1)

if a ∈ F×, where ε(V2) =
∏
v γu,v equals −1 if V2 is coherent or +1 if V2 is incoherent; and

W0,r(g, u, φ2, χF ) = −ε(V2)L(p)(0, ηχF )
∏
v

W ◦0,r,v(g, u, φ2,v, χF,v). (3.2.2)

We sometimes drop φ2 from the notation in what follows.

Lemma 3.2.2. For each finite place v and y ∈ F×v , x ∈ Fv, u ∈ F×v , we have

Wa,v

((y x
1

)
, u
)

= ψv(ax)χF (y)−1|y|1/2Way,v(1, y
−1u).

The proof is an easy calculation.

Proposition 3.2.3. The local Whittaker functions satisfy the following.

(1) If v - p∞, then W ◦a,v,r = W ◦a,v does not depend on r and, for all a ∈ Fv,

W ◦a,v(1, u, χF ) = |dv|1/2L(1, ηvχF,v)(1− χF,v($v))
∞∑
n=0

χF,v($v)
nqnF,v

∫
Dn(a)

φ2,v(x2, u) dux2,

where dux2 is the self-dual measure on (V2,v, uq) and

Dn(a) = {x2 ∈ V2,v | uq(x2) ∈ a+ pnvd
−1
v }.

(When the sum is infinite, it is to be understood in the sense of analytic continuation from
characters χF | · |s with s > 0; cf. the proof of Lemma 3.3.1 below.)

(2) If v|p and φ2,v is the standard Schwartz function, then

W ◦a,r,v(1, u, χF ) =

{
|dv|3/2|Dv|1/2χF,v(−1) if v(a) > −v(dv) and v(u) = −v(dv),

0 otherwise.

(3) If v|∞ and φ2,v is the standard Schwartz function, then

Wa,v(1, u) =


2e−2πa if ua > 0,

1 if a = 0,

0 if ua < 0.
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Proof. Part (1) is proved similarly to [YZZ12, Proposition 6.10(1)], whose Whittaker function
W ◦a,v(s, 1, u) equals our L(1, ηv| · |sv)−1W ◦a,v(1, u, | · |sv). The proof of Part 2 is similar to that of
[Dis15, Proposition 3.2.1, places |M/δ]. Part (3) is also well known; see e.g. [YZZ12, Proposition
2.11], whose normalisation differs from ours by a factor of γvL(1, ηv)

−1 = πi. 2

Lemma 3.2.4. Let a ∈ F . For all finite places v, |d|−3/2
v |Dv|−1/2W ◦a,v(1, u, χF ) ∈ Q[χF , φv] and,

for almost all v, we have

|d|−3/2
v |Dv|−1/2W ◦a,v(1, u, χF ) =

{
1 if v(a) > −v(dv) and v(u) = −v(dv),

0 otherwise.

Proof. This follows from Proposition 3.2.3(1) by an explicit computation which is neither difficult
nor unpleasant: we leave it to the reader. 2

3.3 Eisenstein family
Recall from § 1.2 the profinite groups Γ and ΓF and the associated rigid spaces Y ′, Y , YF (only
the latter is relevant for this subsection). For each finite place v - p of F , there are local versions

Y ′v , Yv, YF,v, (3.3.1)

which are schemes overM representing the corresponding spaces of Gm,M -valued homomorphisms
with domain E×v /(V

p ∩ E×v ) (for Y ′v , Yv, where V p ⊂ E×Ap∞ is the subgroup fixed in the
Introduction) or F×v (for YF,v).

17 Letting
⊗′ denote the restricted tensor product with respect

to the constant function 1, and the symbol Y ? stand for any of the symbols Y ′, Y , YF , we let

OY ?(Y ?)f ⊂ OY ?(Y ?)b

denote the image of
⊗′

v-p O(Y ?
v )⊗M L→ OY ?(Y ?).

Lemma 3.3.1. For each a ∈ F , y ∈ A∞,×, and rational Schwartz function φp∞2 , there are:

(1) for each v - p∞:

(a) a Schwartz function φ2,v(·) ∈ S (V2,v,O(YF,v)) such that φ2,v(1) = φ2,v and φ2,v(·) is
identically equal to φ2,v if φ2,v is standard;

(b) a function
W ◦a,v(yv, u, φ2,v) ∈ OYF,v(YF,v)

satisfying

W ◦
a,v(yv, u, φ2,v;χF ) = |dv|−3/2|Dv|−1/2W ◦a,r,v

((yv
1

)
, u, φ2,v(χF,v), χF,v

)
for all χF,v ∈ YF,v(C);

(2) a global function
Wa(y, u, φ

p∞
2 ) ∈ OYF (YF )b,

which is algebraic on Y l.c.
F and satisfies

Wa(y, u, φ
p∞
2 ;χF ) = |DF |1/2|DE |1/2W∞a,r

((y
1

)
, u, φ2(χF ), χF

)
17 Concretely, they are closed subschemes of split tori over M ; cf. the proof of Proposition 3.6.1.
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for each χF ∈ Y l.c.
F (C); here φ2(χF ) =

∏
v-p∞ φ2,v(χF,v)2φ2,p∞ with φ2,v the standard

Schwartz function for each v|p∞. The function |y|−1/2Wa(y, u, φ
p∞
2 ) is bounded solely in

terms of max |φp∞2 | and, if a 6= 0, then Wa ∈ O(YF )f .

Proof. If a 6= 0, by Lemma 3.2.4 and Proposition 3.2.3(2), we can deduce the existence of the
global function in part (2) from the local result of part (1). If a= 0, then by (3.2.2) the same is true
thanks to the well-known existence [DR80] of a bounded analytic function on YF interpolating
χF 7→ L(p)(0, ηχF ).

It thus suffices to prove part (1), and moreover we may restrict to y = 1 in view of Lemma
3.2.2. We can uniquely write φ2,v = cφ◦2,v + φ′2,v, where φ◦2,v is the standard Schwartz function
and c = φ2,v(0). Then we set

φ2,v(χF,v) := cφ◦2,v +
L(1, ηv)

L(1, ηvχF,v)
φ′2,v. (3.3.2)

We need to show that, upon substituting it in the expression for the local Whittaker functions
given in Proposition 3.2.3(1), we obtain a Laurent polynomial in χF,v($v) (which gives the
canonical coordinate on YF,v ∼= Gm,M ). By linearity and Lemma 3.2.4, it suffices to show this
for the summand (L(1, ηv)/L(1, ηvχF,v))φ

′
2,v, whose coefficient is designed to cancel the factor

L(1, ηv, χv) appearing in that expression. The only source of possible poles is the infinite sum.
For n sufficiently large, if a is not in the image of uq, then Dn(a) is empty and therefore the
sum is actually finite. On the other hand if a = uq(xa), then for n large the function φ2,v is
constant and equal to φ2,v(xa) on Dn(a); it follows that∫

Dn(a)
φ2,v(x2, u) dux2 = c′q−nF,v

for some constant c′ independent of n and χF,v. Then the tail of the sum is∑
n>n0

c′χF,v($v)
n = c′

χF,v($v)
n0

1− χF,v($)
;

its product with the factor 1 − χF,v($v) appearing in front of it is then also a polynomial in
χF,v($v).

Finally, the last two statements of part (2) follow by the construction and Lemma 3.2.2. 2

Proposition 3.3.2. There is a bounded YF -family of q-expansions of twisted modular forms of
parallel weight 1

E (u, φp∞2 )

such that for any χF ∈ Y l.c.
F (C) and any r = (rv)v|p satisfying c(χF )|pr, we have

E (u, φp∞2 ;χF ) = |DF |
L(p)(1, ηχF )

L(p)(1, η)
qEr(u, φ2, χF ),

where φ2 = φp∞2 (χF )φ2,p∞ with φ2,v the standard Schwartz function for v|p∞.

Proof. This follows from Lemma 3.3.1 and Proposition 3.2.3(3): we take the q-expansion with
coefficients (2[F :Q]|DF |1/2/|DE |1/2|L(p)(1, η))Wa(y, u, φ

p∞
2 ). 2
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3.4 Analytic kernel
We first construct certain bounded Y ?-families of q-expansions of modular forms for Y ? = YF
or Y ′. In general, if Y ? is the space of p-adic characters of a profinite group Γ?, then it is
equivalent to giving a compatible system, for each extension L′ of L, of bounded functionals
C (Γ?, L′)→M(Kp, L′), where the source is the space of L′-valued continuous functions on Γ?.
This can be applied to the case of YF (with ΓF ), and to the case of Y ′ with the variation
that Y ′-families correspond to bounded functionals on the space C (Γ, ω, L′) of functions f on Γ
satisfying f(zt) = ω−1(z)f(t) for all z ∈ A∞,×.

Let B be a (coherent or incoherent) totally definite quaternion algebra over A = AF and let
E be a totally imaginary quadratic extension of F with an embedding EA ↪→ B which we fix.
Let V be the orthogonal space B with reduced norm q. We have an orthogonal decomposition

V = V1 ⊕V2,

where

V1 = EA, V2 = EAj, j /∈ EA, j2 ∈ A×.

The restriction of q to V1 is the adelisation of the norm of E/F .
We have an embedding (cf. [YZZ12, p. 36])

A×\B× ×B× ↪→ GO(V),

where B× ×B× acts on V by (h1, h2)x = h1xh
−1
2 .

Let φp∞ ∈ S (Vp∞ ×Ap∞,×) be a Schwartz function and let Up ⊂ B∞× be a compact open
subgroup fixing φp∞. For φ1 ∈ S (V1×A×) a Schwartz function such that φ1,∞ is standard, let
θ(u, φ1) be the twisted modular form

θ(g, u, φ1) :=
∑
x1∈E

r(g)φ1(x1, u).

We define the modular form

IF,r(φ1 ⊗ φ2, χF ) =
cUp

|DF |1/2
· L

(p)(1, ηχF )

L(p)(1, η)

∑
u∈µ2

Up
\F×

θ(u, φ1)Er(u, φ2, χF ) (3.4.1)

for sufficiently large r = (rv)v|p, and the YF -family of q-expansions of weight-2 modular forms

IF (φ∞1 ⊗ φp∞2 ;χF ) = cUp
∑

u∈µ2
Up
\F×

qθ(u, φ1)E (u, φp∞2 ;χF ), (3.4.2)

where, letting µUp = F× ∩ UpO×B,p, we set

cUp :=
2[F :Q]−1hF

[O×F : µ2
Up ]

(3.4.3)

and φ(x1, x2, u) = φ1(x1, u)φ2(x2, u) with φi = φp∞i φi,p∞ for φi,v the standard Schwartz function
if v|∞ or i = 2 and v|p. The definition is independent of the choice of Up (cf. [YZZ12, (5.1.3)]).

The action of the subgroup T (A) × T (A) ⊂ B× × B× on S (V ×A×) = S (V1 ×A×) ⊗
S (V2×A×) preserves this tensor product decomposition and thus it can be written as r = r1⊗r2

2022

https://doi.org/10.1112/S0010437X17007308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007308


The p-adic Gross–Zagier formula on Shimura curves

for the actions r1, r2 on each of the two factors. We obtain an action of T (A∞)×T (A∞) on the
forms IF,r and the families IF with orbits

IF,r((t1, t2), φ1 ⊗ φ2, χF ) :=
cUp

|DF |1/2
L(p)(1, ηχF )

L(p)(1, η)

∑
u∈µ2

Up
\F×

θ(u, r1(t1, t2), φ1)Er(u, φ2, χ
ι
F ),

IF ((t1, t2), φ∞1 ⊗ φp∞2 ;χF ) := cUp
∑

u∈µ2
Up
\F×

qθ(q(t)u, r1(t1, t2)φ1)E (q(t)u, φp∞2 ;χF ).

It is a bounded action in the sense that the orbit {IF ((t1, t2), φ∞1 ⊗ φp∞2 ) | t1, t2 ∈ T (A∞)}
is a bounded subset of the space of YF -families of q-expansions, as both E and qθ are bounded
in terms of max |φp∞|.

Define, for the fixed finite-order character ω : F×\A×→M×,

IF,ω−1((t1, t2), φ∞1 ⊗ φp∞2 ;χF ) := −
∫
A×

ω−1(z)χF (z)IF ((zt1, t2), φ∞1 ⊗ φp∞2 ;χF ) dz, (3.4.4)

a bounded YF -family of q-expansions of forms of central character ω−1, corresponding to a
bounded functional on C (ΓF , L) valued in M(Kp, ω−1, L) for a suitable Kp.

We further obtain a bounded functional I on C (Γ, ω, L), valued in M(Kp, ω−1, L), which is
defined on the set (generating a dense subalgebra) of finite-order characters χ′ ∈ C (Γ, ω, L) by

I (φp∞;χ′) :=

∫
[T ]
χ′(t)IF,ω−1((t, 1), φp1φ1,p ⊗ φp2;ω · χ′|A×) d◦t

if φp∞ = φp∞1 ⊗ φp∞2 . Here φ∞1 = φp∞1 φ1,p with

φ1,v(x1, u) = δ1,UT,v(x1)1O×F,v
(u) (3.4.5)

if v|p, where UT,p ⊂ O×E,p is a compact open subgroup small enough that χ′p|UT,p = 1 and

δ1,UT,v(x1) =
vol(OE,v, dx)

vol(UT,v, dx)
1Uv∩OE (x1).

(The notation is meant to suggest a Dirac delta at 1 in the variable x1, to which this is the
finest Uv ×Uv-invariant approximation. Both volumes are taken with respect to a Haar measure
on Ev.)

By construction, the induced rigid analytic function on Y ′ = Y ′ω, still denoted by I , satisfies
the following.

Proposition 3.4.1. There is a bounded Y ′-family of q-expansions of modular forms I (φp∞)
such that for each χ′ ∈ Y ′ l.c.(C), we have

I (φp∞;χ′) = |DE |1/2|DF | qIr(φ, χ′ι),

where

Ir(φ, χ
′) :=

∫ ∗
[T ]
χ′(t)IF,r((t, 1), φ, χF ) dt

with IF,r(φ) as in (3.4.1), with φp∞ chosen as above.
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3.5 Waldspurger’s Rankin–Selberg integral
Let χ′ ∈ Y ′ l.c.M(α)(C) be a character and ι : M(α) ↪→ C be the induced embedding. Let ψ : A/F →

C× be an additive character and let r = rψ be the associated Weil representation.

Proposition 3.5.1. Let ϕ ∈ σι be a form with factorisable Whittaker function, and let
φ =

⊗
v φv ∈ S (V ×A×). For sufficiently large r = (rv)v|p, we have∏

v|p

ια($v)
−rv · (ϕ,w−1

r Ir(φ, χ
′)) =

∏
v

R◦r,v(Wv, φv, χ
′
v, ψv), (3.5.1)

where

R◦r,v(Wv, φv, χ
′
v, ψv) = ιαv($v)

−rv L
(p)(1, ηvχF,v)

L(p)(1, ηv)
Rr,v

with

Rr,v =

∫
Z(Fv)N(Fv)\GL2(Fv)

W−1,v(g)δχF,r,v(g)

∫
T (Fv)

χ′v(t)r(gw
−1
r )Φv(t

−1, q(t)) dt dg.

Here Φv = φv if v is non-archimedean and Φv is a preimage of φv under (3.1.3) if v is archimedean,
W−1,v is the local Whittaker function of ϕ for the character ψv, and we use the convention that
rv = 0, wr,v = 1, ιαv($v)

−rv = 1 if v - p.

Note that the integral Rr,v does not depend on r > 1 unless v|p and it does not depend on
χ′ if v|∞; we will accordingly simplify the notation in these cases.

Proof. This is shown similarly to [YZZ12, Proposition 2.5]; see [YZZ12, (5.1.3)] for the equality
between the kernel functions denoted there by I(s, χ, φ) (similar to our c−1

UpIr(φ, χ
′)) and I(s, χ,Φ)

(which intervenes in the analogue in [YZZ12] of the left-hand side of (3.5.1)). 2

We will sometimes lighten a bit the notation for R◦v by omitting ψv from it.

Lemma 3.5.2. When everything is unramified, we have

R◦v(Wv, φv, χ
′
v) =

L(1/2, σE,v ⊗ χ′v)
ζF,v(2)L(1, ηv)

.

Proof. With a slightly different setup,18 Waldspurger [Wal85, Lemmes 2 and 3] showed that

Rv(Wv, φv, χ
′
v) =

L(1/2, σE,v ⊗ χ′v)
ζF,v(2)L(1, ηvχF,v)

when χF,v = | · |s, but his calculation goes through for any unramified character χF,v. 2

Define

R\r,v(Wv, φvχ
′
v, ψv) := |dv|−2|Dv|−1/2 ζF,v(2)L(1, ηv)

L(1/2, σE,v ⊗ χ′v)
R◦r,v(Wv, φvχ

′
v, ψv). (3.5.2)

Then the previous lemma combined with Proposition 3.5.1 gives the following result.

18 Notably, the local measures in [Wal85] are normalised by vol(GL2(OF,v)) = 1 for almost all finite places v,
whereas we have vol(GL2(OF,v)) = ζF,v(2)−1|d|2v (cf. [YZZ12, p. 23]; the second displayed formula of [YZZ12,
p. 42] neglects this discrepancy).
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Proposition 3.5.3. We have

ια−r(ϕ,w−1
r I(φ, χ′))

= |DF |−1|DE |−1/2L
(∞)(1/2, σE ⊗ χ′)
ζ

(∞)
F (2)L(∞)(1, η)

∏
v-∞

R\r,v(Wv, φv, χ
′
v)
∏
v|∞

R◦v(Wv,Φv, χ
′
v),

where all but finitely many of the factors in the infinite product are equal to 1.

Archimedean zeta integral. We compute the local integral Rv when v|∞.

Lemma 3.5.4. If v|∞, φv is standard, and W−1,v is the standard antiholomorphic Whittaker
function of weight 2 of (2.1.2), then

R◦v(Wv, φv, χ
′
v) = Rv(Wv, φv, χ

′
v) = 1/2.

Proof. By the Iwasawa decomposition, we can uniquely write any g ∈ GL2(R) as

g =

(
1 x

1

)(
z

z

)(
y

1

)(
cos θ sin θ
− sin θ cos θ

)
with x ∈ R, z ∈ R×, y ∈ R×, θ ∈ [0, 2π); the local Tamagawa measure is then dg =
dx d×z (d×y/|y|) (dθ/2). The integral in Z(R) ⊂ T (R) realises the map Φ→ φ; and it is easy to
verify that r(g)φ(1, 1) is the standard holomorphic Whittaker function of weight 2.

We then have, dropping subscripts v,

Rv(ϕ, φ) =

∫
T (R)/Z(R)

∫ 2π

0

∫
R×

(|y|e−2πy)2 d
×y

|y|
dθ

2
dt

= 2 · (4π)−1π = 1/2,

where (4π)−1 comes from a change of variable, 2 = vol(T (R)/Z(R)), and π comes from the
integration in dθ. 2

3.6 Interpolation of local zeta integrals
When v - p, the normalised local zeta integrals admit an interpolation as well. Recall from § 1.2
that Ψv denotes the scheme of all local additive characters of level 0.

Proposition 3.6.1. Let v - p be a finite place, and let K (σv, ψuniv,v) be the universal Kirillov
model of σv. Then, for any φv ∈ S (Vv × F×v ), Wv ∈ K (σv, ψuniv,v), there exists a function

R\(Wv, φv) ∈ L(1, ηvχF,v)OY ′v×Ψv(Y
′
v , ωvχ

−1
F,v,univ)

such that for all χ′v ∈ Y ′v (C), ψv ∈ Ψv(C), we have

R\
v(Wv, φv;χ

′
v, ψv) = R\v(W

ι
v, φv(χ

′
v), χ

′
v, ψv),

where φv(χ
′
v) = φ1,vφ2,v(χF,v) with φ2,v(χF,v) is as in (3.3.2).

In the statement, we consider L(1, ηvχF,v)
−1 as an element of O(Y ′v ) (coming by pullback

from YF,v). Note that it equals the non-zero constant L(1, ηv)
−1 along Yv ⊂ Y ′v .
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Proof. Note that the assertion on the subsheaf of OYv×Ψv of which R\
v is a section simply

encodes the dependence of R\v on the additive character, which is easy to ascertain by a change
of variables. By the definitions, it suffices to show that

L(1/2, σE,v ⊗ χ′v)−1Rv(Wv, φv, χ
′
v) (3.6.1)

extends to a regular function on Y ′v . We will more precisely show that L(1/2, σE,v ⊗ χ′v)−1 is a
product of various factors all of which extend to regular functions on Y ′v , and that the product
of some of those factors and Rv(Wv, φv, χ

′
v) also extends to a regular function on Y ′v . Concretely,

if A ⊂ E×v /(E×v ∩V p) is any finite set, then the evaluations χ′v 7→ (χ′v(a))a∈A define a morphism
evA : Y ′v →GA

m,M ,19 so that finite sums of evaluations of characters are regular functions on Y ′v
obtained by pullback along evA.

Interpolation of Rv. Within the expression for Rv, we can use the Iwasawa decomposition and
note that integration over K = GL2(OF,v) yields a finite sum of integrals of the form (dropping
subscripts v)20 ∫

F×
f ′(y)

∫
T (F )

χ′(t)φ′(yt−1, y−1q(t)) dt dy

for some Schwartz functions φ′ and elements f ′ of the Kirillov model of σ: namely, the translates
of W−1 and of φv by the action of K. (More precisely, taking into account the dependence on χ′

of φ, also products of the above integrals and of L(1, ηχF,v)
−1 can occur; the factor L(1, ηχF,v)

−1

clearly interpolates to a regular function on Y ′v .)
It is easy to see that the integral reduces to a finite sum if either W is compactly supported

or φ′1(·, u) is supported away from 0 ∈ E. It thus suffices to study the case where φ′1(x1, u) =
1OE (x1)φ′F (u), and f ′ belongs to the basis of the quotient space K introduced in the proof of
Lemma 2.3.1. Moreover, up to simple manipulations, we may assume that φF (u) is close to a
delta function supported at u = 1. We distinguish three different cases.

σv is supercuspidal. In this case K = 0 and there is nothing to prove.

σv is a special representation St(µ| · |−1). In this case K is spanned by fµ = µ ·1OF−{0}. We find
that the integral is essentially21 0 if there is a place w of E above v such that, for χ′w := χ′v|E×w ,

the character χ′w · µ ◦ q of E×w is ramified; and it essentially equals∏
w|v

(1− χ′w($w)µ(q($w))q−1
E,w)−1 (3.6.2)

otherwise.22 In the latter case, L(1/2, σE,v⊗χ′w) is also equal to (3.6.2). We conclude that (3.6.1)
extends to a regular function on Y ′v .

σv is an irreducible principal series Ind(µ, µ′| · |−1).23 The space K has dimension 2 and fµ as
above provides a non-zero element. Again the corresponding integral yields either 0 or (3.6.2),

19 Moreover, if A is sufficiently large, the morphism evA is a closed embedding.
20 See Proposition A.2.2 and Lemma A.1.1 for some more detailed calculations similar to the ones of the present
proof.
21 Here we use this adverb with the precise meaning: up to addition of and multiplication by finite combination
of evaluations of χ′.
22 In the last expression, q is the norm of Ew/Fv, whereas qE,w is the cardinality of the residue field of Ew. We
apologise for the near-clash of notation.
23 Here Ind is plain (un-normalised) induction.
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the latter happening precisely when (3.6.2) is a factor of L(1/2, σE⊗χ). If µ′ 6= µ, then a second
basis element is fµ′ , for which the same discussion applies. If µ′ = µ, then a second basis element
is f ′µ(y) := v(y)µ(y)1OF−{0}(y). The integral is essentially 0 if some χ′w · µ ◦ q is ramified, and∏

w|v

(1− χ′w($w)µ(q($w))q−1
E,w)−2 (3.6.3)

otherwise. In the latter case, L(1/2, σE,v ⊗ χ′w) equals (3.6.3) as well.

Interpolation of L(1/2, σE,v ⊗ χ′v)−1. Depending only on σv, as recalled above, for each place
w|v of E, there exist at most two characters νw,iw of E×w such that for all χ′v ∈ Y ′v (C), we can
write L(1/2, σE,v ⊗ χ′v)−1 =

∏′
w,iw

(1 − νwχ′w($w)), where the product
∏′ extends over those

pairs (w, iw) such that νw,iwχ
′
w is unramified. We can replace the partial product by a genuine

product and each of the factors by

1−
( ∑′

x∈O×E,w/(V
p∩E×w )

νw,iw(x)χ′w(x)

)
· νw,iwχ′w($w),

where
∑′ denotes average. This expression is the value at χ′v of an element of O(Y ′v ), as desired.

2

3.7 Definition and interpolation property
Let MY ′−Y be the multiplicative part of O(Y ′)f consisting of functions whose restriction to Y
is invertible. (Recall that O(Y ′)f ⊂ O(Y ′)b is the image of

⊗
v-p∞O(Y ′v ).)

Theorem 3.7.1. There exists a unique function

Lp,α(σE) ∈ OY ′×Ψp(Y
′, ωpχ

−1
F,univ,p)

b[M−1
Y ′−Y ]

which is algebraic on Y ′ l.c.M(α) ×Ψp and satisfies

Lp,α(σE)(χ′, ψp) =
π2[F :Q]|DF |1/2L(∞)(1/2, σιE , χ

′ι)

2L(∞)(1, η)L(∞)(1, σι, ad)

∏
v|p

Z◦v (χ′v, ψv)

for every χ′ ∈ Y ′M(α)(C) inducing an embedding ι : M(α) ↪→ C. Here Z◦v is as in Theorem A.

Let Y ′◦ ⊂ Y ′ be any connected component, Y ◦ := Y ∩ Y ′◦ the corresponding connected
component of Y , and let B be the quaternion algebra over A∞ determined by (1.1.1) for any
(equivalently, all) points χ ∈ Y ◦. For any ϕp∞ ∈ σp∞ and φp∞ ∈ S (Vp∞ ×Ap∞,×), we have

`ϕp,α(I (φp∞))|Y ′◦ = Lp,α(σE)|Y ′◦×Ψp

∏
v-p∞

R\
v(Wv, φv)|Y ′◦×Ψp (3.7.1)

in OY ′(Y
′◦)b, where both I and R\ are constructed using V. On the right-hand side, the

product
∏
v-p R\

v makes sense over Y ′◦ ×Ψp by the decomposition σ ∼= K (σp,Ψp)⊗K (σp,Ψp)

induced by the Whittaker functional fixed in the definition of `ϕp,α.24

24 The p-adic L-function Lp,α(σE) does not depend on this choice. Here, letting Ψ′v denote the space of all non-
trivial additive characters of F×v , the space K (σp,Ψp) is the restriction of

∏′
v-p K (σv,Ψ

′
v) via an embedding

Ψp ↪→
∏
v-p Ψ′v obtained as follows: fix any non-trivial character ψ0 of A/F in µQ; then ψp 7→ (ψ0/ψp|Fv )v.
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Proof. The definition can be given locally by taking quotients in (3.7.1) for any given

(W p∞, φp∞). Note that on the right-hand side of (3.7.1), the product is finite since by Lemma

3.5.2 we have R\
v(Wv, φv) = 1 identically on Y ′ if all the data are unramified. The analytic

properties of Lp,α(σE) are then a consequence of the following claim. Let S be any finite set of

places v - p∞, containing all the ones such that either σv is ramified or the subgroup Vv ⊂ O×E,v
fixed in the Introduction is not maximal. Let Y ′◦ be a connected component and B be the

associated quaternion algebra. Then for each v ∈ S, there exists a finite set of pairs (Wv, φv)

such that the locus of common vanishing of the corresponding functions R\
v(Wv, φv)|Y ◦ is empty.

We prove the claim. Let χv ∈ Y ◦v be any closed point, where v ∈ S and Y ◦v ⊂ Yv is

the union of connected components corresponding to Y ◦. By Lemma 5.1.1 below, we have

R\(Wv, φv, χv) = Qv(θψ,v(Wv, φv), χv), where θψ,v is a Shimizu lift sending σv ×S (Vv × F×)

onto πv ⊗ π∨v , with πv the Jacquet–Langlands transfer of σv to B×v . By construction of Bv and

the result mentioned in § 1.1, the functional Qv(·, χv) is non-vanishing. Therefore, given χv ∈ Y ◦v ,

we can find (Wv, φv) such that R\
v(Wv, φv;χv) 6= 0.

Consider the set of all functions R\
v(Wv, φv)|Y ◦v for varying (Wv, φv). As the locus of their

common vanishing is empty, it follows by the Nullstellensatz that finitely many of them generate

the unit ideal of O(Y ◦v ).25 This completes the proof of the claim.
We now move to the interpolation property. The algebraicity on Y ′ l.c.M(α) is clear from the

definition just given. By ι, which we will omit from the notation below, we can identify ϕ with
an antiholomorphic automorphic form ϕι. By the definitions and Proposition 3.5.3, we have

Lp,α(σE)(χ′, ψp) =
`ϕp,α(I (φp, χ′))∏

v-p∞R\
v(Wv, φv;χ′v, ψv)

=
|DF |1/2ζF (2)

2L(1, σ, ad)
· |DE |1/2|DF |α−r(ϕ,w−1

r I(φ, χ′))∏
v-p∞R

\
v(Wv, φv, χ′, ψv)

=
|DF |1/2ζF (2)

2L(1, σ, ad)
· L

(∞)(1/2, σE , χ
′)

ζ
(∞)
F (2)L(∞)(1, η)

∏
v|∞

R◦v(φv,Wv, χ
′
v, ψv)

∏
v|p

R\r,v(φv,Wv, χ
′
v, ψv)

=
ζF,∞(2)

2[F :Q]L(1, σ∞, ad)
· |DF |1/2L(∞)(1/2, σE , χ

′)

2L(∞)(1, η)L(∞)(1, σ, ad)

∏
v|p

R\r,v(Wv, φv, χ
′
v, ψv).

Here ψp is any additive character such that ψ = ψpψpψ∞ vanishes on F . For v|∞, we have

ζF,v(2)/L(1, σv, ad) = π−1/(π−3/2) = 2π2, so that the first fraction in the last line equals π2[F :Q].

The result follows.

The proof is completed by the identification R\r,v = Z◦v for v|p carried out in Proposition

A.2.2. 2

4. p-adic heights

We recall the definition and properties of p-adic heights and prove two integrality criteria for

them. The material of §§ 4.2–4.3 will not be used until §§ 8–9.

25 Recall that Yv is an affine scheme of finite type over M (more precisely, it is a closed subscheme of a split torus).
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For background in p-adic Hodge theory, see the summary in [Nek93, § 1] and references

therein. The notation we use is completely standard; it coincides with that of [Nek93] except

that we shall prefer to write DdR instead of DR for the functor of de Rham periods.

4.1 Local and global height pairings

Let F be a number field and GF := Gal(F/F ). Let L be a finite extension of Qp, and let V be

a finite-dimensional L-vector space with a continuous action of GF . For each place v of F , we

denote by Vv the space V considered as a representation of GF,v := Gal(F v/Fv).

Recall that the Bloch–Kato Selmer group of V

H1
f (F, V )

is the subset of H1(F, V ) = Ext1
F (L, V ) (extensions in the category of continuous GF -

representations over L) consisting of the classes of those extensions 0 → V → E1 → L → 0

which are unramified at all v - p and crystalline at all v|p (that is, such that E1 is).

Suppose that:

– V is unramified outside of a finite set of primes of F ;

– Vv is de Rham, and hence potentially semistable, for all v|p;
– H0(Fv, V ) = H0(Fv, V

∗(1)) = 0 for all v - p;
– Dcrys(Vv)

ϕ=1 = Dcrys(Vv)
ϕ=1 = 0 for all v|p (where ϕ denotes the crystalline Frobenius).

Under those conditions, Nekovář [Nek93] (to which we refer for more details; see also [Nek06])

constructed a bilinear pairing on the Bloch–Kato Selmer groups

〈 , 〉 : H1
f (F, V )×H1

f (F, V ∗(1))→ ΓF ⊗̂L (4.1.1)

depending on choices of L-linear splittings of the Hodge filtration

Fil0DdR(Vv) ⊂ DdR(Vv) (4.1.2)

for the primes v|p. In fact in [Nek93] it is assumed that Vv is semistable; we will recall the

definitions under this assumption, and at the same time see that they can be made compatible

with extending the ground field (in particular, to reduce the potentially semistable case to the

semistable case). Compare also [Ben14] for a very general treatment.

Post-composing 〈 , 〉 with a continuous homomorphism ` : ΓF → L′, for some L-vector space

L′, yields an L′-valued pairing 〈 , 〉` (the cases of interest to us are L′ = L with any `, or L′ =

ΓF ⊗̂L with the tautological `). For such an ` we write `v := `|F×v and we say that `v is unramified

if it is trivial on O×F,v (note that this is automatic if v - p).
Let x1 ∈H1

f (F, V ), x2 ∈H1
f (F, V ∗(1)) and view them as classes x1 = e1 = [E1], x2 = e2 = [E2]

of extensions of Galois representations

e1 : 0→ V → E1→ L→ 0,

e2 : 0→ V ∗(1)→ E2→ L→ 0.
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For any e1, e2 as above, the set of Galois representations E fitting into a commutative diagram

0

��

0

��
0 // L(1) // E∗2(1)

��

// V //

��

0

0 // L(1) // E

��

// E1
//

��

0

L

��

L

��
0 0

is an H1(F,L)-torsor [Nek93, Proposition 4.4]; any such E is called a mixed extension of e1,
e∗2(1). Depending on the choice of (extensions e1 and e2 and) a mixed extension E, there is a
decomposition

〈x1, x2〉` =
∑
v∈SF

〈x1,v, x2,v〉`v ,E,v (4.1.3)

of the height pairing into a (convergent) sum of local symbols indexed by the non-archimedean
places of F . We recall the definition of the latter [Nek93, § 7.4]. The representation E can be
shown to be automatically semistable at any v|p; for each v it then yields a class [Ev] ∈H1

∗ (Fv, E2)
with ∗ = ∅ if v - p, ∗ = st if v|p. This group sits in the following diagram of exact sequences.

0 // H1(Fv, L(1)) // H1
∗ (Fv, E2) // H1

f (Fv, V ) // 0

0 // H1
f (Fv, L(1)) //

OO

H1
f (Fv, E2) //

OO

H1
f (Fv, V ) // 0

(4.1.4)

If v|p, the chosen splitting of (4.1.2) uniquely determines a splitting sv : H1
∗ (Fv, E2) →

H1(Fv, L(1)); if v - p, there is a canonical splitting independent of choices, also denoted by sv.
In both cases, the local symbol is

〈x1,v, x2,v〉`v ,E,v := −`v(sv([Ev])),

where we still denote by `v the composition H1(Fv, L(1)) ∼= F×v ⊗̂L → ΓF ⊗̂L → L′. When
v|p, we say that [Ev] is essentially crystalline if [Ev] ∈ H1

f (Fv, E2) ⊂ H1
st(Fv, E2); equivalently,

sv([Ev]) ∈ H1
f (Fv, L(1)).

Behaviour under field extensions. If F ′w/Fv is a finite extension of local non-archimedean fields,
the pairing

〈 , 〉`v◦NFw/Fv : H1
f (F ′w, Vw)×H1

f (F ′w, V
∗
w(1))→ L′ (4.1.5)

defined using the induced Hodge splittings and the map `w := `v ◦NFw/Fv satisfies

〈cores
F ′w
Fv
x1, x2〉`v = 〈x1, res

F ′w
Fv
x2〉`v◦NFw/Fv (4.1.6)

for all x1 ∈ H1
f (Fv, Vv), x2 ∈ H1

f (F ′w, V |∗GF ′w (1)).
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Back to the global situation, it follows that extending any ` : ΓF → L′ to the direct system

(ΓF ′)F ′/F finite by

`w = `|F ′×w :=
1

[F ′ : F ]
`v ◦NF ′w/Fv

(4.1.7)

we can extend 〈 , 〉` to a pairing

〈 , 〉` : lim−→F ′
H1
f (F ′, V |GF ′ )×H

1
f (F ′, V |∗GF ′ (1))→ L′, (4.1.8)

where the limit is taken with respect to restriction maps. This allows us to define the pairing in

the potentially semistable case as well.

Ordinariness. Let v|p be a place of F .

Definition 4.1.1. We say that a de Rham representation Vv of GFv satisfies the Panchishkin

condition or that it is potentially ordinary if there is a (necessarily unique) exact sequence of de

Rham GFv -representations

0→ V +
v → Vv → V −v → 0

with Fil0DdR(V +
v ) = DdR(V −v )/Fil0 = 0.

If Vv is potentially ordinary, there is a canonical splitting of (4.1.2) given by

DdR(Vv)→ DdR(V −v ) = Fil0DdR(Vv). (4.1.9)

Abelian varieties. If A/F is an abelian variety with potentially semistable reduction at all

v|p, then the rational Tate module V = VpA satisfies the required assumptions, and there is

a canonical isomorphism V ∗(1) ∼= VpA
∨. Suppose that there is an embedding of a number field

M ↪→ End0(A); its action on V induces a decomposition V =
⊕

p|p Vp indexed by the primes

of OM above p. Given such a prime p, a finite extension L of Mp, and splittings of the Hodge

filtration on DdR(Vp|GFv )⊗Mp L for v|p, we obtain from the compatible pairings (4.1.8) a height

pairing

〈 , 〉 : A(F )×A∨(F )→ ΓF ⊗̂L (4.1.10)

via the Kummer maps κA,F ′,p : A(F ′) → H1
f (F ′, V ) → H1

f (F ′, Vp) and κA∨,F ′,p : A(F ′) →

H1
f (F ′, V ∗p (1)) for any F ⊂ F ′ ⊂ F .

If p is a prime of M above p and VpA⊗L is potentially ordinary for all v|p, the height pairing

(4.1.10) is then canonical (cf. [Nek06, § 11.3]). Such is the situation of Theorem B. In that case

we consider the restriction of (4.1.10) to A(χ), coming from the Kummer maps

κA(χ) : A(χ)→ H1
f (E, VpA(χ)), κA∨(χ−1) : A∨(χ−1)→ H1

f (E, (VpA(χ)∗)(1)),

where

VpA(χ) := VpA|GE ⊗ L(χ)χ.

Note that by the condition χ|A∞,× = ω−1
A , we have (VpA(χ))∗(1) ∼= VpA(χ).
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4.2 Heights and intersections on curves
If X/F is a (connected, smooth, proper) curve with semistable reduction at all v|p, let
V := H1

ét(XF ,Qp(1)). Then V satisfies the relevant assumptions; moreover, it carries a non-
degenerate symplectic form by Poincaré duality, inducing an isomorphism V ∼= V ∗(1). For
any finite extension L of Qp, any Hodge splittings on (DdR(Vv ⊗ L))v|p, and any continuous
homomorphism ` : ΓF → L′, we obtain a pairing

〈 , 〉X,` : Div0(XF )×Div0(XF )→ L′ (4.2.1)

via the Kummer maps similarly to the above. The pairing factors through Div0(XF )→ JX(F ),
where JX is the Albanese variety; it corresponds to the height pairing on JX(F ) × J∨X(F ) via
the canonical autoduality of JX .

The restriction of (4.2.1) to the set (Div0(XF )×Div0(XF ))∗ of pairs of divisors with disjoint
supports admits a canonical decomposition

〈 , 〉X,` =
∑
w∈SF ′

〈 , 〉X,`w,w.

Namely, the local symbols are continuous symmetric bi-additive maps given by

〈D1, D2〉X,`w := 〈x1, x2〉`w,E,w, (4.2.2)

where xi is the class of Di in H1
f (F ′, V ) and, if Z1, Z2 ⊂ XF are disjoint proper closed subsets of

XF such that the support of Di is contained in Zi, then E, E1, E2 are the extensions obtained
from the diagram of étale cohomology groups

0

��

0

��
0 // H0(Z2, L(1)) // H1((XF , Z2), L(1))

��

// H1(XF , L(1)) //

��

0

0 // H0(Z2, L(1)) // H1((XF − Z1, Z2), L(1))

��

// H1(XF − Z1, L(1)) //

��

0

H2
Z1

(XF , L(1))

��

H2
Z1

(XF , L(1))

��
0 0

by pullback along clD1 : L→ H2
Z1

(XF , L(1)) and pushout along −TrD2 : H0(Z2, L(1))→ L(1).
If X does not have semistable reduction at the primes above p, we can still find a finite

extension F ′/F such that XF ′ does, and define the pairing on XF ′ . If X =
∐
iXi is a disjoint

union of finitely many connected curves, then Div0(XF ) will denote the group of divisors having
degree zero on each connected component; it affords local and global pairings by direct sum.

A uniqueness principle. Suppose thatD1 = div(h) is a principal divisor with support disjoint from
the support of D2, and let h(D2) :=

∏
P h(P )nP . Then the mixed extension [Ew] = [ED1,D2,w] is

the image of h(D2)⊗ 1 ∈ F ′×w ⊗̂L ∼= H1(F ′w, L(1)) in H1
∗ (F

′
w, E2) under (4.1.4); it follows that

〈D1, D2〉X,`w = `w(h(D2)) (4.2.3)
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independently of the choice of Hodge splittings. When `w is unramified, this property in fact
suffices to characterise the pairing.

Lemma 4.2.1. Let X/Fv be a smooth proper curve over a local field Fv and suppose that `v :
F×v → L is unramified. Then there exists a unique locally constant symmetric bi-additive pairing

〈 , 〉X,`v : (Div0(XFv)×Div0(XFv))
∗
→ L

such that

〈div(h), D2〉X,`v = `v(h(D2))

whenever the two arguments have disjoint supports.

Proof. The result is well known, see e.g. [CG89, Proposition 1.2], but for the reader’s convenience
we recall the proof. A construction of such a pairing has just been recalled, and a second one
will be given below. For the uniqueness, note that the difference of any two such pairings is a
locally constant homomorphism J(Fv)× J(Fv)→ L. As the source is a compact group and the
target is torsion free, such a homomorphism must be trivial. 2

Arithmetic intersections. Let F ′ ⊂ F be a finite extension of F and X /OF ′ be a regular integral
model of X. For a divisor D ∈ Div0(XF ′), we define its flat extension to the model X to be the
unique extension of D which has intersection zero with any vertical divisor; it can be uniquely
written as D + V , where D is the Zariski closure of D in X and V is a vertical divisor.

Let D1, D2 ∈ Div0(XF ) be divisors with disjoint supports, with each Di defined over a finite
extension Fi; assume that F ⊂ F2 ⊂ F1 ⊂ F . Let X /OF2 be a regular and semistable model.
Then, for each finite place w ∈ SF1 , we can define partial local intersection multiplicities iw, jw
of the flat extensions D1 +V1 of D1, D2 +V2 of D2 to XOF1,w

. If the latter model is still regular,

they are defined by

iw(D1, D2) =
1

[F1 : F ]
(D1 ·D2)w,

jw(D1, D2) =
1

[F1 : F ]
(D1 · V2)w,

(4.2.4)

where on the right-hand sides ( · )w are the usual Z-valued intersection multiplicities in XOF1,w
;

see [YZZ12, § 7.1.7] for the generalisation of the definition to the case when XOF1,w
is not regular.

The total intersection

mw(D1, D2) = iw(D1, D2) + jw(D1, D2)

is of course independent of the choice of models.
Fix an extension v to F of the valuation v on F . Then we have pairings iv, jv on divisors on

XF v
with disjoint supports by the above formulas. We can group together the contributions of

i and j according to the places of F by

λv(D1, D2) = −
∫

Gal(F/F )
λv(D

σ
1 , D

σ
2 ) dσ

for v any finite place of F and λ = i, j, or λv(D1, D2) = 〈D1, D2〉v. Here the integral uses the
Haar measure of total volume 1, and reduces to a finite weighted average for any fixed D1, D2.
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Proposition 4.2.2. Suppose that D1 and D2 are divisors of degree zero on X, defined over an
extension F ′ of F . Then, for all finite places w - p of F ′,

〈D1, D2〉X,`w = mw(D1, D2) · `w($w) = (iw(D1, D2) + jw(D1, D2)) · `w($w).

Proof. This follows from Lemma 4.2.1 and (4.2.3); the verification that the arithmetic intersection
pairing mw also satisfies the required properties can be found in [Gro84]. 2

4.3 Integrality criteria
The result of Proposition 4.2.2 applies with the same proof if w|p when `w is an unramified
logarithm such as the valuation. In this case we will view it as a first integrality criterion for
local heights.

Proposition 4.3.1. Let `v : F×v ⊗̂L→ ΓF ⊗̂L be the tautological logarithm and let `w be as
in (4.1.7). Let v : F×v ⊗̂L→ L be the valuation. Then, for all D1, D2 ∈ Div0(XF ′), we have

v(〈D1, D2〉X,`w) = [F ′w : Fv] ·mw(D1, D2).

In particular, if mw(D1, D2) = 0, then

〈D1, D2〉X,`w = `w(sw([ED1,D2,w])) ∈ O×F,v ⊗̂L = `w(H1
f (Fw, L(1)));

equivalently, the mixed extension [ED1,D2,w] is essentially crystalline.

We need a finer integrality property for local heights, slightly generalising [Nek95, Proposition
1.11]. Let Fv and L be finite extensions of Qp, let V be a GFv -representation on an L-vector
space equipped with a splitting of (4.1.2), and let `v : F×v → L be a logarithm. Suppose that the
following conditions are satisfied:

(a) `v : F×v → L is ramified;

(b) the space V admits a direct sum decomposition V = V ′⊕V ′′ as GFv -representation, such that
V ′ satisfies the Panchishkin condition, with a decomposition 0→ V ′+ → V ′ → V ′− → 0,
and the restriction of the Hodge splitting of DdR(V ) to DdR(V ′) coincides with the canonical
one of (4.1.9);

(c) H0(Fv, V
′−) = H0(Fv, V

′+∗(1)) = 0.

By [Nek93, Proposition 1.28(3)], the last condition is equivalent to Dpst(V
′)ϕ=1 =

Dpst(V
′∗(1))ϕ=1 = 0, where Dpst(V

′) := limF⊂F ′ Dst(V
′|GF ′ )Gal(F ′/F ) (the limit ranging over

all sufficiently large finite Galois extensions F ′/F ).
Let T be a GF,v-stable OL-lattice in V , T ′ := T ∩ V ′, T ′′ = T ∩ V ′′; let d0 > 0 be an integer

such that pd0
L T ⊂ T ′ ⊕ T ′′ ⊂ T , where pL ∈ L is the maximal ideal of OL.

Let Fv ⊂ Fv,∞ ⊂ F ab
v be the intermediate extension determined by Gal(F ab

v /Fv,∞) ∼=
ker(`v) ⊂ F×v under the reciprocity isomorphism. Let

N∞,`vH
1
f (Fv, T

′) :=
⋂
F ′w

cores
F ′w
Fv

(H1
f (F ′w, T

′))

be the subgroup of universal norms, where the intersection ranges over all finite extensions
Fv ⊂ F ′v′ contained in Fv,∞.

2034

https://doi.org/10.1112/S0010437X17007308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007308


The p-adic Gross–Zagier formula on Shimura curves

Proposition 4.3.2. Let x1 ∈ H1
f (Fv, T ), x2 ∈ H1

f (Fv, T
∗(1)), and suppose that the image of x2

in H1
f (Fv, T

′′∗(1)) vanishes. Let d1 be the OL-length of H1(Fv, T
′′∗(1))tors and d2 the length of

H1
f (Fv, T

′)/N∞,`vH
1
f (Fv, T

′). Then

pd0+d1+d2
L 〈x1, x2〉`v ,E,v ⊂ `v(F×v ⊗̂OL)

for any mixed extension E. If moreover [Ev] is essentially crystalline, then

pd0+d1+d2
L 〈x1, x2〉`v ,E,v ⊂ `v(O×F,v ⊗̂OL).

Proof. The first assertion (which implicitly contains the assertion that H1
f (Fv, T

′)/

N∞,`vH
1
f (Fv, T

′) is finite) is identical to [Nek95, Proposition 1.11], whose assumptions however
are slightly more stringent. First, L is assumed to be Qp; this requires only cosmetic changes
in the proof. Secondly, in [Nek95] the representation V (hence V ′) is further assumed to be
crystalline. This assumption is used via [Nek93, § 6.6] to apply various consequences of the
existence of the exact sequence

0→ H1
f (Fv, V

′+)→ H1
f (Fv, V

′)→ H1
f (Fv, V

′−)→ 0, (4.3.1)

which is established in [Nek93, Proposition 1.25] under the assumption that V ′ is crystalline.
However, (4.3.1) still exists under our assumption that H0(Fv, V

′−) = 0 by [Ben11, Corollary
1.4.6].26

The second assertion follows from the proof of the first one: the height is the image under
`v of an element of H1(Fv, L(1)) = F×v ⊗̂L, which belongs to H1

f (Fv, L(1)) = O×F,v ⊗̂L if [Ev] is
essentially crystalline. 2

5. Generating series and strategy of proof

We introduce the constructions that will serve to prove the main theorem. We have expressed
the p-adic L-function as the p-adic Petersson product of a form ϕ in σA and a certain kernel
function depending on a Schwartz function φ. The connection between the data of (ϕ, φ) and
the data of (f1, f2) appearing in the main theorem is given by the Shimizu lifting introduced
in § 5.1. An arithmetic–geometric analogue of the latter allows us to express also the left-hand
side of Theorem B as the image under the p-adic Petersson product of another kernel function,
introduced in § 5.3. The main result of this section is thus the reduction of Theorem B to an
identity between the two kernel functions (§ 5.4).

5.1 Shimizu’s theta lifting
Let B be a quaternion algebra over a local or global field F , V = (B, q) with the reduced norm
q. The action (h1, h2) · x := h1xh

−1
2 embeds (B× ×B×)/F× inside GO(V ). If F is a local field,

σ is a representation of GL2(F ), and π is a representation of B×, then the space of liftings

HomGL2(F )×B××B×(σ ⊗S (V × F×), π ⊗ π∨)

has dimension zero unless either B = M2(F ) and π = σ or σ is a discrete series and π is its
image under the Jacquet–Langlands correspondence; in the latter cases the dimension is one. An
explicit generator was constructed by Shimizu in the global coherent case, and we can use it to
normalise a generator in the local case and construct a generator in the global incoherent case.

26 The finiteness of H1
f (Fv, T

′)/N∞,`vH
1
f (Fv, T

′) under our assumption is also in [Nek06, Corollary 8.11.8].
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Global lifting. Let B be a quaternion algebra over a number field F , V = (B, q) with the reduced
norm. Let σ be a cuspidal automorphic representation of GL2(AF ) which is a discrete series
at all places where B is ramified and π the automorphic representation of B×A attached to σ
by the Jacquet–Langlands correspondence. Fix a non-trivial additive character ψ : A/F → C×.
Consider the theta series

θ(g, h,Φ) =
∑
u∈F×

∑
x∈V

rψ(g, h)Φ(x, u), g ∈ GL2(A), h ∈ (B×A ×B×A)/A× ⊂ GO(VA)

for Φ ∈ S (VA ×A×). Then the Shimizu theta lift of any ϕ ∈ σ is defined to be

θ(ϕ,Φ)(h) :=
ζF (2)

2L(1, σ, ad)

∫
GL2(F )\GL2(A)

ϕ(g)θ(g, h,Φ) dg ∈ π × π∨

and it is independent of the choice of ψ.
If F is totally real, B is totally definite, and φ ∈S (VA×A×), we denote θ(ϕ, φ) := θ(ϕ,Φ) for

any O(V∞)-invariant preimage Φ of φ under (3.1.3). Let F : π⊗ π∨→ C be the duality defined
by the Petersson bilinear pairing on B×A (for the Tamagawa measure). By [Wal85, Proposition
5], we have

Fθ(ϕ,Φ) =
(π2/2)[F :Q]

|D|3/2F ζ∞F (2)

∏
v-∞

|dv|−3/2ζF,v(2)2

L(1, σv, ad)

∫
N(F )v\GL2(Fv)

Wϕ,−1,v(g)r(g)Φv(1, 1) dg

×
∏
v|∞

2ζF,v(2)

π2L(1, σv, ad)

∫
N(F )v\GL2(Fv)

Wϕ,−1,v(g)r(g)Φv(1, 1) dg. (5.1.1)

The terms in the first line are all rational if Wφ,−1,v and Φv are, and almost all of the factors
equal 1.27 For v a real place, if Wϕ,−1,v is the standard antiholomorphic discrete series of weight
2 and Φv is a preimage of the standard Schwartz function φv ∈ S (Vv × F×v ) under (3.1.2), the
terms in the last line are rational too,28 and in fact equal to 1 by the calculation of Lemma 3.5.4.

Local lifting. In the local case, depending on the choice of ψv, we can then normalise a generator

θv = θψv ∈ HomGL2(Fv)×B×v ×B×v (W (σv, ψv)⊗S (Vv × F×v ), πv ⊗ π∨v )

(where W (σv, ψv) is the Whittaker model for σv for the conjugate character ψv) by

Fvθv(W,Φ) =
cvζF,v(2)

L(1, σv, ad)

∫
N(F )v\GL2(Fv)

W (g)r(g)Φ(1, 1) dg (5.1.2)

with cv = |dv|−3/2ζF,v(2) if v is finite and cv = 2π−2 if v is archimedean. Here the decompositions
π =

⊗
v πv, π

∨ =
⊗

v π
∨
v are taken to satisfy F =

∏
v Fv for the natural dualities Fv : πv ⊗ π∨v

→ C.
Then by (5.1.1) we have a decomposition

θ =
(π2/2)[F :Q]

|D|3/2F ζ∞F (2)
⊗v θv. (5.1.3)

As in the global case, we define θv(W,φ) := θv(W,Φ) for φ = Φ ∈ S (Vv × F×v ).

27 The analogous assertion in [YZZ12, Proposition 2.3] is incorrect.
28 The analogous statement holds for discrete series of arbitrary weight.
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Incoherent lifting. Finally, suppose that F is totally real and B is a totally definite incoherent
quaternion algebra over A = AF , and let V = (B, q). Let σ be a cuspidal automorphic
representation of GL2(A) which is a discrete series at all places of ramification of B and
let π =

⊗
v πv be the representation of B× associated to σ by the local Jacquet–Langlands

correspondence. Then (5.1.3) defines a lifting

θ ∈ HomGL2(A)×B××B×(σ ⊗S (V ×A×), π ⊗ π∨).

It coincides with the lifting denoted by the same name in [YZZ12].

Rational liftings. IfM is a number field, σ∞ is anM -rational cuspidal automorphic representation
of GL2 of weight 2 as in the Introduction, and π is its transfer to an M -rational representation of
B∞× under the rational Jacquet–Langlands correspondence of [YZZ12, Theorem 3.4], let σι be
the associated complex automorphic representation, and πι = π ⊗M,ι C for any ι : M ↪→ C. Let
θι =

⊗
v θ

ι
v be the liftings just constructed. Then, if B is coherent, using the algebraic Petersson

product of Lemma 2.4.2, there is a lifting θ : σ∞ ⊗S (V∞ ×A∞,×)→ π ⊗ π∨, which is defined
over M and satisfies

ιθ(ϕ, φ∞) = θι(ϕι, φ∞φι∞) (5.1.4)

if ϕι is as described before Lemma 2.4.2 and φι∞ is standard. On the left-hand side, we view π
and π∨ indifferently as a representation of B∞× or B× by tensoring on each with generators
of the trivial representation at infinite places which pair to 1 under the duality (this ensures
compatibility with the decomposition). After base-change to M ⊗ OΨv(Ψv), there are local
liftings at finite places θψuniv,v : W (σv, ψuniv,v) ⊗S (Vv × F×v )→ πv ⊗ π∨v ⊗ OΨv(Ψv) satisfying

ιθψuniv,v(W,φ)(ψv) = θιψ,v(W
ι, φι). They induce an incoherent global lifting on σ∞ ⊗S (V∞ ×

A∞,×), which is defined over M independently of the choice of an additive character of A trivial
on F ,29 and satisfies (5.1.4).

Finally, for an embedding ι′ : M ↪→ L with L a p-adic field, we let

θι′ : (σ∞ ⊗S (V∞ ×A∞,×))⊗M L→ (π × π∨)⊗M,ι′ L

be the base-change.

Local toric periods and zeta integrals. Recall from the Introduction that for any dual pair of
representations πv⊗π∨v isomorphic (possibly after an extension of scalars) to the local component
of π ⊗ π∨, the normalised toric integrals of matrix coefficients of (1.1.2) are defined, for any
χ ∈ Yv(C), by

Qv(f1,v, f2,v, χ) = |D|−1/2
v |d|−1/2

v

L(1, ηv)L(1, πv, ad)

ζF,v(2)L(1/2, πιE,v ⊗ χv)
Q]v(f1,v, f2,v, χ

ι
v),

Q]v(f1,v, f2,v, χv) =

∫
E×v /F

×
v

χv(t)(π(t)f1,v, f2,v) dt. (5.1.5)

The following lemma follows from the normalisation (5.1.2) and the definitions of the local

toric zeta integrals R\r,v in (3.5.2).

29 In the following sense. Let Ψ :=
∏
v Ψv and let Ψ◦ ⊂ Ψ be defined by

∏
v ψv|F = 1. Then the global lifting is first

defined on σ∞⊗S (V∞×A∞,×)⊗OΨ(Ψ). Its restriction to σ∞⊗S (V∞×A∞,×)⊗OΨ(Ψ◦) is invariant under the
homogeneous action of O×F on Ψ◦ and hence is the base-change of an M -linear map σ∞⊗S (V∞×A∞,×)→ π×π∨.

2037

https://doi.org/10.1112/S0010437X17007308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007308


D. Disegni

Lemma 5.1.1. Let χ ∈ Y l.c.
M(α)(C) and ψ =

⊗
v ψv : A/F →C be a non-trivial additive character.

Let Qv and Q]v be the pairings defined above for the representation θψ,v(W (σv, ψv)⊗S (Vv×F×v )).
Then, for all v -∞, we have

|d|−3/2
v R◦r,v(Wv, φv, χv, ψv) = Q]v(θψ,v(Wv, ιαv($v)

−rvw−1
r,vφv), χv),

where as usual if v - p, we set αv = 1, rv = 0, wr,v = 1.
If v - p, we have

R\(Wv, φv, χv, ψv) = Qv(θψ,v(Wv, φv), χv)

and, for the product Qp =
∏
v-p∞Qv, we have

∏
v-p∞

R\
r,v(Wv, φv, χv, ψv) =

D
3/2
F ζ∞F (2)

(π2/2)[F :Q]
Qp(θψ(ϕ, α($)−rw−1

r φ), χ).

5.2 Hecke correspondences and generating series
Referring to [YZZ12, § 3.1] for more details, let us recall some basic notions on the Shimura
curves XU . The set of geometrically connected components is π0(XU,F ) ∼= F×+ \A∞,×/q(U). The
curve XU admits a canonical divisor class (the Hodge class) ξU = (1/degLU )LU of degree 1 on
each geometrically connected component; here

LU = ωXU/F +
∑

x∈XU (F )

(1− e−1
x )x,

a line bundle defined over F ; here ωXU/F is the canonical bundle and ex is the ramification index
(see [YZZ12, § 3.1.3] for the precise definition) of the point x.

Hecke correspondences. For x ∈ B∞×, let Tx : XxUx−1 → XU be the translation, given in the
complex uniformisation by Tx([z, y]) = [z, yx]. Let p : XU∩xUx−1 → XU be the projection and
let Z(x)U be the image of

(p,p ◦ Tx) : XU∩xUx−1 → XU ×XU .

We view Z(x)U as a correspondence on XU , and we will sometimes use the same notation for
the image of Z(x)U in Pic(XU ×XU ) (such abuses will be made clear in what follows).

We obtain an action of the Hecke algebra HB∞×,U := C∞c (B∞×)U×U of U -bi-invariant
functions on B∞× by

T(h)U =
∑

x∈U\B∞×/U

h(x)Z(x)U .

Note the obvious relation Z(x)U = T(1UxU )U . The transpose T(h)t equals T(ht) with ht(x) :=
h(x−1). It is then easy to verify that if x has trivial components away from the set of places
where U is maximal, we have

Z(x)t
U = Z(q(x)−1)UZ(x)U . (5.2.1)

Finally, for any simple quotient A′/F of J with M ′ = End0(A′), we have a Q-linear map

Talg : πA′ ⊗M ′ πA′∨ → Hom0(J, J∨)

f1 ⊗ f2 7→ f∨2 ◦ f1.
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If ι : M ′ ↪→ L′ is any embedding into a p-adic field L′, we denote by

Talg,ι : πA′ ⊗M ′ πA′∨ ⊗M ′ L′ ι
→ πA′ ⊗M ′ πA′∨ ⊗Q L′

Talg⊗1
// Hom0(J, J∨)⊗Q L′

the composition in which the first arrow is deduced from the unique L′-linear embedding L′ ↪→

M ′ ⊗Q L′ whose composition with M ′ ⊗Q L′→ L′, x⊗ y 7→ ι(x)y, is idL′ .

Generating series. For any φ ∈ S (V × A×) invariant under K = U × U , define a generating

series

Z(φ) := Z0(φ)U + Z∗(φ)U ,

where

Z0(φ)U := −
∑

β∈F×+ \A∞,×/q(U)

∑
u∈µ2

Up
\F×

E0(β−1u, φ)LK,β,

Za(φ)U := wU
∑

x∈K\B∞×
φ(x, aq(x)−1)Z(x)U for a ∈ F×,

Z∗(φ)U :=
∑
a∈F×

Za(φ)U

with wU = |{±1} ∩ U |. Here LK,β denotes the component of a Hodge class in Pic(XU ×XU )Q
obtained from the classes LU (see [YZZ12, § 3.4.4]) and

E0(u, φ) = φ(0, u) +W0(u, φ)

is the constant term of the standard Eisenstein series: its intertwining part W0(u, φ) is the value

at s = 0 of

W0(s, u, φ) =

∫
A
δ(wn(b))sr(wn(b))φ(0, u) db,

where δ(g) = |a/d|1/2 if g =
(
a ∗
d

)
k with k ∈ GL2(ÔF )SO(2, F∞).

For g ∈ GL2(A), define

Z(g, φ) = Z(r(g)φ),

and similarly Z0(g, φ)U , Za(g, φ)U , Z∗(g, φ)U .

Let U = UpUp and cUp be as in (3.4.3). By [YZZ12, § 3.4.6], the normalised versions

Z̃(g, φ) := cUpZ(g, φ)U , Z̃a(g, φ) := cUpZa(g, φ)U , . . .

are independent of Up. A key result, which is essentially a special case of the main theorem of

[YZ09], is that the series Z̃(g, φ) defines an automorphic form valued in Pic(X ×X)Q.

Theorem 5.2.1. The map

(φ, g) 7→ Z̃(g, φ)

defines an element

Z̃ ∈ HomB××B×(S (V ×A×), C∞(GL2(F )\GL2(A))⊗ Pic(X ×X)Q).
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Here the target denotes the set of Pic(X × X)-valued series Z̃ such that for any linear
functional λ : Pic(X × X)Q → Q, the series λ(Z̃) is absolutely convergent and defines an
automorphic form. Its constant term is non-holomorphic in general (in fact, only when F = Q
and Σ =∞). (However, the geometric kernel that we introduce next will always be a holomorphic
cusp form of weight 2.) See [YZZ12, Theorem 3.17 and Lemma 3.18] for the proof of the theorem.

Assume from now on that φ∞ is standard; we accordingly only write Z(φ∞), Z̃(φ∞), . . . .
Define, for each a ∈ A×,

Z̃a(φ
∞) := cUpwU |a|

∑
x∈K\B∞×

φ∞(x, aq(x)−1)Z(x)U (5.2.2)

for any sufficiently small U . This extends the previous definition for a ∈ F×, and it is easy to
check that for every y ∈ A∞,×, a ∈ F×, we have

Z̃a
((y

1

)
, φ∞

)
= |ay|∞Z̃ay(φ∞)ψ(iay∞).

In other words, the images in Pic(XU × XU ) of the Z̃a(φ
∞) are the reduced q-expansion

coefficients of Z̃(φ∞), in the following sense: for any functional λ as above, (λ(Z̃0(y, φ)),
(λ(Z̃a(φ

∞)))a) are the reduced q-expansion coefficients of the modular form λ(Z̃)(φ).

Hecke operators and Hecke correspondences. For the following lemma, let S be a set of finite
places of F such that for all v /∈ S, Bv is split, Uv is maximal, and φv is standard. Fix any
isomorphism γ : BS

→ M2(AS) of AS-algebras carrying the reduced norm to the determinant

and OBS to M2(ÔF
S); such an isomorphism is unique up to conjugation by O×

BS
.

Lemma 5.2.2. Let U ′S = GL2(ÔF
S), and identify the commutative algebras H S

U ′S
=

H S
GL2(A∞),U ′S

with H S
B∞×,U via the isomorphism γ∗ induced by γ above. Then, for each

h ∈H S
U ′S

, we have

T (h)Z∗(φ
∞)U = T(γ∗h)U ◦ Z∗(φ∞)U .

In the left-hand side, we view Z∗(φ
∞) as a reduced q-expansion of central character z 7→ Z(z),

and T (h) is the usual Hecke operator acting by (2.2.1); in the right-hand side, the symbol ◦
denotes composition of correspondences on XU .

In particular, the right-hand side is independent of the choice of γ.

Proof. It suffices to check the statements for the set of generators of the algebra H S
U ′S

consisting

of elements h = hvh
vS , with hvS the unit of H vS

U ′S
and hv = 1UvxvUv for xv =

($v
1

)
or xv =(

$±1
v

$±1
v

)
and v /∈ S. In the second case the statement is clear.

Suppose then that xv =
($v

1

)
. Decomposing Za(φ)U = Zav(φ

v)UZav(φv)U , the ath coefficient
of the left-hand side equals

Za$v(φ
∞)U + Z($v)UZa/$v(ϕ

∞)U = Zav(φ
v)U ◦ (Zav$v(φv)U + Z($v)UZav/$v(φv)).

It is not difficult to identify this with the ath coefficient of the right-hand side using the Cartan
decomposition

Zav(φv)U =
∑

06j6i6v(a),i+j=v(a)

Z

((
$i
v

$j
v

))
U

(5.2.3)
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and the relation

Z

((
$v

1

))
U

◦ Z
((

$i
v

$j
v

))
U

= Z

((
$i+1
v

$j
v

))
U

+ Z($v)UZ

((
$i−1
v

$j
v

))
U

valid whenever i > 0.30 2

5.3 Geometric kernel function

Fix a point P ∈ XE×(Eab) as in the Introduction and, for any h ∈ B∞×, denote

[h] := ThP, [h]◦ = h− ξq(h),

where we identify π0(XU,F ) ∼= F×+ \A×/q(U) so that PU is in the component indexed by 1 (the

point T (h)P is then in the component indexed by q(h); see [YZZ12, § 3.1.2]).

Lemma 5.3.1. Fix L-linear Hodge splittings on all the abelian varieties A′/F parametrised by

J and let 〈 , 〉A′,∗ be the associated local (for ∗ = v) or global (∗ = ∅) height pairings. There are

unique local and global height pairings

〈 , 〉J,∗ : J∨(F )× J(F )→ ΓF ⊗̂L

such that for any A′ and f ′1 ∈ πA′ , f ′2 ∈ π∨A′ , and any P1 ∈ J∨(F ), P2 ∈ J(F ),

〈P1, P2〉∗ = 〈f ′∨2 ◦ f ′1(P1), P2〉A′,∗.

Proof. For each fixed level U , there is a decomposition J∨U ∼
⊕

A′ A
′∨ ⊗ π∨,UA′∨ in the isogeny

category of abelian varieties, induced by PA′∨ ⊗ f ′∨ 7→ f ′∨(PA′). Then the Hodge splittings on

each A′ induce Hodge splittings on J∨U . The associated pairing on J∨U ×JU is then the unique one

satisfying the required property by the projection formula for heights (see [MT83]). The same

formula implies the compatibility with respect to changing U . 2

We consider the pairing given by the lemma associated with arbitrary Hodge splittings on

VpA
′ for A′ 6= A, and any splittings on VpA⊗ L =

⊕
p′ Vp′A⊗Mp′ L which induce the canonical

one on VpA. The subscript J will be generally omitted when there is no risk of confusion.

Let φ be a Schwartz function and Z̃(φ) be as above. Each Z̃a(φ) gives a map

Z̃a(φ) : J(F )Q→ J∨(F )Q

by the action of Hecke correspondences. When a has trivial components at infinity and φ∞ is

standard, we write Z̃a(φ
∞) := Z̃a(φ). Then, for g ∈GL2(A), h1, h2 ∈ B∞×, we define the height

generating series

Z̃(g, h1, h2, φ
∞) := 〈Z̃(g, φ)[h1]◦, [h2]◦〉.

Proposition 5.3.2. The series Z̃(g, h1, h2, φ) is well defined independently of the choice of the

point P . It is invariant under the left action of T (F ) × T (F ) and it belongs to the space of

weight-2 cuspforms S2(K ′,ΓF ⊗̂L) for a suitable open compact subgroup K ′ ⊂ GL2(A∞).

30 Note that a term with i = 0 appears in (5.2.3) only in the case v(a) = 0, which is easily dealt with separately.
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Proof. We explain the modularity with coefficients in the p-adic vector space ΓF ⊗̂L. Suppose
that U is small enough so that φ is invariant under U and U is invariant under the conjugation
action of h1, h2. Pick a finite abelian extension E′ of E such that P ∈ XU (E′) and a basis {zi}
of J∨(E′)Q, and let ei : J∨(E′)Q → Q be the projection onto the line spanned by zi. Then we
can write

Z̃(g, (h1, h2), φ∞) =
∑
i

〈zi, [h2]0〉λi(Z̃(g, φ∞)),

where λi(T ) = ei(T [h1]◦). Each summand λi(Z̃(g, φ∞)) is automorphic by Theorem 5.2.1, and
in fact a holomorphic cuspform by [YZZ12, Lemma 3.19] (the weight can be easily computed
from the shape of φ∞). The other statements are also proved in [YZZ12]. 2

Define

Z̃(g, φ∞, χ) :=

∫ ∗
T (F )\T (A)/Z(A)

χ(t)Z̃(g, (t, 1), φ∞) d◦t

=

∫ ∗
T (F )\T (A)/Z(A)

χ(t)Z̃(g, (1, t−1), φ∞) d◦t

=

∫
T (F )\T (A)/Z(A)

χ(t)Z̃ω−1(g, (1, t−1), φ∞) d◦t,

where

Z̃ω−1(g, (1, t−1), φ∞) = −
∫
Z(A)

ω−1(z)Z̃(g, (1, z−1t−1), φ∞) dz.

Note that we have
Z̃(φ∞, χ) = |DE |1/2Z̃ [YZZ](φ∞, χ) (5.3.1)

if Z̃ [YZZ](φ∞, χ) is the function denoted by Z̃(χ, φ) in [YZZ12, §§ 3.6.4 and 5.1.2].

5.4 Arithmetic theta lifting and kernel identity
Similarly to [YZZ12], we conclude this section by reducing our main theorem to the form which
we will prove, namely as an identity between two kernel functions. The fundamental ingredient
is the following theorem of Yuan–Zhang–Zhang.

Theorem 5.4.1 (Arithmetic theta lifting). Let σ∞A be the M -rational automorphic represen-
tation of GL2(A) attached to A. For any ϕ ∈ σ∞, we have

(ϕ, Z̃(φ∞))σ∞ = Talg(θ(ϕ, φ∞))

in Hom(J, J∨)⊗M .
For any ϕ∞ ∈ σ∞, we have

(ϕ, Z̃(φ∞))σ∞ = |DF |Talg(θ(ϕ, φ∞))

in Hom(J, J∨)⊗M .
Let ιp : M ↪→ Mp ⊂ L. For each ϕp ∈ σp∞A ⊗ L, completing ϕp to a normalised (U∗v)v|p-

eigenform ϕ ∈ σ ⊗ L as before Proposition 2.4.4, we have

`ϕp,α(Z̃(φ∞)) = |DF |Talg(θιp(ϕ, α($)−rwrφ
∞))

for any sufficiently large r > 1.
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Proof. In the first identity, both sides in fact belong to M(α), and the result holds if and only if
it holds after applying any embedding ι : M(α) ↪→ C. It is then equivalent to [YZZ12, Theorem
3.22] via Proposition 2.4.4 and [YZZ12, Proposition 3.16]. The second identity follows from the
first one and the properties of `ϕp,α. 2

We can now rephrase the main theorem in the form of the following kernel identity.

Theorem 5.4.2 (Kernel identity). Let ϕp ∈ σp∞A and let φp∞ ∈ S (Vp∞ × Ap∞,×). For any
compact open subgroup UT,p =

∏
v UT,v ⊂ 1 + (

∏
v|p$v)OE,p such that χp|UT,p = 1, let φ∞ =

φp∞φp,UT,p , where φp,UT,p =
⊗

v|p φv,UT,v with

φv,UT,v(x, u) = δ1,UT,v∩V1(x1)1OV2
(x2)1d−1

v O×F,v

for δ1,UT,v as in (3.4.5).
Suppose that all primes v|p split in E. Then we have

`ϕp,α(dFI (φp∞;χ)) = 2|DF |L(p)(1, η) · `ϕp,α(Z̃(φ∞, χ)).

The proof will occupy most of the rest of the paper (cf. the very end of § 8 below).

Proposition 5.4.3. If Theorem 5.4.2 is true for some (ϕp, φp∞) such that for all v - p∞, the
local integral Rv(Wv, φv, χv) 6= 0, then it is true for all (W p, φp∞), and Theorem B is true for all
f1 ∈ π, f2 ∈ π∨.

Proof. Consider the identity

〈Talg,ιp(f1 ⊗ f2)Pχ, Pχ−1〉J
=

ζ∞F (2)

2(π2/2)[F :Q]|DE |1/2L(1, η)

∏
v|p

Z◦v (αv, χv)
−1 · dFLp,α(σA,E)(χ) ·Q(f1, f2, χ), (5.4.1)

where ιp : M ↪→ L(χ), and we set

Pχ = −
∫

[T ]
Tt(P − ξP )χ(t) dt ∈ J(F )L(χ).

The identity (5.4.1) is equivalent to Theorem B by Lemma 5.3.1, but it has the advantage of
making sense, by linearity, for any element of π ⊗ π∨. By the multiplicity-one result, it suffices
to prove it for a single element of this space which is not annihilated by the functional Q(·, χ).
Such element will arise as a Shimizu lift. (The similar assertion on the validity of Theorem 5.4.2
for all (ϕp, φp∞) follows from the uniqueness of the Shimizu lifting.)

By (3.7.1), we can write

`ϕp,α(dFI (φp∞;χ)) = dFLp,α(σE)(χ)
∏
v-p∞

R\
v(Wv, φv;χv)

(note that as the functional `ϕp,α is bounded, we can interchange it with the differentiation; the
fact that the Leibniz rule does not introduce other terms follows from the vanishing of I (φp∞;χ),
which will be shown in Proposition 7.1.1(3) below). By Lemma 5.1.1, this equals

|DF |3/2ζ∞F (2)

(π2/2)[F :Q]

∏
v|p

Qv(θv(Wv, α($v)
−rv
v w−1

r,vφv), χv)
−1 ·dFLp,α(σE)(χ) ·Q(θιp(ϕ, α($)−rw−1

r φ), χ).
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For the geometric kernel, by Theorem 5.4.1 and the calculation of [YZZ12, § 3.6.4], we have

`ϕp,α(Z̃(φ∞, χ)) = 2|DF |1/2|DE |1/2L(1, η)〈Talg,ιp(θιp(ϕ, α($)−rw−1
r φ))Pχ, P

−1
χ 〉.

Then (5.4.1) follows from Theorem 5.4.2 provided we show that, for all v|p,

Qv(θv(Wv, αv($v)
−rvw−1

r,vφv), χv) = L(1, ηv)
−1 · Z◦v (χv).

This is proved by explicit computation in Proposition A.3.1. 2

6. Local assumptions

We list here the local assumptions which simplify the computations, while implying the desired
identity in general. We recall on the other hand the essential assumption, valid until the end of
this paper, that all primes v|p split in E.

Let SF be the set of finite places of F . We partition it as

SF = Snon-split ∪ Ssplit

with the obvious meaning according to the behaviour in E, and further as

SF = Sp ∪ S1 ∪ S2 ∪ (Snon-split − S1) ∪ (Ssplit − Sp − S2),

where:

– Sp ⊂ Ssplit is the set of places above p;

– S1 is a finite subset of Snon-split containing all places where E/F or F/Q is ramified, or
σ is not an unramified principal series, or χ is ramified, or B is ramified; we assume that
|S1| > 2;

– S2 consists of two places in Ssplit − Sp at which σ and χ are unramified.

We further denote by S∞ the set of archimedean places of F .

6.1 Assumptions away from p
Consider the following assumptions from [YZZ12, § 5.2].

Assumption 6.1.1 (Cf. [YZZ12, Assumption 5.2]). The Schwartz function φ =
⊗
φv ∈ S (B×

A×) is a pure tensor, φv is standard for any v ∈ S∞, and φv has values in Q for any v ∈ SF .

Assumption 6.1.2 [YZZ12, Assumption 5.3]. For all v ∈ S1, φv satisfies

φv(x, u) = 0 if v(uq(x)) > −v(dv) or v(uq(x2)) > −v(dv).

Assumption 6.1.3 [YZZ12, Assumption 5.4]. For all v ∈ S2, φv satisfies

r(g)φv(0, u) = 0 for all g ∈ GL2(Fv), u ∈ F×v .

See [YZZ12, Lemma 5.10] for an equivalent condition.

Assumption 6.1.4 [YZZ12, Assumption 5.5]. For all v ∈ Snon-split − S1, φv is the standard
Schwartz function φv(x, u) = 1OBv

(x)1d−1
v O×F,v

(u).
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Assumption 6.1.5 [YZZ12, Assumption 5.6]. The open compact subgroup Up =
∏
v-p Uv ⊂

B(Ap∞) satisfies the following:

(i) Uv is of the form (1 +$r
vOBv)

× for some r > 0;

(ii) χ is invariant under UpT := Up ∩ T (Ap∞);

(iii) φ is invariant under Kp = Up × Up;
(iv) Uv is maximal for all v ∈ Snon-split − S1 and all v ∈ S2;

(v) UpU0,p does not contain −1;

(vi) UpU0,p is sufficiently small so that each connected component of the complex points of the
Shimura curve XU is an unramified quotient of H under the complex uniformisation.

Here we have denoted by U0,p ⊂ B×p the maximal compact subgroup.

See [YZZ12, § 5.2.1] for an introductory discussion of the effect of those assumptions.

Lemma 6.1.6. For each v - p∞, there exist Wv ∈ σv and a Schwartz function φv satisfying all of
Assumptions 6.1.1–6.1.5 such that

R\v(Wv, φv) 6= 0.

For all but finitely many places v, we can take Wv to be an unramified vector and φv to be the
standard Schwartz function.

Proof. The existence of the sought-for pairs (Wv, φv) is proved in [YZZ12, Proposition 5.8]. The
second assertion follows from the unramified calculation, Lemma 3.5.2. 2

6.2 Assumptions at p
We make some further assumptions at the places v ∈ Sp. After stating the restrictions on φv and
Uv, we will impose at the end of this section some restrictions on χv and on choices of a p-adic
logarithm.

Concerning (φv, Uv), we need two conditions. On the one hand, that the centre of the open
compact subgroup Uv is sufficiently large so that, roughly speaking, for all but finitely many
characters χ, no non-zero vector in a T (Fv)-representation can be both χv-isotypic and invariant
under UT,v := U ∩ T (Fv); we will apply this in particular for the space generated by the Hodge
classes on XU . On the other hand, we need φv to be sufficiently close (a condition depending on
χv) to a Dirac delta, so as to match the Schwartz functions used in the construction of the p-adic
analytic kernel. As stated, this is apparently incompatible with the previous condition. However,
as χv|F×v = ω−1

v (fixed), an agreeable compromise can be found. We therefore state two distinct
assumptions; while we will eventually work with the second assumption (the ‘compromise’), it
will be convenient to reduce some proofs to the situation of the first one.

Assumption 6.2.1. For each v ∈ Sp, Uv and φv satisfy the following:

(i) the subgroup Uv = 1 +$rv
v OBv for some rv > 1;

(ii) χv is invariant under UT,v;

(iii) αv is invariant under q(Uv);

(iv) the Schwartz function is

φv(x, u) = δ1,UT,v(x1)1OV2
(x2)δq(U)(u),
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where, as in (3.4.5),

δ1,UT,v(x1) :=
vol(Ev)

vol(UT,v)
1UT,v(x1)

and

δq(U)(u) =
vol(O×F )

vol(q(U))
1q(U)(u).

Assumption 6.2.2. For each v ∈ Sp, Uv and φv satisfy:

(i) Uv = U◦F,vŨv with U◦F,v = (1 + $nv
v OF,v)

× ⊂ Z(Fv) ⊂ B×v for some nv > 1, and Ũv =
1 +$rv

v OB,v satisfies (i)–(ii) of Assumption 6.2.1;

(ii) ωv is invariant under U◦F,v;

(iii) q(Uv) ⊂ (U◦F,v)
2;

(iv) αv is invariant under (U◦F,v)
2;

(v) the Schwartz function φv is

φv := −
∫

O×F,v

ωv(z)r((z, 1))φ̃v dz, (6.2.1)

where φ̃v is as in Assumption 6.2.1 for Ũv.

Remark 6.2.3. By (ii), the function φv in Assumption 6.2.2 is invariant under Kv = Uv × Uv.
The subgroup U◦F,v in Assumption 6.2.2 can be chosen independently of χ.

In view of the previous remark, we can introduce the following assumption after fixing U◦F,v.

Assumption 6.2.4. The character χ is not invariant under V ◦p :=
∏
v|p q

−1(U◦F,v) ⊂ O×E,p.

Lemma 6.2.5. The set of finite-order characters χ ∈ Y which do not satisfy Assumption 6.2.4
is finite.

Proof. Recall that by definition Y = Yω(V p) parametrises some V p-invariant characters for the
open compact subgroup V p ⊂ E×Ap∞ fixed (arbitrarily) in the Introduction. Then a character χ
as in the lemma factors through

E×A∞/E
×V pV ◦p ,

a finite group. 2

p-adic logarithms. Recall that a p-adic logarithm valued in a finite extension L of Qp is a
continuous homomorphism

` : ΓF → L;

we call it ramified if for all v|p the restriction `v := `|F×v is ramified, i.e. non-trivial on O×F,v.

Lemma 6.2.6. For any finite extension L of Qp, the vector space of continuous homomorphisms
Hom(ΓF , L) admits a basis consisting of ramified logarithms.

Proof. If F = Q, then Hom(ΓQ, L) is one dimensional with generator the cyclotomic logarithm
`Q, which is ramified. For general F , `Q ◦NF/Q : ΓF → ΓQ→ Qp is ramified (and it generates
Hom(ΓF , L) if the Leopoldt conjecture for F holds). Any other logarithm ` can be written as
` = a`Q ◦ NF/Q + (` − a`Q ◦ NF/Q) for any a ∈ L; for all but finitely many values of a, both
summands are ramified. 2
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7. Derivative of the analytic kernel

For this section, we retain all the notation of §§ 3.2–3.4, and we keep the assumption that V is

incoherent. We assume that all v|p split in E.

7.1 Whittaker functions for the Eisenstein series

We start by studying the incoherent Eisenstein series E .

Proposition 7.1.1.

(1) Let a ∈ F×v .

(a) If a is not represented by (V2,v, uq), then W ◦a,v(g, u,1) = 0.

(b) (Local Siegel–Weil formula.) If there exists xa ∈ V2,v such that uq(xa) = a, then

W ◦a,v
((y

1

)
, u,1

)
=

∫
E1
v

r
((y

1

)
, h
)
φ2,v(xa, u) dh.

(2) For any a, u ∈ F×, there is a place v - p of F such that a is not represented by (V2, uq).

(3) For any φp∞2 ∈ S (Vp∞
2 ×Ap∞,×), u ∈ F×, we have

E (u, φp∞2 ; 1) = 0

and consequently

IF (φp∞; 1) = 0, I (φp∞;χ) = 0

for any φp∞ ∈ S (Vp∞ ×Ap∞,×), χ ∈ Yω.

Proof. Part (1) is [YZZ12, Proposition 6.1] rewritten in our normalisation: except for (b)

when v|p, which is verified by explicit computation of both sides (recall that φ2,v is standard

when v|p). Part (2) is a crucial consequence of the incoherence, proved in [YZZ12, Lemma 6.3].

In view of the expansion of Proposition 3.2.1, the vanishing is a consequence of the vanishing of

the non-zero Whittaker functions (which is implied by the previous local results) and of

W0(u,1) = −L(p)(0, η)
∏
v

W ◦0,v(u,1) :

here we have

L(p)(0, η) =
L(0, η)∏
v|p L(0, ηv)

= 0

as L(0, η) is defined and non-zero whereas L(s, ηv) has a pole at s = 0 when v splits in E. 2

7.2 Decomposition of the derivative

Fix henceforth a tangent vector ` ∈ Hom(ΓF , L(χ)) ∼= T1YF ⊗L(χ) ∼= N ∗
Y /Y ′ |χ; we assume that

` is ramified when viewed as a p-adic logarithm (cf. Lemma 6.2.6). For any function f on YF ,

we denote by

f ′(1) = D`f(1)

the corresponding directional derivative.
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Our goal is to compute, for any locally constant χ, the derivative

I ′(φp∞;χ) =

∫ ∗
[T ]
χ(t)I ′F ((t, 1), φp∞; 1)U d

◦t

=

∫ ∗
[T ]
χ(t)I ′F ((1, t−1), φp∞; 1)U d

◦t,

where the first identity (of q-expansions) follows from the vanishing of the values IF (φp∞; 1).
We can decompose the derivative into a sum of q-expansions indexed by the non-split finite

places v. For each u ∈ F× and each place v of F , let Fu(v) be the set of those a ∈ F× represented
by (Vv

2, uq); by Proposition 7.1.1, we have W ◦a,v(u,1) = 0 for each a ∈ Fu(v), and moreover Fu(v)
is always empty if v splits in E.

Then

E ′(u; 1) =
2[F :Q]|DF |1/2
|DE |1/2L(p)(1, η)

W ′
0 (u; 1)− 2[F :Q]|D|1/2

|DE |1/2L(p)(1, η)

∑
v non-split
a∈Fu(v)

W ◦ ′
a,v (u; 1)W ◦,v

a (u; 1) qa.

For a non-split finite place v, let

E ′(u, φp∞2 ; 1)(v) := − 2[F :Q]|DF |1/2
|DE/F |1/2L(p)(1, η)

∑
a∈Fu(v)

W ′
a,v(u; 1)W ◦,v

a (u; 1) qa,

I ′F ((t1, t2), φp∞; 1)(v) := cUp
∑

u∈µ2
Up
\F×

θ(u, r(t1, t2)φ1)E ′(u, φp∞2 ; 1)(v),

I ′(φp∞;χ)(v) :=

∫ ∗
[T ]
χ(t)I ′F ((1, t−1), φp∞; 1)(v) d◦t

if φp∞ = φp∞1 ⊗ φp∞2 , with φ1 obtained from φp∞1 as in (3.4.5), and extended by linearity in
general.

Proposition 7.2.1. Under Assumption 6.1.2, we have

I ′F (φp∞; 1) =
∑

v non-split

I ′F (φp∞; 1)(v).

Proof. By the definitions, we only need to show that under our assumptions we have

W ′
0 (u; 1) = 0.

This is proved similarly to [YZZ12, Proposition 6.7]. 2

7.3 Main result on the derivative
We give explicit expressions for the local components at good places, and identify the local
components at bad places with certain coherent theta series coming from nearby quaternion
algebras B(v); these theta series will be orthogonal to all forms in σ by the Waldspurger formula
and the local dichotomy.

Proposition 7.3.1. Let v be a finite place non-split in E. Then, for any (t1, t2) ∈ T (A), we
have

I ′F ((t1, t2), φp∞; 1)(v) = 2|DF |L(p)(1, η)−
∫

[T ]
K

(v)
φp∞((tt1, tt2)) dt
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and

I ′(φp∞;χ)(v) = 2|DF |L(p)(1, η)

∫ ∗
[T ]
−
∫

[T ]
K

(v)
φp∞((t, tt−1

1 )) dt d◦t1,

where

K
(v)
φ (y, (t1, t2)) = K

(v)
r(t1,t2)φ(y)

= cUp
∑

u∈µ2
Up
\F×

∑
x∈V−V1

kr(t1,t2)φv(y, x, u)r
((y

1

)
, (t1, t2)

)
φv∞(x, u) quq(x)

with kφv(y, x, u) the linear function in φv given when φ = φ1,v ⊗ φ2,v by

kφv(y, x, u) := −|d|
1/2
v |D|1/2v

vol(E1
v)

r
((yv

1

))
φ1,v(x1, u)W ◦ ′

uq(y2),v(y, u, φ2,v).

Proof. This follows from the definitions and the Siegel–Weil formula (Proposition 7.1.1(b)). The

computation is as in [YZZ12, Proposition 6.5]. 2

Lemma 7.3.2. Assume that φ∞ is Q-valued. For each non-split finite place v, the values of the

function

k\φv(y, x, u) := `($v)
−1kφv(y, x, u)

and the coefficients of the reduced q-expansions

K
(v) \
φp∞ := `($v)

−1K
(v)
φp∞ ,

I ′F
\(φp∞)(v) := `($v)

−1I ′F (φp∞)(v)

belong to Q.

Proof. By Lemma 3.3.1, the local Whittaker function W ◦
a,v(y, u, φ2,v;χF ) belongs to O(YF,v) ∼=

M [X±1
v ] and actually to Q[X±1

v ], where Xv(χF,v) := χF,v($v) for any uniformiser $v. (Recall

that the scheme YF,v of (3.3.1) parametrises unramified characters of F×v .) Therefore, its

derivative in the direction ` is a rational multiple of D`Xv = `($v). 2

The following is the main result of this section. It is the direct analogue of [YZZ12, Proposition

6.8 and Corollary 6.9] and it is proved in the same way, using Proposition 3.2.3(1). To compare

signs with [YZZ12], note that in Proposition 7.3.1 we have preferred to place the minus sign in

the definition of kφv ; and that our `($v), which is the derivative at s = 0 of χF ($v)
s, should be

compared with −log qF,v in [YZZ12] (denoted by −logNv there), which is the derivative at s = 0

of |$v|s.

Proposition 7.3.3. Let v be a non-split finite place of F , and let Bv be the quaternion algebra

over Fv which is not isomorphic to Bv.

(1) If v ∈ Snon-split − S1, then

k\φv(1, x, u) = 1OBv×O×Fv
(x, u)

v(q(x2)) + 1

2
.
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(2) If v ∈ S1 and φv satisfies Assumption 6.1.2, then k\φv(y, x, u) extends to a rational Schwartz

function of (x, u) ∈ Bv × F×v , and we have the identity of q-expansions

K
(v) \
φ ((t1, t2)) = qθ((t1, t2), k\φv ⊗ φ

v),

where, for any φ′,

θ(g, (t1, t2), φ′) = cUp
∑

u∈µ2
Up
\F×

∑
x∈V

r(g, (t1, t2))φ′(x, u)

is the usual theta series.

8. Decomposition of the geometric kernel and comparison

We establish a decomposition of the geometric kernel according to the places of F , and compare
its local terms away from p with the corresponding local terms in the expansion of the analytic
kernel. Together with a result on the local components of the geometric kernel at p proved
in § 9, this proves the kernel identity of Theorem 5.4.2 (hence Theorem B) when χ satisfies
Assumption 6.2.4.

8.1 Vanishing of the contribution of the Hodge classes
Fix a level U as in Assumptions 6.1.5 and 6.2.2.

Recall the height generating series

Z̃((t1, t2), φ∞) = 〈Z̃∗(φ∞)(t1 − ξq(t1)), t2 − ξq(t2)〉
and the geometric kernel function

Z̃(φ∞, χ) =

∫ ∗
[T ]
χ(t)Z̃((1, t−1), φ∞) dt.

They are modular cuspforms with coefficients in ΓF ⊗̂L(χ).

Proposition 8.1.1. (1) If Assumption 6.1.3 is satisfied, then

deg Z̃(φ∞)U,α = 0

for all α ∈ F×+ \A×/q(U).

(2) If Assumption 6.1.3 is satisfied, then

Z̃(φ∞)ξα = 0

for all α ∈ F×+ \A×/q(U).

(3) If Assumption 6.2.4 is satisfied, then∫ ∗
[T ]
χ(t)ξU,q(t) dt = 0.

(4) If Assumptions 6.1.3 and 6.2.4 are both satisfied, then

qZ̃(φ∞, χ)U = 〈qZ̃∗(φ∞)1, tχ〉,
where

tχ =

∫ ∗
[T ]
χ(t)[t−1]U d

◦t ∈ Div0(XU )L(χ).
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Proof. Note first that part (4) follows from parts (2) and (3) after expanding and bringing the
integration inside. Part (2) follows from part (1) as in [YZZ12, § 7.3.1], and part (1) is proved in
[YZZ12, Lemma 7.6].

For part (3), note first that the group V ◦p of Assumption 6.2.4 acts trivially on the Hodge
classes; in fact, we have r(1, t−1)ξU,α = ξU,αq(t) and, by definition, q(V ◦p ) ⊂ U . On the other hand,
we are assuming that the character χ is non-trivial on V ◦p . It follows that the integration against
χ on V ◦p ⊂ T (A) annihilates the Hodge classes. 2

8.2 Decomposition
Let

` : ΓF → L(χ)

be the ramified logarithm fixed in § 7.2. For the rest of this section and in § 9, we will abuse
notation by writing Z̃(φ∞, χ) for the image of Z̃(φ∞, χ) under ` : ΓF ⊗̂L(χ)→ L(χ).

Lemma 8.2.1. If Assumption 6.1.2 is satisfied, then for all a ∈AS1∞,× and for all t1, t2 ∈ T (A∞),
the support of Za(φ

∞)t1 does not contain [t2].

Proof. This is shown in [YZZ12, § 7.2.2]. 2

Let S′ = S′S1
(L(χ)) be the quotient space, relative to the set of primes S1, introduced after

the approximation lemma (Lemma 2.1.2).

Proposition 8.2.2. Suppose that Assumptions 6.1.2, 6.1.3, and 6.2.4 are satisfied. If H is
any sufficiently large finite extension of E and w is a place of H, let 〈 , 〉`,w be the pairing

on Div0(XU,H) associated with `w of (4.1.7). Let qZ̃∗(φ
∞) be the image of Z̃∗(φ

∞) in
S′ ⊗ Corr (X ×X)Q. Then in S′ we have the decomposition

qZ̃(φ∞, χ) =
∑
v

Z̃(φ∞, χ)(v)

where
Z̃(φ∞, χ)(v) =

∑
w|v

〈qZ̃∗(φ∞)1, tχ〉`,w.

Proof. By Proposition 8.1.1(4), we have Z̃a(φ
∞, χ) = 〈Z̃a(φ∞)1, tχ〉 for all a ∈ A∞,×. If a ∈

AS1∞,×, the two divisors have disjoint supports by Lemma 8.2.1, and we can decompose their
local height according to (4.2.2). 2

For each place w of E, fix an extension w of w to F ⊃ E and, for each finite extension H ⊂ F
of E, let 〈 , 〉w be the pairing associated with `w := (1/[Hw : Fv])`v ◦NHw/Fv . The absence of the
field H from the notation is justified by the compatibility deriving from (4.1.6). By the explicit
description of the Galois action on CM points, we have

Z̃(φ∞, χ)(v) =
1

|SEv |
∑

w∈SEv

−
∫

[T ]
〈qZ̃∗(φ∞)t, ttχ〉w dt

in S′ and, if v - p, by Proposition 4.2.2, we can further write

Z̃(φ∞, χ)(v) =
`($v)

|SEv |
∑

w∈SEv

∫ ∗
[T ]
−
∫

[T ]
iw(qZ̃∗(φ)t, tt−1

1 )χ(t1) dt d◦t1

+

∫ ∗
[T ]
−
∫

[T ]
jw(qZ̃∗(φ)t, tt−1

1 )χ(t1) dt d◦t1. (8.2.1)
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8.3 Comparison of kernels
Recall that we want to show the kernel identity

`ϕp,α(I ′(φp∞;χ)) = 2L(p)(1, η)`ϕp,α(Z̃(φ∞, χ)) (8.3.1)

of Theorem 5.4.2 (more precisely, we have here projected both sides of that identity to L(χ)
via `).

Similarly to Proposition 8.2.2, we have by Propositions 7.2.1 and 7.3.1 a decomposition of
reduced q-expansions

I ′(φp∞;χ) =
∑

v non-split

I ′(φp∞;χ)(v)

with

I ′(φp∞;χ)(v) = 2|DF |L(p)(1, η)

∫ ∗
[T ]
−
∫

[T ]
K

(v)
φp∞(t, tt−1

1 )χ(t1) dt d◦t1, (8.3.2)

and the q-expansion K
(v)\
φp∞ = K

(v)
φp∞ · `($v)

−1 has rational coefficients.
We thus state the main theorem on the local components of the kernel function from which the

identity (8.3.1) will follow, preceded by a result on the components away from p which facilitates
the comparison with [YZZ12].

Proposition 8.3.1. Suppose that all of the assumptions of § 6.1 are satisfied together with
Assumptions 6.2.2. Then for all t1, t2 ∈ T (A) we have the following identities of reduced q-

expansions in S
′
.

(1) If v ∈ Ssplit − Sp, then

iv(
qZ̃∗(φ

∞)t1, t2) = jv(
qZ̃∗(φ

∞)t1, t2) = 0.

(2) If v ∈ Snon-split − S1, then

iv(
qZ̃∗(φ

∞)t1, t2) = K
(v)\
φp∞ (t1, t2), jv(

qZ̃∗(φ
∞)t1, t2) = 0.

(3) If v ∈ S1, then there exist Schwartz functions kφv , mφv , lφv ∈ S (B(v)v × F×v ) depending
on φv and Uv such that

K
(v)\
φp∞ (t1, t2) = qθ((t1, t2), kφv ⊗ φv),

iv(
qZ̃∗(φ

∞)t1, t2) = qθ((t1, t2),mφv ⊗ φv),
jv(

qZ̃∗(φ
∞)t1, t2) = qθ((t1, t2), lφv ⊗ φv).

Here B(v) is the coherent nearby quaternion algebra to B obtained by changing invariants
at v and, for φ′ ∈ S (B(v)A ×A×), we have the automorphic theta series

θ(g, (t1, t2), φ′) = cUp
∑

u∈µ2
Up
\F×

∑
x∈B(v)

r(g, (t1, t2))φ′(x, u).

We denote by

I(φ′, χ)(g) :=

∫ ∗
[T ]
−
∫

[T ]
χ(t1)θ(g, (t, t−1

1 t), φ′) dt d◦t1 (8.3.3)

the associated coherent theta function.
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Proof. Part (1) is [YZZ12, Theorem 7.8(1)]. In part (2), the vanishing of jv follows by the
definitions; the other identity is obtained by explicit computation of both sides as in [YZZ12,
Proposition 8.8], which gives the expression for the geometric side;31 on the analytic side we use

the result of Proposition 7.3.3(1). Part (3) for K
(v)\
φp∞ is Proposition 7.3.3(2), whereas for iv and

jv it is [YZZ12, Theorem 7.8(4)]. 2

Theorem 8.3.2. Suppose that all of the assumptions of § 6.1 are satisfied together with
Assumptions 6.2.2 and 6.2.4. Then we have the following identities of reduced q-expansions
in S

′
.

(1) If v ∈ Ssplit − Sp, then

Z̃(φ∞, χ)(v) = 0.

(2) If v ∈ Snon-split − S1, then

I ′(φp∞;χ)(v) = 2|DF |L(p)(1, η)Z̃(φ∞, χ)(v).

(3) If v ∈ S1, then there exist Schwartz functions kφv , nφv ∈ S (B(v)v ×F×v ) depending on φv
and Uv such that, with the notation (8.3.3),

I ′(φp∞;χ)(v) = qI(kφv ⊗ φv, χ),

Z̃(φ∞, χ)(v) = qI(nφv ⊗ φv, χ).

(4) The sum

Z̃(φ∞, χ)(p) :=
∑
v∈Sp

Z̃(φ∞, χ)(v)

belongs to the isomorphic image S ⊂ S
′

of the space of p-adic modular forms S, and we
have

`ϕp,α(Z̃(φ∞, χ)(p)) = 0.

Proof (to be completed in § 9). Parts (1)–(3) follow from Proposition 8.3.1 by integration via
(8.2.1) and (8.3.2). They imply the identity in S′

2|DF |L(p)(1, η)Z̃(φ∞, χ)(p) = 2|DF |L(p)(1, η)qZ̃(φ∞, χ)−
∑
v-p

Z̃(φ∞, χ)(v)

= 2|DF |L(p)(1, η)qZ̃(φ∞, χ)−I ′(φ∞;χ)

−
∑
v∈S1

qI(φv ⊗ dφv), (8.3.4)

where dφv = 2|DF |L(p)(1, η)nφv −kφv for v ∈ S1. As all terms in the right-hand side belong to S,

so does Z̃(φ∞, χ)(p). The proof of the vanishing statement of part (4) will be given in § 9. 2

Proof of Theorem 5.4.2 under Assumption 6.2.4. We show that Theorem 5.4.2 follows from
Theorem 8.3.2, under the same assumptions. By Proposition 5.4.3 and Lemma 6.1.6, only
Assumption 6.2.4 on the character χ is restrictive. Moreover by Lemma 6.2.6 it is equivalent

31 Recall that, on the geometric side, iv is the same Q-valued intersection multiplicity both in [YZZ12] and in our
case.
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to show that the desired kernel identity holds after applying to both sides a ramified logarithm
` : ΓF → L(χ).

By (8.3.4),

`ϕp,α(2|DF |L(1, η) · qZ̃(φ∞, χ)−I ′(φ∞;χ)) =
∑
v∈S1

`ϕp,α(qI(φv ⊗ dφv)) + `ϕp,α(Z̃(φ∞, χ)(p)).

The vanishing of the terms indexed by S1 can be shown as in [YZZ12, § 7.4.3] to follow from the
local result of Tunnell and Saito together with Waldspurger’s formula. The term `ϕp,α(Z̃(φ∞,
χ)(p)) = 0 by part (4) of Theorem 8.3.2. 2

9. Local heights at p

After some preparation in § 9.1, in § 9.2 we prove the vanishing statement of part 4 of Theorem
8.3.2. We follow a strategy of Nekovář [Nek95] and Shnidman [Shn16].

For each v|p, fix isomorphisms

Ev := E ⊗F Fv ∼= Fv⊕Fv (9.0.5)

and Bv ∼= M2(Fv) such that the embedding of quadratic spaces Ev ↪→ Bv is identified with
(a, d) 7→

(
a
d

)
; then for the decomposition Bv = V1,v ⊕V2,v = Ev ⊕ E⊥v , the first (respectively

second) factor consists of the diagonal (respectively antidiagonal) matrices. Let w, w∗ be the
places of E above v such that Ew (respectively Ew∗) corresponds to the projection onto the first
(respectively second) factor under (9.0.5). We fix the extension v = w of v to F ⊃ E to be any
one inducing w on E, and we will accordingly view the local reciprocity maps recw : E×w = F×v →
Gal(F v/Fv)

ab = Gal(F v/Ew)ab.

9.1 Local Hecke and Galois actions on CM points

Let U = U◦F Ũ =
∏
v Uv ⊂ B∞× be an open compact subgroup and φ ∈ S (B × A×) satisfy

Assumption 6.2.2 for integers r = (rv)v|p. Fix throughout this subsection a prime v|p.
By Lemma 3.1.1, the generating series Z̃(φ∞) is invariant under K1($r′)v for some r′ > 0.

We compute the action of the operator Uv,∗ on it.

Lemma 9.1.1. For each a ∈A×, v|p, the ath reduced q-expansion coefficient of Uv,∗Z̃(φ∞) equals

Z($−1
v )Z̃a$v(φ

∞),

where the (a$v)th q-expansion coefficient of Z̃(φ∞) is given in (5.2.2).

Proof. We have

Uv,∗φv(x, u) = |$v|
∑

j∈OF,v/$v

r
((
$v j

1

))
φv(x, u)

= |$v|φv($vx,$
−1
v u)

under our assumptions on φv.
Inserting this in the definition of Z̃ and performing the change of variables x′ = $vx, we

obtain the result. 2
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We wish to give a more explicit expression for

Z̃a$sv(φ
∞)[1]U = cUp |a$s|

∑
x∈U\B∞×/U

φ∞(x, a$s
vq(x)−1)[x]U (9.1.1)

as s varies. Let

Ξ($rv
v ) =

{(
a b
c d

)
∈M2(OF,v)

∣∣∣∣ a, d ∈ 1 +$rv
v OF,v

}
U◦F,v.

Then Ξ($rv
v ) ⊂Bv is the image of the support of φv under the natural projection Bv×F×v →Bv;

and, for each xv ∈ Uv\B×v /Uv, some xv ∈ Bv∞,× such that xvxv contributes to the sum (9.1.1)
exists if and only if xv belongs to

Ξ($rv
v )a$svv := {xv ∈ Ξ($rv

v ), q(xv) ∈ a$sv
v (1 +$rOF,v)}.

Lemma 9.1.2. Let Uv, φv be as in Assumption 6.2.2, and let a ∈ F×v with sv = v(a) > rv. Then
the quotient sets Uv\Ξ($rv

v )a/Uv, Ξ($rv
v )a/Uv, and Uv\Ξ($rv

v )a are in bijection and, for each of
them, the set of elements

xv(bv, a) :=

(
1 bv

b−1
v (1− a) 1

)
∈M2(Fv) = Bv, bv ∈ (OF,v/$

rv+sv
v )×

is a complete set of representatives.

Proof. We drop the subscripts v. By acting on the right with diagonal elements belonging to U ,
we can bring any element x ∈ Ξ($r)a to one of the form x(b, a′) with b ∈ O×F , a′ ∈ a(1 +$rOF ).
The right action of an element γ ∈ U sends an element x(b, a) to one of the same form x(b′, a′)
if and only if

γ =

1 + λ$r −bµ$r

1− a
−λ$r

b
1 +$rµ


for some λ, µ ∈ OF ; in this case, we have

b′ = b
1− aµ$r

1− a , a′ = a

(
1−$r(λ+ µ)−$2r λµa

1− a$r

)
.

The situation when considering the left action of U is analogous (as can be seen by the symmetry
b↔ b−1(1− u$s)). The lemma follows. 2

Henceforth we will just write xv(bv) for xv(bv, a) unless there is risk of confusion.

Lemma 9.1.3. Fix a ∈ F×v with v(a) > rv.

(1) Let x = xvxv(bv), cv ∈ OF,v = OEw . The action of the Galois element recE(1 + cv$
rv
v ) is

rec(1 + cv$
rv
v )[x]U = [xvxv(bv(1 + cv$

rv
v ))]U . (9.1.2)

(2) We have

Ξ($rv
v )a/Uv =

∐
b∈(OF /$rv)×

recE((1 +$rvOF,v/1 +$svOF,v))xv(b)Uv,

where b is any lift of b to OF,v/$
rv+sv .
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Proof. Both assertions follow from the explicit description of the Galois action on CM points:
we have

recE(1 + cv$
rv
v )[x]U =

[(
1 + cv$

r
v

1

)
x

]
U

,

and a calculation establishes part (1). In view of Lemma 9.1.2, part (2) is then a restatement of
the obvious identity (OFv/$

r+s
v )× = ((1 +$rOF,v)/(1 +$sOF,v))(OFv/$

r
v)
×. 2

Norm relation for the generating series. Let

Z̃va(φv) := cUp
∑

xv∈Bv∞×/U

φv∞(xv, aq(xv)−1)Z(xv)U .

Then we have
Z̃a$s(φ)[1]U = |$v|−2rv

v

∑
xv

Z̃va(φv)[xv]U ,

where the sum runs over xv ∈ Ξ($rv
v )v(a)+v(d)+sv/Uv.

For s > rv, let Hs ⊂ Eab be the extension of E with norm group

U◦FU
v
T (1 +$s

wOE,w),

where UT = U ∩E×A∞ . Let H∞ =
⋃
s>rv Hs. If rv is sufficiently large, for all s > rv the extension

Hs/Hrv is totally ramified at w, and we have

Gal(Hs/Hr) ∼= Gal(Hsv ,w/Hrv ,w) ∼= (1 +$rv
v OF,v)/(1 +$s

vOF,v). (9.1.3)

For convenience, we set
H ′s := Hrv+s

for any s ∈ {0, 1, . . . ,∞} and, when s <∞, we denote by Trs, and similarly later Ns, the trace
(respectively norm) with respect to the field extension H ′s/H

′
0.

Proposition 9.1.4. Fix any a ∈ A∞,× with v(a) = rv. With the notation just defined, we have

Z̃a$s(φ)[1]U =
∑
i∈I

∑
b∈(OF,v/$r)×

Trs ci[x
v
i xv(b, a$

s)]U ,

where the finite indexing set I, the constants ci ∈ Q, and the cosets xviU
v are independent of s.

Moreover, there exists an integer d 6= 0 independent of a such that ci ∈ d−1Z for all i.

Proof. By Lemma 9.1.3, we can write

Z̃a$s(φ)[1]U = |$v|−2rv
v

∑
b∈(OF /$

rv
v )×

Z̃va(φv)[Gal(H ′s,w/H
′
0,w) · xv(b, a$s)]U

= |$v|−2rv
v

∑
b∈(OF /$

rv
v )×

Trs(Z̃
v
a(φv)[xv(b, a$

s)]U )

using (9.1.3), as by construction the correspondence Z̃va(φv)U is defined over H ′0. We obtain the

result by writing Z̃va(φv)U =
∑

i∈I ciZ(xvi )U .
Finally, the existence of d follows from the fact that φ∞ is a Schwartz function. 2
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The extension H∞,w/Ew. After de Shalit [dSha85], given a non-archimedean local field K, we
say that an extension K ′ ⊂ Kab of K is a relative Lubin–Tate extension if there is a (necessarily
unique) finite unramified extension K ⊂K◦ ⊂K ′ such that K ′ ⊂Kab is maximal for the property
of being totally ramified above K◦. By local class field theory, for any relative Lubin–Tate
extension K ′, there exists a unique element $ ∈ K× with vK($) = [K◦ : K] (where vK is the
valuation of K) such that K ′ ⊂Kab is the subfield cut out by 〈$〉 ⊂K× via the reciprocity map
of K. We call $ the pseudo-uniformiser associated with K ′.

Lemma 9.1.5. The field H∞,w is the relative Lubin–Tate extension of Ew associated with a
pseudo-uniformiser $LT ∈ E×w which is algebraic over E and satisfies qw($LT) = 1.

Proof. It is easy to verify that H∞,w is a relative Lubin–Tate extension. We only need to identify
the corresponding pseudo-uniformiser $LT. It suffices in fact to find an element θ ∈ E× satisfying
q(θ) = 1 and lying in the kernel of recEw : E×w → Gal(H∞,w/Ew), as then $LT must be a root
of θ and hence also satisfies the required property.

Let $w ∈ Ew be a uniformiser at w, and let d = [E×A∞ : E×UT ], where UvT is as before,
UT,w ⊂ O×E,w is arbitrary, and UT,w∗ is identified with U◦F,v under Fv ∼= Ew∗ . Then we can find

t ∈ E×, u ∈ UT such that $d
w = tu. We show that the image of θ := t/t in E×w lies in the kernel of

recEw : E×w → Gal(H∞,w/Ew). Letting ιw : E×w ↪→ E×A∞ be the inclusion, we show equivalently
that ιw(θ) is in the kernel of recE : E×A∞ → Gal(H∞,w/E) or concretely that iw(t/t) ∈ E×UvTU◦F .
Now we have

ιw(t/t) = t · uvιw(uw∗)ιw∗(uw∗).

By construction, uv ∈ UvT , and ιw(uw∗)ιw∗(uw∗) belongs to U◦F,v. This completes the proof. 2

9.2 Annihilation of local heights
Suppose still that the open compact U and the Schwartz function φ∞ satisfy all of the
assumptions of § 6.1 together with Assumption 6.2.2. In this subsection, we complete the proof
of Theorem 8.3.2 by showing that the element Z̃(φ∞, χ)(p) ∈ S is annihilated by `ϕp,α. Let S be
a finite set of non-archimedean places of F such that, for all v /∈ S, all the data are unramified,
Uv is maximal, and φv is standard. Let K = KpKp be the level of the modular form Z̃(φ∞),
and let Tιp(σ∨) ∈H S(L) = H S(M)⊗M,ιp L be any element as in Proposition 2.4.4(4). By that
result, it suffices to prove that

`ϕp,α(Tιp(σ∨)Z̃(φ∞, χ)(p)) = 0. (9.2.1)

We will in fact prove the following.

Proposition 9.2.1. For all v|p, the element Tιp(σ∨)Z̃(φ∞, χ)(v) ∈ S′ is v-critical in the sense
of Definition 2.4.1.

Recall from § 2.2 that the commutative ring H S(M) acts on the space of reduced q-
expansions S′(Kp) and its quotient S′S1

(Kp), so that the expression Tιp(σ∨)Z̃(φ∞, χ)(v) makes

sense. Proposition 9.2.1 implies that Tιp(σ∨)Z̃(φ∞, χ)(p) is a p-critical element of S and hence
it is annihilated by `ϕp,α by Proposition 2.4.4(3), establishing (9.2.1).

By Lemma 5.2.2, there is a Hecke correspondence T(σ∨)U on XU (with coefficients in M)
such that

Tιp(σ∨)qZ∗(φ
∞)U = Tιp(σ∨)U ◦ Z∗(φ∞)U
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as correspondences on XU . Then Tιp(σ∨)Z̃(φ∞, χ)U (v) is an average of

〈Tιp(σ∨)U
qZ̃∗(φ

∞)U [1], tχ〉w = 〈qZ̃∗(φ∞)U [1],Tιp(σ∨)t
U tχ〉w (9.2.2)

for w|v.
We study the class of Tιp(σ∨)t

U tχ in H1
f (E, IndHE VpJU |GE ), where H ⊂ Eab is any sufficiently

large finite extension. Let L′ denote Qp or any sufficiently large finite extension of Qp. As
GF -representations, we have

VpJU ⊗Qp L
′ =

⊕
A′,ι′:MA′ ↪→L

′

πUA′ ⊗MA′ VpA
′ι

for some pairwise non-isogenous simple abelian varieties A′/F with End0A′ = MA′ ; here VpA
′ι :=

VpA
′ ⊗MA′ ,ι L

′. More generally, let

V := IndHE VpJU |GH (9.2.3)

for a finite extension H of E as above; then we have

V ⊗Qp L
′ =

⊕
A′,ι′:MA′ ↪→L

′,χ′:Gal(H/E)→L′×

πUA′ ⊗MA′ VpA
′ι(χ′), (9.2.4)

where VpA
′ι(χ′) := VpA

′ ⊗MA′ ,ι L
′
χ.

Let V ′ := πUA∨ ⊗M VpA
∨ιp(χ−1) ⊂ V , where ιp : M ↪→ L ⊂ L(χ) is the usual embedding. Let

V ′′ ⊂ V be its complement in the direct sum (9.2.4), V = V ′ ⊕ V ′′.

Proposition 9.2.2. The class of Tιp(σ∨)t
U tχ in H1

f (E, V ) belongs to the subspace H1
f (E, V ′).

Proof. We may and do replace L(χ) by a sufficiently large finite extension L′. It is clear that the
class of tχ belongs to H1

f (E, VpJU (χ−1)). Then it is enough to verify that Tιp(σ∨)t
U annihilates⊕

(A′,ι)6=(A∨,ιp)(VpA
′ι)mA′ . Equivalently, we show that for any (A′, ι) 6= (A, ιp) and any f1 ∈ πA′ ,

f2 ∈ πA′ ,
Talg,ι(f1, f2) ◦ Tιp(σ∨)t

U = 0

in Hom(JU , J
∨
U ).

We have

Talg,ι(f1, f2) ◦ Tιp(σ∨)t
U = Tιp(σ∨)t

U ◦ Talg,ι(f1, f2) = Tιp(σ∨)t
U ◦ Talg,ι(θι(ϕ

′, φ∞′))

for some ϕ′ ∈ σ∞A′ and some rational Schwartz function φ∞′. By Theorem 5.4.1, this can be
rewritten as

Tιp(σ∨)t
U ◦ (ιϕ′, Z̃∗(φ

∞′))σ∞
A′

= (ιϕ′,Tιp(σ∨)t
U ◦ Z̃∗(φ∞′))σ∞A′

using an obvious commutativity. Applying Lemma 5.2.2 again, we have

Tιp(σ∨)t
U ◦ Z̃∗(φ∞′) = ιpT (σ)Z̃∗(φ

∞′),

where in view of (5.2.1), it is easy to see that we are justified in calling T (σ) the Hecke operator
corresponding to T (σ∨)t

U ; i.e. this Hecke operator acts as the idempotent projection onto σK ⊂
M2(K,M) for the appropriate level K. It is then clear that modular forms in the image of T (σ)
are in the right kernel of ( , )σ∞

A′
if σA′ 6= σA∨ or equivalently (as A′ 7→ σA′ is injective) if A′ 6= A∨.

If A′ = A∨, then the expression of interest is the image of ϕ′⊗T (σ)Z̃∗(φ
∞′) ∈ σA∨⊗(Hom(JU ,

J∨U ) ⊗ S2(M)) under the M -linear algebraic Petersson product and two projections applied to
the two factors, induced respectively from ι : M ⊗L′→ L′ and ιp : M ⊗L′→ L′. If ι 6= ιp, their
combination is zero. 2
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Proposition 9.2.3. For each w|p and each a ∈ AS1∞,×, the mixed extension E associated with
the divisors Z̃a(φ

∞)U [1] and Tιp(σ∨)tχ is essentially crystalline at w.

Proof. By Proposition 4.3.1, it is equivalent to show that

mw(Z̃a(φ
∞)U [1],Tιp(σ∨)tχ) = 0.

Under Assumptions 6.1.2 and 6.1.3 (which are local at S1∪S2 and hence unaffected by the action
of Tιp(σ∨)), this is proved in [YZZ12, Proposition 8.15, § 8.5.1]. 2

Proof of Proposition 9.2.1. For each w|v, by the discussion preceding (9.2.2) it suffices to show
that

〈qZ̃∗(φ∞)U [1],Tιp(σ∨)t
U tχ〉w

is a v-critical element of S′, that is (by the definition and Lemma 9.1.1), that

〈Z̃a$s(φ∞)U [1],Tιp(σ∨)t
U tχ〉w ∈ qs−cF,v OL(χ)

for all a with v(a) = rv and some constant c independent of a and s.
We may assume that w extends the place w of E fixed above.
By Proposition 9.1.4, when v(a) = rv, the divisor Z̃a$s(φ

∞)U [1] is a finite sum, with p-adically
bounded coefficients, of elements Trs[xj,s]U , where Trs denotes the trace map on divisors for the
field extension H ′s/H

′
0, and [xj,s]U ∈ Div0(XU,H′s).

Recall that 〈 , 〉w = 〈 , 〉`w for a fixed `w : F
×
w → L(χ).32 By (4.1.6), we have

〈Trs[xj,s]U ,Tιp(σ∨)t
U tχ〉`w = 〈[xj,s]U ,Tιp(σ∨)t

U tχ〉`w◦Ns,w , (9.2.5)

where we recall that Ns = Ns,w is the norm for H ′s,w/H
′
0,w.

Now take the field H of (9.2.3) to be H = H ′s, and consider the GEw -representations V ′ ⊂
V = Vs over L(χ) defined above Proposition 9.2.2. By our assumptions, V ′ satisfies the condition
Dpst(V

′)ϕ=1 = 0 and the Panchishkin condition, with an exact sequence of GEw -representations

0→ V ′+→ V ′→ V ′−→ 0.

The representation Vs has a natural GE-stable lattice, namely Ts := Ind
H′s
E TpJU |GH′s . Let T ′ :=

T ∩ V ′, T ′′s := Ts ∩ V ′′, T ′+ := T ′ ∩ V ′+, T ′− = T ′/T ′+; note that V ′, T ′, T ′± are independent of
s (hence the notation).

Let Ẽw/Ew be a finite extension over which VpA (hence V ′) becomes semistable. We may

assume that the extension Ẽw ⊂ Eab is abelian and totally ramified (see [Nek06, Propositions
12.11.5(iv) and 12.5.10 and their proofs]). For s ∈ {0, 1, . . . ,∞}, let H̃ ′s,w := ẼwH

′
s,w be the

compositum.
We can then apply Proposition 4.3.2, with the fields H̃ ′s playing the role of the field denoted

there by ‘Fv’; together with Proposition 9.2.3, it implies that (9.2.5) belongs to

p
−(d0+d1,s+d2)

L(χ) `w ◦ Ñs(O
×
H′s,w

⊗̂OL(χ)) ⊂ p
−(d0+d1,s+d2+d′)
L(χ) qs−c0F,v OL(χ),

where d0, d1,s, d2 are the integers of Proposition 4.3.2,33Ñs is the norm of H̃ ′s/H̃
′
0, and d′

accounts for the denominators coming from (4.1.7). The containment follows from the fact that

32 We only need to consider `w on the field H ′0 recalled just below.
33 Note that by construction there is an obvious direct sum decomposition Ts = T0 ⊕ T s−1 for a complementary
subspace T s−1; so that the integer d0 is independent of s.
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the extension H ′s/H
′
0 is totally ramified at w of degree qsF,v, so that H̃ ′s/H̃

′
0 has ramification

degree at least qs−c0F,v for some constant c0.
To complete the proof, we need to establish the boundedness of the integer sequence

d1,s = lengthOL(χ)
H1(H̃ ′0,w, T

′′∗
s (1)⊗ L(χ)/OL(χ))tors.

As

H1(H̃ ′0,w, T
′′∗
s (1)⊗ L(χ)/OL(χ))tors

∼= H0(H̃ ′0,w, T
′′∗
s (1)) ⊂ H0(Ew, TpJ

∗
U (1)⊗ OL(χ)[Gal(H̃ ′s,w/Ew)]),

the boundedness follows from the next lemma. 2

Lemma 9.2.4. Let Γ′LT := Gal(H̃ ′∞,w/Ew). Then

H0(Ew, VpJ
∗
U (1)⊗ OL(χ)JΓ′LTK) = 0.

Proof. We use the results and notation of Lemma 9.1.5. Note first that we may safely replace
L(χ) by a finite extension L′ splitting Ew/Qp. As VpJU = VpJ

∗
U (1) is Hodge–Tate, we have

H0(Ew, VpJU ⊗OL(χ)
OL(χ)JΓ′LTK) ⊂

⊕
ψ

H0(Ew, VpJU (ψ))(ψ−1),

where ψ runs through the Hodge–Tate characters of GE factoring through Γ′LT. Since the latter is
a quotient of E×w dominating ΓLT = Gal(H∞,w/Ew) ∼= E×w /〈$LT〉, we have Γ′LT

∼= E×w/〈$e
LT〉 for

some e > 1. Then the condition that ψ factors through Γ′LT is equivalent to ψ ◦ recE,w($e
LT) = 1

for the pseudo-uniformiser ωLT ∈ E×w .
By [Ser68, Appendix III.A], a character ψ of GE,w is Hodge–Tate of some weight n ∈

Z[Hom(Ew, L
′)] if and only if the maps E×w → L′× given by ψ ◦ recE,w and x 7→ x−n :=∏

τ∈Hom(Ew,L′)
τ(x)−n(τ) coincide near 1 ∈ E×w . By [Con, Proposition B.4(i)], ψ is crystalline

if and only if those maps coincide on O×E,w; therefore, we may write any Hodge–Tate character
ψ as ψ = ψ0ψ1 with ψ0 of finite order and ψ1 crystalline.

Then, letting Ew,0 be the maximal unramified extension of Qp contained in Ew and
d = [Ew : Ew,0], we can first write

H0(Ew, VpJU (ψ)) = Dcrys(VpJU (ψ))ϕ=1 ⊂ Dcrys(VpJU (ψ))ϕ
d=1

for the Ew,0-linear endomorphism ϕd (where ϕ is the crystalline Frobenius) and then

Dcrys(VpJU (ψ))ϕ
d=1 = Dcrys(VpJU (ψ0))ϕ

d=λ−1
1 ,

where λ1 ∈ L′ is the scalar giving the action of ϕd on Dcrys(ψ1).
By [Mok93, Theorem 5.3], all eigenvalues of ϕd on Dcrys(VpJU (ψ0)) are Weil qE,w-numbers

of strictly negative weight. To conclude that Dcrys(VpJU (ψ))ϕ
d=1 = 0, it thus suffices to show

that λ1 is an algebraic number of weight 0.
By [Con, Proposition B.4(ii)], we have

λ1 = ψ1 ◦ recE,w($w)−1 ·$−nw ,

where $w ∈ E×w is any uniformiser and n are the Hodge–Tate weights. Writing $m = u$LT for
m = w($LT) and some u ∈ O×E,w, we have

λm1 = ψ1 ◦ recE,w(u$LT)−1 · u−n$−nLT .

Now ψ1 ◦ recE,w(u) = u−n by the crystalline condition, and ψe1 ◦ recE,w($LT) = 1 as ψ1 factors

through Γ′LT. Hence, λem1 = $
−en
LT . By Lemma 9.1.5, $LT is an algebraic number of weight 0 and

hence so is λ1. 2
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10. Formulas in anticyclotomic families

In §§ 10.1–10.2, we prove Theorem C after filling in some details in its setup. It is largely a
corollary of Theorem B (which we have proved for all but finitely many characters), once
a construction of the Heegner–theta elements interpolating automorphic toric periods and
Heegner points is carried out. Finally, Theorem B for the missing characters will be recovered
as a corollary of Theorem C.

In § 10.3, we prove Theorem D.
We invite the reader to go back to § 1.4 for the setup and notation that we are going to use

in this section (except for the preliminary lemma (Lemma 10.1.1)).

10.1 A local construction
Let L and F be finite extensions of Qp, and denote by v the valuation of F and by $ ∈ F a fixed
uniformiser. Let π be a smooth representation of GL2(F ) on an L-vector space with central
character ω and a stable OL-lattice πOL . Let E× ⊂ GL2(F ) be the diagonal torus. Assume
that π is nearly ordinary in the sense of Definition 1.2.2 with unit character α : F× → L×.
Let f◦α ∈ π − {0} be any non-zero element satisfying U∗vf

◦
α = α($)f◦α, which is unique up to

multiplication by L×. For r > 1, let sr =
(
$r 1

1

)
and

fα,r := |$|−rα($)−rsrf
◦
α.

It is easy to check that fα,r is independent of the choice of $, and it is invariant under Vr =(
1+$rOF,v

1

)
VF , where VF := Ker(ω) ⊂ Z(F ).

Lemma 10.1.1.

(1) The collection fα,Vr := fα,r, for r > 0, defines an element

fα = (fα,V ) ∈ lim
←−
V

πV ,

where the inverse system runs over compact open subgroups VF ⊂ V ⊂ E×, and the transition
maps πV

′
→ πV are given by

f 7→ −
∫
V/V ′

π(t)f dt.

(2) Let πOL ⊂ π be a GL2(F )-stable OL-lattice containing f◦α. The collection of elements
f̃α,Vr := |$|rfα,r = α($)−rsrf

◦
α defines an element

f̃α ∈ lim
←−
V

πVOL ,

where the transition maps πV
′
→ πV are given by

f 7→
∑

t∈V/V ′
π(t)f.

Proof. We need to prove that

−
∫
Vr/Vr+1

π(t)fα,r+1 dt = fα,r. (10.1.1)
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A set of representatives for Vr/Vr+1 is
{(

1+j$r

1

)}
j∈OF /$

; on the other hand, recall that U∗v =∑
j∈OF /$v

(
$ j

1

)
. From the identity(

1 + j$r

1

)(
$r+1 1

1

)
=

(
$r 1

1

)(
$ j

1

)(
1 + j$r

1

)
,

we obtain

−
∫
Vr/Vr+1

π(t)sr+1f
◦
α = q−1

F,vsrU
∗
vf
◦
α = |$|−1α($)srf

◦
α,

as desired. The integrality statement of part 2 is clear as α($) ∈ O×L . 2

Let us restore the notation π+ = π, π− = π∨, employing it in the current local setting. Then
if π+ is as in the previous lemma, it is easy to check that π− is also nearly p ordinary. Explicitly,
the element

f+,◦
α (y) = 1OF−{0}(y)|y|vαv(y) (10.1.2)

in the L-rational subspace34 of any Kirillov model of π+
v satisfies U∗vf

+,◦
α = αv($v)f

+,◦
α , and the

element
f−,◦α (y) = 1OF−{0}(y)|y|vω−1(y)αv(y) (10.1.3)

in the L-rational subspace of any Kirillov model of π−v satisfies Uv,∗f
−,◦
α = αv($v)f

−,◦
α .

We can then construct an element f−α = (f−α,V )V = (f−α,r)r with the property of the previous

lemma as f−α,r := |$|−rα($)−rs∗rf
−,◦
α with s∗r =

(
1 $−r

$−r

)
.

Local toric periods. Let us restore the subscripts v. Recall the universal Kirillov models
K (π±v , ψuniv,v) of § 2.3. Then the elements f±,◦α,v of (10.1.2) and (10.1.3) yield, by the proof
of the lemma, explicit elements

f±α,v ∈ lim
←−
V

K (π±v , ψuniv,v)
V , (10.1.4)

where the transition maps are given by averages.
Recall the local toric period Qv(f

+
v , f

−
v , χv) of (1.1.2), for a character χv ∈ Y l.c.

v , which we
define on K (π+

v , ψuniv,v) ⊗K (π−v , ψuniv,v) using the canonical pairing of Lemma 2.3.2 on the
universal Kirillov models.

By the previous discussion and the defining property of f±α , for any character χv ∈ Y l.c.
v , the

element

Qv(f
+
α,v, f

−
α,v, χv) := lim

V

L(1, ηv)L(1, πv, ad)

ζF,v(2)L(1/2, πE,v ⊗ χv)v

∫
E×v /F

×
v

χv(t)(π(t)f+
α,v,V , f

−
α,v,V ) d◦t

is well defined and it belongs to M(χv) ⊗ OΨv(ωv). In fact, if M(αv, χv) ⊂ L is a subfield
containing the values of αv, ωv, and χv, then Qv(f

+
α,v, f

−
α,v, χv) belongs to OΨv,M(αv,χv)

(ωv).

Lemma 10.1.2. With notation as above, we have

Qv(f
+
α,v, f

−
α,v) = ζF,v(2)−1 · Z◦v

as sections of OYv×Ψv(ωv); here Z◦v is as in Theorem A.

34 Cf. § 2.3.
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Proof. It suffices to show that the result holds at any complex geometric point (χv, ψv) ∈ Y l.c.
v ×

Ψv(C). Drop all subscripts v, and fix a sufficiently large integer r (depending on χ). Recalling
the pairing of Lemma 2.3.2, we have by definition

Q(f+
α , f

−
α , χ) =

L(1, η)L(1, π, ad)

ζF (2)L(1/2, πE , χ)

∫
E×/F×

χ(t)(π(t)f+
α , f

−
α )

dt

|d|1/2 .

We denote by Ew (respectively Ew∗) the image of F under the map F → M2(F ) sending
t 7→

(
t

1

)
(respectively t 7→

(
1
t

)
), and by χw (respectively χw∗) the restriction of χ to E×w

(respectively E×w∗).
We can then compute that

ζF (1)L(1/2, πE , χ)

L(1, η)
Q(f+

α , f
−
α , χ)

equals

|d|−1

∫
F×

∫
F×
|$|−rα($)−rsrf

+,◦
α (ty) · |$|−rα($)−rs∗rf

−,◦
α (y)χw(t) d×y d×t

= |d|−1

∫
F×

∫
F×
|$|−rα($)−rψ(−ty)|ty$r|α(ty$r)1OF−{0}(ty$

r)

× |$|−rα($)−rψ(y)ω($)r|y$r|α(y$r)ω−1(y$r)1OF−{0}(y$
r)χw(t) d×y d×t.

We now perform the change of variables t′ = ty and observe that χw(t) = χw(t′)χ−1
w (y) =

χw(t′)ω(y)χw∗(y); we conclude after simplification that the above expression equals

|d|−1

∫
v(t′)>−r

ψ(−t′)|t′|α(t′)χw(t′) d×t′
∫
v(y)>−r

ψ(−y)|y|α(y)χw∗(y) d×y.

If r is sufficiently large, the domains of integration can be replaced by F×. The computation of
the integrals is carried out in Lemma A.1.1. We obtain

Qv(f
+
α,v, f

−
α,v, χv) =

L(1, ηv)

ζF,v(1)L(1/2, πE,v, χv)
ζE,v(1)

∏
w|v

Zw(χw) = ζF,v(2)−1 · Z◦v (χv). 2

10.2 Gross–Zagier and Waldspurger formulas
Here we prove Theorem C. We continue with the notation of the previous subsection, and we
suppose that π±v is isomorphic to the local component at v|p of the representation π± of the
Introduction. Let w, w∗ be the two places of E above v, and fix an isomorphism Bv

∼= M2(Fv)
such that the map Ev ∼= Ew ⊕ Ew∗ → Bv is identified with the map Fv ⊕ Fv → M2(Fv) given
by (t1, t2) 7→

(
t1
t2

)
.

We go back to the global situation with the notation and assumption of § 1.4. Choose a
universal Whittaker (or Kirillov) functional for π+ at p, that is, a B×p -equivariant map K +

p :
π+⊗OΨp(Ψp)→

⊗
v|p K (π+, ψuniv,v). By the natural dualities of π± and the Kirillov models, it

induces a B×p -equivariant map K +∨
p :

⊗
v|p K (π−, ψuniv,v)→ π−⊗OΨp(Ψp), whose inverse K −

p

is a universal Kirillov functional for π−p . Letting π±p,OΨp (Ψp) :=
⊗

v|p K (π±, ψuniv,v), we obtain a

unique decomposition π± ⊗ OΨp(Ψp) ∼= π±,pOΨp (Ψp) ⊗ π
±
p,OΨp (Ψp). The decomposition arises from

a decomposition of the natural M -rational subspaces π± ∼= π±,p ⊗ π±p .35

35 However, the M -rational subspaces are not stable under the B∞×-action.
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Heegner–theta elements. For each f±,p ∈ π±p ⊗M(α), let

f±,pα := f±p ⊗ f±α,p ∈ π±,pM(α) ⊗ lim
←−

V⊂O×E,p

π±,Vp,OM(α)
,

where f±α,p =
⊗

v|p f
±
α,v with f±α,v the elements (10.1.4).

Fix a component Y ◦± ⊂ Y± of type ε ∈ {+1,−1} as in § 1.4. Then the elements

Θ±α (f±,p) := −
∫
E×\E×A∞

fp,±α (i(t))χuniv(t) dt ∈ OY±(Y±)b, (10.2.1)

P±
α (f±,p) := lim

UT,p→{1}
−
∫
E×\E×A∞/UT

κ(fp,±α (recE(t)ιξ(P ))⊗ χ±univ,UT
(t)) dt

∈ Sp(AE , χ
±
univ,Y±)b, (10.2.2)

or rather their restriction to Y ◦± ⊂ Y±, satisfy the property of Theorem C(1). Here χ±univ,UT
:

Γ→ O×(Y±)UT is the convolution of χ±univ with the finest UT -invariant approximation to a delta
function at 1 ∈ Γ.

We explain the boundedness in the case of P±
α (f±,p). The rigid space Y± is the generic

fibre of an OL-formal scheme Y± := SpfOLJΓK/((ω±1(γ)[γ] − [1])γ∈A∞,×).36 (Similarly, each
geometric connected component Y ◦± has a formal model Y◦± ⊂ Y.) This identifies OY±(Y±)b =
OY±(Y±) ⊗OL L. By Lemma 10.1.1(2) applied to the natural lattice π±OL ⊂ π± ⊗ L given by

Hom(J,A±) ⊗End(A) OL ⊂ Hom0(J,A±) ⊗ L, after possibly replacing f±,p by a fixed multiple,

the elements f̃p,±α (Ttιξ(P )) belong to A±(Eab). Then each term in the sequence at the right-hand
side of (10.2.2) is a fixed multiple of∑

t∈E×\E×A∞/UT

κ(f̃p,±α (recE(t)ιξ(P ))⊗ χ±univ,UT
(t)), (10.2.3)

which belongs to the OL-module H1
f (E, TpA

± ⊗ OY±(Y±)UT (χ±univ,UT
)). Hence, some non-zero

multiple of P±
α (f±,p) belongs to the limit lim

←−UTH
1
f (E, TpA

± ⊗ OY±(Y±)UT (χ±univ,UT
)), whose

tensor product with L is indeed Sp(AE , χ
±
univ,Y±)b.

Local toric periods away from p. Given the chosen decomposition γ± : π±⊗OΨp(Ψp) ∼= π±,pOΨp (Ψp)⊗
π±p,OΨp (Ψp), let ( , )p be the unique pairing on π+,p

OΨp
⊗π−,pOΨp

which makes γ+⊗γ− into an isometry

for the natural pairings on π± and π±p,OΨp (Ψp).
37 Then, for each χ = χpχp ∈ Y ◦ l.c., the toric

period Qp of (1.4.7) is defined. By Lemma 5.1.1, Theorem C(2) then follows from Proposition
3.6.1. It is also proved in slightly different language in [LZZ15, Lemma 4.6(ii)].

Formulas. We prove the anticyclotomic formulas of Theorem C, and at the same time complete
the proof of Theorem B for the characters who do not satisfy Assumption 6.2.4.

Lemma 10.2.1. Let L be a non-archimedean local field with ring of integers OL, n > 1, and
let Dn be the rigid analytic polydisc over L in n variables, that is, the generic fibre of
Spf OLJX1, . . . , XnK. Let Σn ⊂ Dn(L) be the set of points of the form x = (ζ1 − 1, . . . , ζn − 1)

36 The quotienting ideal finitely generated as the image of A∞,× in Γ is a finitely generated Zp-submodule.
37 Recall that the natural pairing on the factor at p comes from its description as a Kirillov model.
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with each ζi a root of unity of p-power order. Let

f ∈ O(Dn)b = OLJX1, . . . , XnK⊗ L
be such that f(x) = 0 for all but finitely may x ∈ Σn. Then f = 0.

Proof. This is by induction on n, the case n = 1 being well known [AV75]; we will abbreviate X =
(X1, . . . , Xn) and X ′ = (X1, . . . , Xn−1). Up to multiplying f by a suitable non-zero polynomial,
we may assume that f ∈ OLJXK and that it vanishes on all of Σn. We may write, with multi-
index notation, f =

∑
J⊂Nn aJX

J (where N = {0, 1, 2, . . . , }) with each aJ ∈ OL. Let fj(X
′) :=∑

J ′⊂Nn−1 aJ ′j(X
′)J
′ ∈ OLJX ′K; then

f(X) =

∞∑
j=0

fj(X
′)Xj

n.

By assumption, f0(X ′) = f(X ′, 0) vanishes on all of Σn−1 and hence by the induction hypothesis
f0 = 0 and Xn|f . By induction on j, repeatedly replacing f by X−1

n f , we find that each fj = 0
and hence f = 0. 2

Lemma 10.2.2. Let Y ◦ ⊂ Y be a connected component of type ε = −1, and let Y ◦′ ⊂ Y ′

be the connected component containing Y ◦. The p-adic L-function Lp,α(σE)|Y ◦′ is a section of
IY ⊂ OY ′ .

Proof. By the interpolation property and the functional equation, Lp,α(σE) vanishes on Y ◦ ∩
Y l.c.,an(L). We conclude by applying Lemma 10.2.1, noting that after base-change to a finite

extension of L, there is an isomorphism Y →
∐
i∈I D

(i)
[F :Q] to a finite disjoint union of rigid

polydiscs, taking Y l.c.,an(L) to
∐
i∈I Σ

(i)
[F :Q]. 2

Proposition 10.2.3. The following are equivalent:

(1) Theorem B is true for all f1, f2, and all locally constant characters χ ∈ Y l.c.
L ;

(2) Theorem B is true for all f1, f2, and all but finitely many locally constant characters
χ ∈ Y l.c.

L ;

(3) Theorem C(4) is true for all f+,p and f−,p.

Proof. It is clear that (1) implies (2). That (2) implies (3) follows from Lemma 10.2.1 applied to
the difference of the two sides of the desired equality, together with the interpolation properties
and the evaluation of the local toric integrals in Lemma 10.1.2. Finally, the multiplicity-one
result together with Lemma 10.1.2 shows that (3) implies (1). 2

Since we have already shown at the end of § 8.3 that Theorem B is true for all but finitely
many finite-order characters, this completes the proof of Theorem B in general and proves
Theorem C(4). Finally, the anticyclotomic Waldspurger formula of Theorem C(3) follows from
the Waldspurger formula at finite-order characters (1.4.2) by the argument in the proof of
Proposition 10.2.3.

10.3 Birch and Swinnerton-Dyer formula
Theorem D follows immediately from combining the first and second parts of the following
proposition. We abbreviate S±p := Sp(A

±
E , χ

±
univ,Y

◦)b and remark that, under the assumption
ω = 1 of Theorem D, we have A = A+ = A− and π = π+ = π−.
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Proposition 10.3.1. Under the assumptions and notation of Theorem D, the following hold.

(1) Let
H ⊂ S+

p ⊗ S−,ιp

be the saturated Λ-submodule generated by the Heegner points P+
α (fp) ⊗ P−

α (fp) for
fp ∈ πp. The Λ-modules S±p are generically of rank 1, and moreover H is free of rank 1

over Λ, generated by an explicit element P+
α ⊗P−,ι

α .

(2) We have the divisibility of Λ-ideals

charΛ H̃
2
f (E, VpA⊗ Λ(χuniv))tors | charΛ(S+

p ⊗Λ S−,ιp /H ).

(3) Letting 〈 〉 denote the height pairing (1.4.6), we have

〈P+
α ⊗P−,ι

α 〉 =
cE
2
· dFLp,α(σE)|Y ◦ .

Proof. We define Q̃v(fv, χv) := Qv(fv, fv, χv) for fv ∈ πv, and similarly Q̃(f, χ) :=
∏
v Q̃(fv, χv)

if f =
⊗

v fv ∈ π. By [Wal85, Lemme 13] (possibly applied to twists (πv ⊗ µ−‘
v , χv · (µv ◦ qw))

for some character µv of F×v ), the spaces H(πv, χv) = HomE×v
(πv ⊗ χv, L(χv)) are non-zero if

and only if Q̃v(·, χv) is non-zero on πv. We also define Q̃v(fv) := Qv(fv, fv) and Q̃(fp) :=

ζF,p(2)−1
∏
v-p Q̃(fv) ∈ Λ for fp = ⊗fv ∈ πp. If the local conditions (1.1.1) are satisfied, as we

assume, then the spaces H(πv, χv) are non-zero for all χ ∈ Y ◦, and Q̃ is not identically zero
on πp.

We will invoke the results of Fouquet in [Fou13] after comparing our setup with his. Let
Ur = Up

∏
v|p Ur,v ⊂ B∞,× be such that Ur,v = K0($rv

v ) for v|p, rv > 1. Let eH1
ét(XUr,F

,OL(1))

be the image of H1
ét(XUr,F

,OL(1)) under the product e of the projectors ev := limn Un!
v . Let

Jπ ⊂H sph
B∞× be the annihilator of π viewed as a module over the spherical Hecke algebra H sph

B∞×

for B∞×, and let
eH1

ét(XUp,F ,OL(1))[π] := eH1
ét(XUr,F

,OL(1))/Jπ,

a Galois module which is independent of r > 1. The operators Uv act invertibly on eH1(XUr,F
,

OL(1)), and in fact by αv($v) on eH1
ét(XUp,F ,OL(1))[π]. Let fp ∈ πp be such that Q̃(fp) 6= 0.

Denote by κ the Abel–Jacobi functor and by f◦α := fp ⊗ f◦α,p, with f◦α,p, the product of the
elements f◦α,v of (10.1.2) for v|p. Then, up to a fixed non-zero multiple, the class P+

α (fp) is
the image under κ(f◦α) of the limit of the compatible sequence

Pα,r := U−rp
∑

t∈E×\E×A∞/UT

κ(recE(t)Tsr ιξ(P ))⊗ χ±univ,UT
(t)

of integral elements of H1
f (E, eH1

ét(XUp,F ,OL(1)) ⊗ ΛUT (χuniv,UT )). Fouquet takes as input a
certain compatible sequence (z(cp, S))S [Fou13, Definitions 4.11 and 4.14] of classes in the latter
space to construct, via suitable local modifications according to the method of Kolyvagin, an
Euler system [Fou13, § 5]. Noting that the local modifications occur at well-chosen, good primes `
of E, his construction can equally well be applied to the sequence (Pα,r)r in place of (z(cp, S))S .
This Euler system can then be projected via κ(fα) to yield an Euler system for VpA⊗Λ. Under
the condition that the first element P+

α (fp) ∈ S+
p (corresponding to zf,∞ in [Fou13]) of the

projected Euler system is non-torsion, it is proved in [Fou13, Theorem B(ii)] that S±p have
generic rank 1 over Λ. By the main result of [AN10], generalising [CV05], the family of points
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P+
α (fp) ∈ S+

p is indeed not Λ-torsion provided Q̃(fp) 6= 0 (i.e. fv is a ‘local test vector’ for all
v - p). We conclude as desired that S±p have generic rank 1 over Λ and that the same is true of
the submodule H .

We now proceed to complete the proof of part 1 by showing that the ‘Heegner submodule’ H
is in fact free of rank 1 and constructing a ‘canonical’ generator. First we note that by [Fou13,
Theorem 6.1], each special fibre H |χ (for arbitrary χ ∈ Y ◦) has dimension either 0 (we will soon
exclude this case) or 1 over L(χ). Let {P+

α (fpi )⊗P−
α (fpi )ι : i ∈ I} be finitely many sections of

H . By [YZZ12], for each χ ∈ Y ◦,l.c. := Y ◦ ∩ Y l.c.,an, the specialisation P+
α (fpi )⊗P−

α (fpi )ι(χ)

is non-zero if and only if Q̃(fpi )(χ) 6= 0, and moreover the images of the specialisations at χ of
the global sections of H ∏

j∈I,j 6=i
Q̃(fpj ) ·P+

α (fpi )⊗P−
α (fpi )ι (10.3.1)

under the Néron–Tate height pairing (after choosing any embedding L(χ) ↪→ C) coincide. As
H |χ has dimension at most 1, the Néron–Tate height pairing on H χ ⊗ C is an isomorphism

onto its image in C, and we deduce that that the elements (10.3.1) coincide over Y ◦,l.c.. Since
the latter set is dense in Spec Λ by Lemma 10.2.1, they coincide everywhere and glue to a global
section (P+

α ⊗P−,ι
α )′ of H over Y ◦.38

Similarly to what is claimed in the proof of Theorem 3.7.1, there exists a finite set {fpi : i ∈
I} ⊂ πp such that the open sets Ufpi

:= {Q̃(fpi ) 6= 0} ⊂ Y ◦ cover Y ◦. Then the section

P+
α ⊗P−,ι

α :=
∏
i∈I

Q̃(fpi )−1 · (P+
α ⊗P−,ι

α )′

is nowhere vanishing and a generator of H . It is independent of choices since for any fp ∈ πp it
coincides with Q̃(fp)−1 ·P+

α (fp)⊗P−
α (fp)ι over Ufp . This completes the proof of Part 1.

Part 2 is [Fou13, Theorem B(ii)] with H replaced by its submodule generated by a non-
torsion element zf,∞ ⊗ zf,∞ ∈ H ; as noted above, we can replace this element by any of the

elements P+
α (fp)⊗P−

α (fp)ι, and by a glueing argument with P+
α ⊗P−,ι

α .
Part 3 is an immediate consequence of Theorem C(4). 2
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Appendix. Local integrals

A.1 Basic integral
All the integrals computed in the appendix will ultimately reduce to the following.

Lemma A.1.1. Let Fv be a non-archimedean local field, and let Ew/Fv be an extension of degree
fe 6 2, with f the inertia degree and e the ramification degree. Let qw be the relative norm and
D ∈ OF,v be a generator of the relative discriminant.

Let L be a field of characteristic zero, let αv : F×v → L× and χ′ : E×w → L× be multiplicative
characters, ψv : Fv → L× be an additive character of level 0, and ψE,w = ψv ◦ TrEw/Fv . Define

Zw(χ′, ψv) :=

∫
E×w

α ◦ q(t)χ′(t)ψEw(t)
dt

|D|1/2|d|f/2v

,

where dt is the restriction of the standard measure on Ew.
Then we have

Zw(χ′, ψv) =

αv($v)
−v(D)χ′w($w)−v(D) 1− αv($v)

−fχ′w($w)−1

1− αv($v)fχ′w($w)q−fF,v
if χ′w · αv ◦ q is unramified,

τ(χ′w · αv ◦ q, ψEw) if χ′w · αv ◦ q is ramified.

Here for any character χ̃′w of conductor f,

τ(χ̃′, ψEw) =

∫
w(t)=−w(f)

χ̃w(t)ψE,w(t)
dt

|D|1/2|d|f/2v

,

with n = −w(f(χ′w))− w(dE,w).

Proof. If χ′ is unramified, only the subset {w(t) > −1− w(d)− v(D)} ⊂ E×w contributes to the
integral, and we have

Zw(χ′, ψ) = α−v(D)χ′w($w)−ev(d)−v(D)

(
ζE(1)−1

1− αfχ′($)
− 1

qfF,v
α−fχ′($)−1

)

= α−v(D)χ′w($w)−ev(d)−v(D)
1− α−fχ′($)−1q−fF,v

1− αfχ′($)
.

If χ′ is ramified of conductor f = f(χ′), then only the annulus w(t) = −w(f) − w(d) − v(D)
contributes, and we get

Zw(χ′, ψ) = α−fw(f)−fv(D)
v τ(χ′, ψE). 2

A.2 Interpolation factor
We compute the integral giving the interpolation factor for the p-adic L-function.

The following Iwahori decomposition can be proved similarly to [Hu16, Lemma A.1].

Lemma A.2.1. For a local field F with uniformiser $ and for any r > 1, the double quotient

N(F )A(F )Z(F )\GL2(F )/K1
1 ($r)

admits the set of representatives(
1

1

)
,

(
1

c(i)$r−i 1

)
, 1 6 i 6 r, c(i) ∈ (OF /$

i)×.
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Note that we may also replace the first representative by
(

1
$r 1

)
∈ K1

1 ($r).

Proposition A.2.2. Let χ′ ∈ Y ′ l.c.M(α)(C) and let ι : M(α) ↪→ C be the induced embedding.

Let v|p, and let φv be either as in Assumption 6.2.1 for some sufficiently small UT,v ⊂ O×E,v,
or as in Assumption 6.2.2. Then, for any sufficiently large integer r, the normalised integral
R\r,v(Wv, φv, χ

′
v) of (3.5.2) equals

R\r,v(Wv, φv, χ
′
v
ι) = Z◦v (χ′v) :=

ζF,v(2)L(1, ηv)
2

L(1/2, σιE,v, χ
′
v)

∏
w|v

Zw(χ′w),

with Zw(χ′w) as in Lemma A.1.1.

Proof. We omit the subscripts v and the embedding ι in the calculations which follow. By
definition, we need to show that the integral R◦r,v of Proposition 3.5.1 equals

R◦r,v = R◦r(W,φ, χ
′) = |D|1/2|d|2L(1, η)

∏
w|v

Zw(χ′w).

Note that the assertion in the case of Assumption 6.2.2 is implied by the assertion in the case of
Assumption 6.2.1 by (6.2.1), so we will place ourselves in the latter situation.

By the decomposition of Lemma A.2.1, and observing that δχF ,r vanishes on K −K0($r),
we have

R◦r,v = α($)−r
∫
F×

W−1

((y
1

))
δχF ,r

((y
1

))
×
∫
T (F )

χ′(t)

∫
P ($r)\K1

1 ($r)
|y|r(kw−1

r )φ(yt−1, y−1q(t)) dk d×t
d×y

|y| ,

where P ($r) = P ∩K1
1 ($r) (recall that P = NZA). Here we have preferred to denote by d×t

the standard Haar measure on T (Fv) = E×v ; later dt will denote the additive measure on Ev.
Changing variables k′ = wrkw

−1
r , we observe that by Lemma 3.1.1 the group K1

1 ($r) acts
trivially for sufficiently large r. Then we can insert

W−1

((y
1

))
= 1OF−{0}(y)|y|α(y)

and
r(w−1

r )φ(x, u) = |$−r|ψE,U (ux1)1OV2
(x2)δq(U)($

ru),

where ψE,U = r(vol(U)−11U )ψE for the extension of r to functions on K (so that ψE,U is the
finest U -invariant approximation to ψE). We obtain

R◦r,v = α($)−r|d|1/2ζF,v(1)−1

∫
OF−{0}

|y|α(y)

∫
T (F )

χ′(t)ψE,U (t)δq(U)($
ry−1q(t)) dt d×y,

where |d|1/2ζF,v(1)−1 appears as vol(P ($r)\K1
1 ($r))|$|−r. We get

R◦r,v = |d|ζF,v(1)−1

∫
v(q(t))>−r

|q(t)|α(q(t))χ′(t)ψE(t) d×t.

If r is sufficiently large, the domain of integration can be replaced with all of T (F ). Switching to
the additive measure, and using the isomorphism E×v = E×w ×E×w∗ in the split case, the integral
equals

R◦r,v = |d|L(1, η)

∫
E×v

α(q(t))χ′(t)ψE(t) dt = |D|1/2|d|2L(1, η)
∏
w|v

Zw(χ′w),

as desired. 2
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A.3 Toric period
We compare the normalised toric periods with the interpolation factor.

Proposition A.3.1. Suppose that v|p splits in E. Then, for any finite-order character χ ∈ Y l.c.,
we have

Qv(θv(Wv, α
−rv
v w−1

r,vφv), χv) = L(1, ηv)
−1 · Z◦v (αv, χv)

for any φv as in Proposition A.2.2 and any sufficiently large rv > 1.

For consistency with the proof of Proposition A.2.2, in the proof we will denote by d×t the
Haar measure on T (F ) denoted by dt in the rest of the paper.

Proof. By the definitions and Proposition A.2.2, it suffices to show that for any χ ∈ Y l.c.(C),
we have

|d|3/2v Q]v(θv(Wv, α
−rv
v w−1

r,vφv), χv) = L(1, ηv)
−1 ·R◦r,v(Wv, φv, χv),

where Q]v is the toric integral of (5.1.5).
By the Shimizu lifting (Lemma 5.1.1) and Lemma A.2.1, we can write

Q]v := |d|3/2v Qv(θv(Wv, α
−rv
v w−1

r,vφv), χv) = Q] (0,1)
v +

r∑
i=1

∑
c∈(OF /$i)×

Q] (i,c)
v ,

where, for each (i, c), omitting the subscripts v,

Q] (i,c)
v := α($)−r

∫
F×

W−1

((y
1

)
n−(c$r−i)

)
×
∫
T (F )

χ′(t)

∫
P ($r)\K1

1 ($r)
|y|r(n−(c$r−i)kw−1

r )φ(yt−1, y−1q(t)) dk d×t
d×y

|y| .

Note that Q
] (0,1)
v = R◦v, where R◦v is as in the previous proposition, since n−($r) ∈ K1

1 ($r).
We will compute the other terms.

We have
(

1
c$r−i 1

)
w−1
r = w−1

r

(
1 −c$−i

1

)
and, when x = (x1, x2) with x2 = 0,

r(n−(c$r−i)w−1
r )φ(x, u) = |$−r|

∫
E
ψE(ux1ξ1)ψ(−uc$r−iq(ξ1))δU (ξ1)δq(U)($

ru) dξ1

×
∫

OV2

ψ(−uc$r−iq(ξ2))δq(U)($
ru) dξ2

= |$|i−rψE,U (ux1)ψq(U)(−c$−i)δq(U)($
ru).

Inserting this, we obtain

Q] (i,c)
v = |$|iα($)−r|d|1/2ζF,v(1)−1

∫
F×

W
((y

1

)
n−(c$r−i)

) ∫
T (F )

χ(t)

×ψE,U (t)ψq(U)(−c$−i)δq(U)($
ry−1q(t)) d×t d×y.

We have already noted that Q
](0,1)
v = R◦v. For i = 1, if r is sufficiently large, then W is still

invariant underK1
1 ($r−1); then

∑
cQ

](1,c)
v equals C·R◦v with C = |$|∑c∈(O/$)× ψq(U)(−c$−1) =

−|$|.
Finally, we claim that for each i > 2,

∑
cQ

](i,c)
v = 0. Indeed, let q(U) = 1 + $nOF,v. If

i > n + 1, then ψq(U)(−c$−i) = 0; if i 6 n, then if r is sufficiently large W is still invariant
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under K1
1 ($r−i) ⊂ K1

1 ($r−n), and summing the only terms depending on c produces a factor∑
c∈(O/$i)× ψ(c$−i) = 0.

Summing up, we have

Q]v = Q](0,1)
v +

∑
c∈(OF /$v)×

Q](1,c)v = (1− |$|)R◦r,v = L(1, ηv)
−1 ·R◦r,v,

as desired. 2

Question A.3.2. A comparison between Propositions 10.1.2 and A.3.1 suggests that the identity

lim
r→∞

L(1, ηv) · θv(Wv, α
−r
v w−1

r φv) = ζF,v(2) · f+
α,v ⊗ f−α,v

might hold in lim
←−V (π+

v )V ⊗ lim
←−V (π−v )V (with notation as in Lemma 10.1.1). Is this the case?
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