Standard Functors and Isomorphisms

Tensor functors. Fix a pair of rings Λ , Γ . A bimodule $_{\Lambda}M_{\Gamma}$ yields an adjoint pair of functors

 $-\otimes_{\Lambda} M \colon \operatorname{Mod} \Lambda \longrightarrow \operatorname{Mod} \Gamma$ and $\operatorname{Hom}_{\Gamma}(M, -) \colon \operatorname{Mod} \Gamma \longrightarrow \operatorname{Mod} \Lambda$.

An additive functor $F: \operatorname{Mod} \Lambda \to \operatorname{Mod} \Gamma$ is of the form $F = - \otimes_{\Lambda} M$ for some bimodule ${}_{\Lambda}M_{\Gamma}$ if and only if F preserves all coproducts and cokernels. In that case $M = F(\Lambda)$ with Λ acting via $\Lambda = \operatorname{End}_{\Lambda}(\Lambda) \to \operatorname{End}_{\Gamma}(F(\Lambda))$.

Tensor-hom adjunction. Fix a pair of rings Λ , Γ and modules $(X_{\Lambda}, Y_{\Gamma}, {}_{\Lambda}M_{\Gamma})$. Then there is a natural isomorphism

$$\operatorname{Hom}_{\Lambda}(X, \operatorname{Hom}_{\Gamma}(M, Y)) \xrightarrow{\sim} \operatorname{Hom}_{\Gamma}(X \otimes_{\Lambda} M, Y)$$

given by

$$\phi \longmapsto (x \otimes m \mapsto \phi(x)(m)).$$

Modules over algebras. Fix an algebra Λ over a commutative ring k and modules $(X_{\Lambda}, {}_{\Lambda}Y, Z_k)$. Then there are natural isomorphisms

 $\operatorname{Hom}_{\Lambda}(X, \operatorname{Hom}_{k}(Y, Z)) \cong \operatorname{Hom}_{k}(X \otimes_{\Lambda} Y, Z) \cong \operatorname{Hom}_{\Lambda}(Y, \operatorname{Hom}_{k}(X, Z)).$

Finitely generated projective modules. Fix a pair of rings Λ , Γ and modules $(X_{\Lambda}, Y_{\Gamma}, {}_{\Lambda}M_{\Gamma})$. Then there is a natural homomorphism

$$X \otimes_{\Lambda} \operatorname{Hom}_{\Gamma}(Y, M) \longrightarrow \operatorname{Hom}_{\Gamma}(Y, X \otimes_{\Lambda} M)$$

given by

$$x \otimes \phi \longmapsto (y \mapsto x \otimes \phi(y)),$$

which is invertible if *X* or *Y* is finitely generated projective.

xxxiii

Duality. Fix a pair of rings Λ , Γ and modules $(X_{\Lambda}, \Gamma Y, \Gamma M_{\Lambda})$. Then there is a natural homomorphism

$$X \otimes_{\Lambda} \operatorname{Hom}_{\Gamma}(M, Y) \longrightarrow \operatorname{Hom}_{\Gamma}(\operatorname{Hom}_{\Lambda}(X, M), Y)$$

given by

 $x \otimes \phi \longmapsto (\psi \mapsto \phi(\psi(x))),$

which is invertible if X is finitely generated projective or if X is finitely presented and Y is injective.

Change of rings. Let $\phi: \Lambda \to \Gamma$ be a ring homomorphism, which yields canonical bimodules ${}_{\Lambda}\Gamma_{\Gamma}$ and ${}_{\Gamma}\Gamma_{\Lambda}$. Then the functor Mod $\Gamma \to \text{Mod }\Lambda$ given by *restriction of scalars*

$$\phi^* := \operatorname{Hom}_{\Gamma}(\Gamma, -) \cong - \otimes_{\Gamma} \Gamma =: \phi^!$$

admits a left adjoint ϕ_1 (*extension of scalars*) and a right adjoint ϕ_*

$$\operatorname{Mod} \Gamma \xleftarrow{\phi_{!}}{\phi_{*}=\phi^{!} \longrightarrow} \operatorname{Mod} \Lambda$$

which are given by

$$\phi_1 := - \otimes_{\Lambda} \Gamma$$
 and $\phi_* := \operatorname{Hom}_{\Lambda}(\Gamma, -).$

Change of categories. Let $f: \mathcal{C} \to \mathcal{D}$ be an additive functor between additive categories. Then the functor $f^*: \operatorname{Mod} \mathcal{D} \to \operatorname{Mod} \mathcal{C}$ given by $Y \mapsto Y \circ f$ admits a left adjoint $f_!$ and a right adjoint f_*

$$\operatorname{Mod} \mathcal{D} \xleftarrow{f_!}_{f^*=f^! \longrightarrow} \operatorname{Mod} \mathcal{C}$$

which for $X \in Mod \mathcal{C}$ with presentation

$$\bigsqcup_{j} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(-, C_{j}) \longrightarrow \bigsqcup_{i} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(-, C_{i}) \longrightarrow X \longrightarrow 0$$

are given by the presentation

$$\bigsqcup_{j} \operatorname{Hom}_{\mathcal{D}}(-, f(C_{j})) \longrightarrow \bigsqcup_{i} \operatorname{Hom}_{\mathcal{D}}(-, f(C_{i})) \longrightarrow f_{!}(X) \longrightarrow 0$$

and

$$f_*(X)(D) = \operatorname{Hom}(\operatorname{Hom}_{\mathcal{D}}(f-,D),X) \qquad (D \in \mathcal{D})$$