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ABSTRACT 
This study user-tested different data visualizations for highly uncertain life cycle assessments (LCAs) 
to determine what best supported decision-making. Precise LCAs can only be performed once designs 
are finalized, due to the information necessary to complete them, but design changes in such late 
stages are costly. If designers could have environmental impact data earlier in the process, sustainable 
design choices could instead be built into the initial designs. We compiled LCAs for various product 
categories, finding the best means of visualizing the data for online and printable dissemination. 
Because this LCA data varied widely within each product category, it was necessary to display 
uncertainty and require users to acknowledge the uncertainty. Here, four different data visualizations 
were tested with engineering, design, and STEM students and professionals; both quantitative and 
qualitative analysis determined what visualizations were most favored and forced users to consider 
uncertainty. We hope that this research helps LCA data be more accessible to designers and engineers 
in the early phases of design, allowing those without the resources or ability to perform LCA to benefit 
from it and design more sustainably. 
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1 INTRODUCTION 

For designers and engineers, understanding a product's impacts throughout its entire life-cycle is 

critical for setting priorities in sustainable design. Different products have their highest environmental 

impacts in different life-cycle stages. For instance, the major impacts of a refrigerator is the energy 

consumption during usage (Baxter et al., 2009), while the major impact of furniture is raw materials 

and manufacturing (Gamage et al., 2008). While many assume that transportation is a large impact 

because transportation of people is one of the top global impacts, in fact, those who quantify product 

life-cycle impacts have known for over 20 years that it is almost never a significant percentage of a 

product’s full life-cycle impacts (Hanssen, 1998). To make intelligent design decisions, make the best 

use of their time and budget, and avoid greenwashing, product developers should quantify the impacts 

of their products’ different life-cycle stages.  

In order to do so, many use life-cycle assessment (LCA), as it boasts a rigorous and credible system for 

quantifying environmental impacts (Hallstedt, 2017). LCAs are useful for setting design priorities, 

benchmarking current impacts, setting improvement targets, measuring progress, and deciding among 

alternative designs. However, there are significant problems with LCAs that hinder their adoption in 

product development. Even though LCA data would be most useful in early stages of design, when it is 

cheaper and easier to make large changes, the detailed data for LCA is often not available until late in the 

design process, after design decisions have been made. Designers who seek sustainability certifications 

like ISO 14040 (ISO 14040:2006, 2016) for an LCA report or ISO 14025 for product eco-labels (14:00-

17:00, no date) also have a similar issue, requiring specific data that is only available at the end of the 

design process. Precision and certainty are valued in LCAs, so results can be trusted. In addition, LCAs 

also often involve expensive software and specialized training (Hollerud et al., 2017). Because of this 

effort and expense of performing LCAs, results are typically published in proprietary systems for paid 

subscribers, such as The Sustainability Consortium (www.sustainabilityconsortium.org) or academic 

journals. Oftentimes the results are not shared outside the company. And finally, even when LCAs are 

published, they are often not consistent about which environmental impact categories they measure, 

making them hard to compare.  

By contrast, many designers use checklist-based design guides such as the Lunar Field Guide to 

Sustainability (LUNAR, 2008), Factor Ten Engineering (Lovins et al., 2010), or the CFDA Guide to 

Sustainable Strategies (Leibowitz and Croke, 2019). They do not analyze a specific product; instead, 

they list widely-applicable design strategies. These green design guides are easy to apply with none of 

LCA’s research / analysis time, and are valued by designers and engineers (Lewis et al., 2017). However, 

because they are not targeted to specific products, they are required to be generic, which means they do 

not prioritize the sustainability strategies that will provide the most improvement for specific products. 

Since sustainability is usually perceived to add time (and therefore cost) to the product development 

process (Faludi, 2017; Lewis et al., 2017), it is important to prioritize sustainable design strategies that 

will provide the most benefit for the least development effort for each potential product. 

To try to bridge the gap between LCAs and green design guides, this research team created a design 

guide based on LCA by pre-calculating impacts for various product categories, graphing them, and 

connecting the highest impacts with relevant sustainable design suggestions. The calculations were 

based on LCAs published by academia and industry, with 4 - 6 sources per product category to include 

variance in product design and LCA methodology. This LCA-based design guide is published online 

as http://ProductDesign.green. It makes LCA data more accessible to designers, engineers, and 

business managers in the earliest stages of design, and to those without the time, software, and/or 

expertise to perform their own LCAs. It also provides sustainable design guidance customized to each 

product category. 

However, this method also presented several flaws. Creating personalized data for every possible product 

in advance is unrealistic. Precision is impossible in early stage design because many important 

engineering and design decisions have not yet been made. In addition, the inclusion of variance in 

product design and LCA methodology caused variance in LCA scores. Finally, single-score LCAs, 

which are useful for decision-making because they combine all types of environmental impacts into one 

unified unit for easy comparison, also introduce uncertainty due to their value judgments. Using different 

single-score methodologies for the same data can change results by 20% or more (Speck et al., 2016). 
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These high uncertainties can lead to poor decisions if not considered. Therefore, it is crucial that this new 

LCA design guide forces design teams to acknowledge uncertainty, not ignoring it for the sake of 

convenience. It is also necessary for the design guide’s data visualization to communicate the high 

uncertainty in a form that designers, engineers, and business managers easily understand without LCA 

expertise. In addition, it is important to make sure we understand why participants prefer certain methods 

of visualization, as, "decisions may be improved by visualisations the user does not favour, or may be 

impaired by the visualisations the user regards as helpful" (Levontin and Walton, 2020).  This is often 

hard, because people are inherently uncomfortable with uncertainty in expensive long-term endeavors 

such as product development (Krishnan and Bhattacharya, 2002), and engineering culture especially 

values certainty. But for product development teams just starting their sustainability journey, even highly 

uncertain data can be more helpful than no data at all. A complete lack of data leaves engineers and 

designers to operate on guesswork and superstition. Even with high uncertainties, many product 

categories have clear priorities for what the most effective sustainability strategies will be. 

This study prototyped and user-tested four types of LCA data visualization with design and 

engineering students to determine what would most effectively support fast and intuitive decision-

making without ignoring large uncertainties. The overall goal was to create and analyze data 

visualization techniques to make the LCA-based design guide, ProductDesign.green, easy for novice 

designers and engineers to understand without sacrificing rigor.  More specifically, the goal of this 

particular study was to ensure high levels of uncertainty in impacts were understood and 

acknowledged, rather than being ignored or misunderstood, even by non-experts. 

2 METHODS 

To visualize LCA data and its uncertainty, first LCA data was gathered from literature for each 

product category and synthesized into an overall LCA score with average values and standard 

deviations for the different life cycle stages.  These standard deviations were used for uncertainty 

ranges.  Next, four methods to visualize the data and uncertainty were prototyped, including standard 

and novel methods. Finally, the data visualizations were tested with 32 engineering, design, and 

STEM-focused students and young professionals to determine which was both easily read and forced 

readers to acknowledge the high uncertainties, rather than ignoring them or misunderstanding them. 

These procedures are described in more depth below. 

2.1 LCA Data Collection & Synthesis 

LCA data was collected from publications on these product categories: laptops, smartphones, monitors, 

refrigerators, office chairs, t-shirts, and jeans. Acceptable LCA publications included academic journal 

articles, manufacturer Environmental Product Declarations, or other environmental reports. Peer-

reviewed academic studies were preferred for thoroughness and credibility, but manufacturer 

publications were deemed valuable because manufacturers generally have more access to life cycle 

inventory data than academics. Publications were sought on Web of Science, Scopus, Google Scholar, 

and Google. For each product category, 4 - 6 published LCAs were collected. Office chair data was also 

supplemented with direct empirical measurement (a product teardown and LCA). Smartphone data was 

also supplemented with an unpublished analysis by a Thinkstep LCA professional. Finally, one of the 

refrigerator LCAs was an empirical study by one of the authors for teaching LCA.  

Studies covering multiple environmental impact categories were strongly preferred, but publications of 

only CO2 equivalent emissions were also accepted. Impacts were divided into the following life cycle 

stages: materials and manufacturing, packaging, transportation, usage, and end of life. For products with 

large material and manufacturing impacts, that stage was subdivided to provide more specific guidance. 

Some studies neglected some life cycle stages, such as packaging, and many did not subdivide materials 

and manufacturing stages, which limited the precision of such recommendations. The PDFs available at 

ProductDesign.green shows the literature used and what impact categories they measured. 

Each LCA’s results were normalized such that the life cycle stage impacts were listed as percentages 

of whole life cycle impacts. Then the 4 - 6 LCAs were combined into a single set of scores per product 

category by computing an average and standard deviation for each life cycle stage. The uncertainty of 

the combined results was chosen to be the standard deviation of the results from the specific LCAs, 

which was often large. Reasons for the wide range of different results included missing inventory data 

(e.g. packaging) that had to be estimated, differences in time, location, product design variations, 
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usage scenarios, inventory modeling methods, and usual database quality. When combining multiple 

impact categories, all were given equal weight. (For example, if five studies measured three impact 

categories each, the final result was calculated as the average and standard deviation of all fifteen data 

points.) This is not ideal, because some impact categories will have more emissions than others and 

some will be more harmful than others; a rigorous system of normalization and weighing such as 

ReCiPe (Huijbregts et al., 2016; Bare, 2002) would have been preferred, but most literature sources 

here did not list enough data to perform such normalization and weighing. To accommodate this 

methodological weakness, uncertainties were increased 10% over their already high values, and 

regardless of data agreement, no uncertainties were allowed to be below 20%.   

2.2 Data Visualization 

Four visualizations were prototyped to show LCA data using the laptop data. This data set was 

specifically chosen because two variables had large, overlapping uncertainties, enabling us to test user 

responses to data without a clear determination of which variable had higher environmental impacts. The 

goal was to be understandable to non-technical, novice designers or businesspeople, enable quick 

intuitive decision-making, make users acknowledge uncertainty in their decision-making, and be 

aesthetically engaging. Rather than testing the design guide as a whole, the uncertainty was focused on to 

ensure the data visualization techniques were effective before adding them to a guide where their direct 

results could be affected by other variables. Two prototypes were based on existing graph formats (“error 

bars” and “violin”), and two were new graph formats (“slant” and “gradient”). See Figure 1. 

The “error bars” format is standard in engineering, but does not display probability distribution, only a 

binary threshold at one standard deviation above and below the mean. “Violin” is not commonly used 

in engineering design, but has been used for over a decade and was specifically invented to display 

probability distribution (Potter et al., 2010). The version here was modified to connect to the x-axis in 

hopes of improving readability by non-experts. “Slant” was created for this study because it is visually 

more similar to a standard bar graph, and would be easy for software to draw; an earlier version was 

also prototyped that displayed probability distribution, but this earlier “dolphin-nose” slant graph was 

strongly disliked in preliminary user feedback, so it did not reach full user testing. “Gradient” was a 

bar graph with a gradient fill, extending from 100% opaque at one standard deviation below the mean 

to 100% transparent at one standard deviation above the mean. Others have used gradients (Jackson, 

2008) and user testing has found them to improve accuracy of reading statistical uncertainty in other 

data types (Gschwandtnei et al., 2016). 

Figure 1. Four different types of graph designs: (a) error bars; (b) violin; (c) slant;  
(d) gradient. 
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User testing of the data visualizations was conducted with 32 students and young professionals in 

various engineering or sustainable design backgrounds. Users were chosen to be representative of the 

target audience: engineers and designers who are educated and numerate but who may not be familiar 

with LCA and may be new to eco-design.  

Table 1. Demographics of participants 

User Demographics  

Gender 56% Female 

 34% Male 

9% Other 

Major 82% Engineers 

 19% Other 

Year in School 0% 1st year 

 9% 2nd year 

 19% 3rd year 

31% 4th year 

28% Graduate student 

13% Recent graduate 

 

User testing was performed through semi-structured interviews over video calls with screen-sharing. 

Sessions averaged 20 minutes, with the following procedure: Participants were shown an image of one 

of the four data visualization prototypes and asked, 

●What do you like about it? 

●What do you dislike about it? 

●Which life cycle stage has the biggest environmental impact? 

●How sure of your response are you? Please name a percentage of certainty.  

Then the next prototype was shown and the questions repeated. Note that the prototypes were not 

explained; users were left to interpret the graphs themselves. This was to simulate the default expected 

scenario of industry professionals seeing data visualizations in publications or meetings without 

tutorials and with no background training. Once this feedback was obtained for all four prototypes 

individually, all four prototypes were shown at once, and the participant was asked which one they 

liked best and why. All feedback was collected and saved as text for analysis. 

For fair user-testing comparisons across data visualization formats, all prototypes used the same 

numeric data. These numeric values were randomly assigned to different life cycle stages for each data 

visualization technique to ensure participants would not try to learn from previous techniques. There 

was the potential for participants to learn and be influenced by seeing certain techniques before others, 

so to avoid bias three different sequences of prototypes were used, so different participants viewed 

them in different orders. 

In addition to totalling the number of participants who preferred each technique and their reported 

certainty levels for each, the text of their responses was analyzed qualitatively and quantitatively. First, 

responses were qualitatively coded to group them into categories, e.g. “liked aesthetics”, “disliked 

aesthetics”, “easy to read”, “easy to rank”, “hard to rank”, and more. Next, the number of participants 

mentioning each category were counted for each graph. These results were analyzed to determine if one 

technique performed better than others at conveying uncertainty while still being easily understandable. 

3 RESULTS AND DISCUSSION 

When analyzing the data from the interviews, it was broken down into the quantitative data -- how 

confident they felt, how many chose each graph as their preferred; and qualitative -- coding the 

comments made when asked about what they liked and disliked about each graph. 

3.1 Quantitative Results 

Figure 2 shows the number of participants choosing each graph as their preferred. 

https://doi.org/10.1017/pds.2021.26 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.26


258  ICED21 

 

Figure 2. Selected preferred graph. 

Figure 2 shows a significant preference for the “error bars” and “violin” graphs with 40% selecting 

each respectively; the “gradient” graph had 15% participants prefer it and the “slant” graph had 5%.  

However, the popularity of the graphs did not necessarily show their effectiveness in forcing users to 

acknowledge uncertainty. 

Figure 3 shows the quantitative analysis of differences in users listing their percentage confidence in 

which life cycle stage was the highest impact in each graph. While there does not appear to be much 

difference, ANOVA and one-sided t-tests were calculated for comparisons of all graphs, and a slight 

significance was found. "Error bars" and "gradient" gave users lower confidence in their answer (the 

correct interpretation) than "violin" or "slant". Assuming a null hypothesis that all of the mean values 

of the groups were the same, a single factor ANOVA test found statistically significant differences 

between the self-reported confidence from the users on the different graphs. For this data, the 

Fcrit=2.7 at α=0.05, F=3.5, and the p-value is 0.018. In order to understand how the means differ, 

more testing needed to be performed.  

 

Figure 3. Percent confidence in top impact, with standard deviation (error bars) 

One-sided paired t-tests were performed comparing each combination of graph type to test for 

differences in the means (Lakens, 2017). The statistical evidence in Table 2 shows that all but 2 of the 

graphs, “violin” and “slant,” are statistically different. This means that there is a difference in how 

confident participants felt when looking at each of the graphs, except for “violin” and “slant”, which 

were nearly the same. Based on this information, the “error bars” graph might be preferred, as it led to 

the lowest self-proclaimed confidence from participants, but the difference between it and "gradient" 

was small. There was statistical significance, but because the effects were small, they may not be 

conclusive. Thus, qualitative data was examined. 
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Table 2. Statistical results from t-tests 

Comparison P-value 

Error Bars and Violin .00001 

Error Bars and Slant 

Error Bars and Gradient 

Violin and Slant 

Violin and Gradient 

Slant and Gradient 

.00017 

.025 

.21 

.0069 

.043 

 

Showing graphs in different orders did not cause uncertainties to be more accurately read in some 

graphs than others. Figure 4 shows there was no correlation between percent confidence and the order 

that the graphs were shown in.  

Figure 4. Percent confidence in top impact, shown by order of viewing 

3.2 Qualitative Results 

Even though there was statistical significance in the quantitative data, the differences in forcing users 

to acknowledge high uncertainties were small.  Thus, qualitative data was also used to better 

understand the user thought process while examining each graph. Participants were asked to discuss 

what they liked and disliked about each of the graphs, which was then used to count the number of 

times certain ideas or phrases were mentioned. 

Table 3. Table of comments 

Table 3 shows clustered categories of comments made by users about the graphs; some were mentioned 

as reasons why a graph was their preferred; some were mentioned as reasons why they disliked it.  

As Table 3 shows, “error bars” received the most positive comments ("aesthetic" and "easy to read"), 

reinforcing the quantitative findings of Figure 1. The “error bars” graph was often selected as the 

preferred because it was familiar and therefore easy to interpret. For example, “[this graph is] familiar 

and [I] automatically know assumptions, [so it is] easy to read.” However, seven users said that it was 

more certain, e.g. “[I like] where the clear cut off is for each category,” meaning users can ignore the 

uncertainty.  
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Participants who selected the “violin” graph as their preferred often selected it because it was clear / 

defined / easy to rank -- this could mean that they were able to ignore the uncertainty. It was extremely 

popular with 40% of the participants selecting it as their preferred, but almost 50% of the participants 

said it was hard to read or confusing, which means they may have liked how it looked, but it was not 

valuable for conveying uncertainty information. As one said, they were “not too distracted by the 

uncertainty factor.” This was surprising, because it was the opposite of why the graph was invented, 

and the opposite of what was desired here.   

The “slant” graph was a combination of everything unwanted. It was hard to read, hard to understand, 

and not aesthetic. It was liked by the fewest number of people. Thus, it was easily removed from 

consideration. 

The “gradient” graph was most often mentioned as forcing users to acknowledge uncertainty. 

Sometimes this was mentioned positively, but often it was mentioned as a frustration, e.g. “[it is] hard 

to see where the limit is, so doesn’t like the fade.” It was not liked by as many people, and it could be 

because of this. However, it was found to be easy to read, aesthetic, and difficult to see where the error 

starts and stops, which is desirable when you want users to immediately and intuitively acknowledge 

uncertainty. 

The “error bars” graph was clearly the most familiar, and the error bars elicited an immediate 

connection with uncertainty. However, some participants took this familiarity and comfort to ignore 

the uncertainty instead of acknowledging it. The “violin” graph was aesthetic, but many participants 

were confused by it. Worse, many ironically said they liked it because they were able to ignore the 

uncertainty “bubble” and that the shape made it easier, rather than harder, to be certain of which 

variable had the highest impact. The “error bars,” “violin,” and “slant” graphs were more often 

mentioned as providing certainty (clear / defined / easy to rank), the opposite of what was desired. The 

contrast between these results and Figure 3 may indicate a weakness in the initial testing methodology 

-- users asked how certain they are of a result can think rationally and give a “correct” answer, 

regardless of how easily and intuitively they read the graphs. Perhaps if users were only able to view 

the graphs for five seconds each, or only had a few seconds to decide on their answers, or other 

constraints, Figure 3’s results might have been different. Further study is required 

Note, however, the difference between the graph that best conveyed uncertainty versus the graph 

that was most liked.  Many of the comments about the “gradient” graph forcing uncertainty 

recognition were dislikes, not likes. This is likely because of people’s discomfort with uncertainty, 

as noted in the introduction. It may be a cultural barrier that must be overcome for such tools to be 

used in industry.  

The results above were used to decide on using "gradient" graphs in the sustainable design website 

Productdesign.green. Figure 5 shows two samples in context: the pages with LCAs and design 

recommendations for a monitor and a mobile phone.  

As Figure 5 shows, the monitor's combined LCA results show that lifetime energy impacts overlap 

somewhat with material and manufacturing stage impacts in their uncertainties, so both variables 

should be targets for sustainable redesign. Each has corresponding design strategies suggested on the 

right side, with links to online tutorials. By contrast, the mobile phone's combined LCA results show 

that material and manufacturing stage impacts dominate regardless of the uncertainties, so the only 

sustainable redesign strategies listed are for that life cycle stage.  This was the ultimate goal, to display 

each product's LCA results in a way that is easy to read but conveys the high uncertainties in a way 

that cannot be ignored. 

3.3 Limitations 

There are several ways in which future studies could improve on this study’s methods. A larger 

sample size could be used to provide better precision in quantitative results.  A larger variety of data 

could be tested in the graphs, to test different levels of uncertainty in each graph. A control graph with 

no uncertainty could be compared to these. By randomizing the order of the graphs in four different 

versions, we believe we minimized order effects, but future studies could randomize presentation order 

for every participant.  
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Figure 5.  Visualizations in context on Productdesign.green 

While we believe the users tested here would represent the industry users of the LCA-based design 

guide, students do differ from industry professionals, so future studies could test only industry 

practitioners. More intuitive reactions could be sought by only showing graphs for five seconds, or 

other such limitations. Finally, the user testing could put the data visualization into a more real-world 

context by asking users to make decisions to redesign a product based on the graphs, e.g. allocate a 

fixed budget to different life cycle stages, or do actual product redesigns and observe how they differ. 

We encourage future studies such as these. 

4 CONCLUSION 

The goal of this research was to determine the most effective and desired data visualization for an 

LCA-based design guide, where “effective” meant users acknowledging large uncertainties in their 

decision-making rather than intuitively ignoring them. Analysis of semi-structured interviews showed 

the most desired graphs to be “error bars” and “violin.” The results of the quantitative analysis about 

effective uncertainty visualization produced very small but statistically significant results that the 

participants were more uncertain about the “error bars” graph. However, analyzing the qualitative data 

provided different insights, including that the “gradient” graph appeared to convey uncertainty that 

users could not ignore. Even though participants were sometimes uncomfortable with the difficulty 

seeing where the bars end, it did force them to acknowledge the uncertainty, rather than merely noting 

it intellectually but ignoring it in practice. 

Therefore, even though the “gradient” graph was not the most liked, it most effectively forced users to 

deal with the uncertainty, unlike “error bars” and “violin,” where the uncertainties could possibly be 

ignored. The “errors bars” graph quantitively had the most uncertainty, which was the goal of the 

visualization. However, 11 people found it familiar and traditional, which could be concerning as 

people who are familiar with it often ignore the error bars and therefore the uncertainty. Because of 

this, we cannot say with certainty whether the “gradient” or “error bars” graph would be more 

effective, as it can depend on the user’s background. 

The goal for future work is to test if this data visualization, used in the LCA-based design guide, 

actually helps designers make more sustainable products. Future work should also test the 
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effectiveness of the design guide overall, and add data for more products, such as more consumer 

electronics, kitchen goods, soft goods, perhaps even medical devices or other niches. Allowing 

designers to request consumer products will ensure the guide provides the greatest impact.  

This research helps LCA data become more accessible to designers and engineers in the early phases 

of design, allowing those without the resources or ability to perform LCA to still benefit from it and 

design more sustainably. The future health of the world and society requires product development to 

include sustainability. 
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