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Estimating gene flow in island populations
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Summary

A new method is presented for estimating the rate of gene flow into island populations using the
distribution of alleles in samples from a number of islands. The pseudo maximum likelihood
estimator (PMLE) that we derive may be applied to species with either discrete or continuous
generation times. For Wright's discrete-generation island model, the method provides an estimate
of 8 = 2Nm where N is the (haploid) population size on each island and m is the fraction of
individuals replaced by immigrants in each generation. For a continuous-generation island model,
the corresponding parameter 6 is the ratio of the immigration rate <j> to the individual birth rate A.
Monte Carlo simulations are used to compare the statistical properties of the PMLE with those of
two alternative estimators of 6 derived from Wright's F-statistics. The PMLE is shown to have
greatest efficiency (least mean square error) in most cases for a wide range of sample sizes and
parameter values. The PMLE is applied to estimate 6 using mtDNA haplotypes and allozymes for
subdivided populations of African elephants and Channel Island foxes.

1. Introduction

The degree of reproductive isolation and rates of
genetic exchange among subpopulations in nature are
of critical importance for understanding many bio-
logical processes including speciation, genetic differen-
tiation, and the maintenance of genetic diversity
under population fragmentation. Previous studies
have examined the expected frequency distributions of
neutral alleles among subpopulations for several
general patterns of migration, including an island
model (Wright, 1931; Maruyama, 1970; Rannala &
Hartigan, 1995) in which allele frequencies among
immigrants are constant, or a one-dimensional or
two-dimensional stepping-stone model (Malecot,
1948; Kimura, 1953; Kimura & Weiss, 1964;
Maruyama, 1971) in which migrants are exchanged
primarily between adjacent subpopulations.

An extension of these efforts to determine the
theoretical distribution of neutral alleles among
subpopulations, under particular models of gene flow,
uses the theory-based predictions to infer the level of
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gene flow among natural subpopulations based on the
observed distribution of allele frequencies (Wright,
1969; Lewontin, 1974; Slatkin, 1994). In particular,
much research has been focused on procedures for
estimating the composite parameter Nm (the number
of individuals replaced by migrants per population
per generation) using molecular genetic data for a
collection of semi-isolated populations conforming to
Wright's (1931) island model of population structure
(Slatkin, 1985; Wehrhahn & Powell, 1987; Slatkin &
Barton, 1989; Cockerham & Weir, 1993; Slatkin,
1994).

In this paper, we develop a general statistical
method for estimating levels of gene flow in a neutral
island model of population structure with fixed allele
frequencies among immigrants and either discrete
nonoverlapping generations with a constant rate of
immigration and fixed population size (Wright, 1931)
or continuous overlapping generations with constant
immigration and birth rates (Rannala & Hartigan,
1995). We use the term island model to denote models
of the genetic structure among semi-isolated popu-
lations in which the allele frequencies among im-
migrants are assumed constant and the effects of
mutation negligible. These assumptions are important
for the theory presented in this paper, and are implicit
in previous papers on this topic (i.e. Barton & Slatkin,
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1986; Wehrhahn & Powell, 1987; Cockerham & Weir,
1993).

We will be interested in estimating what we term the
'scale' parameter 6 under either a discrete or a
continuous generation island model of population
structure. For Wright's (1931) diploid discrete-gen-
eration island model 6 = 4Nm, where TV is the
population size and m is the fraction of individuals in
each population replaced by immigrants in each
generation. For the continuous-generation island
model of Rannala & Hartigan (1995) 6 = <j>/\, where
<p is the immigration rate into an island and A is the
individual birth rate. In this paper, we assume 8 is
constant for each of a collection of independent
islands as this is the situation considered in previous
studies (i.e. Wehrhahn & Powell, 1987; Slatkin &
Barton, 1989; Cockerham & Weir, 1993). In general,
an assumption of constant 0 among islands is not
essential to the theory.

Three general classes of estimator are considered:
(1) maximum likelihood estimator (MLE); (2) pseudo
maximum likelihood estimator (PMLE; Gong &
Samaniego, 1981); and (3) method of moments
estimator (MME). The first approach using maximum
likelihood advances the earlier work on MLE's of 8 by
Barton et al. (1983), Wehrhahn & Powell (1987),
Wehrhahn (1989), and Slatkin & Barton (1989) while
the second approach using PMLE's is entirely new.
The MME is shown to be equivalent (in the two-allele
case) to the well-known estimator 8—\/FST — 1
derived from Wright's FST statistic (i.e. Wright 1969;
Slatkin & Barton, 1989). Statistical properties of
MME's and PMLE's are studied using Monte Carlo
methods and the PMLE method is applied to analyse
two empirical data sets. PMLE's of the parameter 8
are obtained for subdivided populations of (1)
Channel Island foxes and (2) African elephants using
mtDNA Restriction Fragment Length Polymorphism
(RFLP) and allozyme data.

2. The Dirichlet distribution

The limiting distribution of allele frequencies on each
island, under a discrete-generation (Wright, 1931) or
a continuous-generation (Rannala & Hartigan, 1995)
island model of population structure is given by the
finite Dirichlet distribution, a multidimensional gen-
eralization of the beta distribution. The finite Dirichlet
distribution with scale parameter 6 has density (see
Johnson & Kotz, 1972),

where a. = a1,a2,...,alc is the frequency array for k
allele types on an island, andpt is the frequency of the
/th allele type among immigrants. The Dirichlet
distribution arises as either the asymptotic distribution
of allele frequencies at equilibrium (obtained by a
diffusion approximation; see Wright, 1949, 1969) on

islands for a multiallelic version of Wright's (1931)
discrete-generation island model, or as the limiting
distribution of allele frequencies on islands under the
continuous-generation island model (Rannala &
Hartigan, 1995).

The marginal distribution of the allele types in a
random sample of size N, averaging over all elements
of a, is the compound multinomial-Dirichlet (see
Mosimann, 1962) given by,

P(nu...,nt\N,d,f)

-rrr« rr)-
This is the distribution of allele types for an island

population (or a sample taken without replacement)
of size N under the continuous-generation island
model (Rannala & Hartigan, 1995) or for a random
sample (with replacement) from an island population
at equilibrium under the multiallelic generalization of
Wright's island model when population size is large.
These distributions will be applied below in deriving
estimators of 0 using the method of moments and
maximum likelihood.

3. Method of moments estimator of 0

Wright (1969) proposed the following estimator of 6,
for a discrete-generation island model of population
structure at equilibrium, based on his FST statistic,

•Tsr
(3)

The statistic FST is defined (for a two-allele model) as,

F -
ST~

(4)

where <r\ is the variance of allele frequency among
populations and p is the average allele frequency in
the collection of populations as a whole (see Wright,
1969). It can be shown (see Appendix) that the
estimator given by eqn 3 arises as a special case of a
more general approach to estimating the 'scale'
parameter 6 of the compound multinomial-Dirichlet
distribution using the method of moments. The Wright
approach to estimating 6 using F-statistics for a two-
allele model has been extended to allow for multiple
alleles (see Slatkin & Barton, 1989; Cockerham &
Weir, 1993) and two such methods for estimating 6
are evaluated using Monte Carlo simulation in
Section 6.

4. Maximum likelihood estimator of 0

Wehrhahn & Powell (1987) derived a MLE of 6 based
on a diffusion approximation for the asymptotic
distribution of allele frequency on islands under
Wright's (1931) two-allele island model. Their ap-
proach is based on the marginal beta distribution of
allele frequency under this model. These authors did
not take into account the multinomial process of
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sampling alleles from each island and their approach
is only appropriate for estimates based on a large
sample of individuals. Wehrhahn (1989) has extended
this approach to include finite sampling effects using
the beta-binomial p.m.f. as the likelihood.

MLE's of 6 were also considered by Barton et al.
(1983) and Slatkin & Barton (1989). The likelihood
function proposed by these authors is only approxi-
mate and the exact likelihood for the case of two
alleles and a sample of N individuals from a single
island is the compound beta-binomial p.m.f. To
estimate 6 using samples from multiple independent
islands the complete likelihood function is taken as
the product of the observed likelihoods for samples
from each island (or equivalently the sum of the log-
likelihoods). Similarly, for several independent loci,
the likelihood is taken as the product of the observed
likelihoods over loci.

To treat multiple allele types both Slatkin & Barton
(1989) and Wehrhahn & Powell (1987) derived the
joint likelihood by taking the product of independent
beta distributions over allele types (or equivalently the
sum of the log-likelihoods). The marginal distributions
of families of unique allele types at a single locus are
only asymptotically independent however, and this
approach may be inaccurate when few alleles are
present among immigrants. The exact likelihood
function for a sample from a population at a single
locus composed of multiple allele types is given by the
compound multinomial-Dirichlet p.m.f. considered
above. We now derive the exact likelihood function
for the distribution of allele types in a sample of
individuals from each of a collection of independent
islands, with each island receiving immigrants from a
source with constant allele frequencies and scale
parameter d.

(i) MLE for a single locus

In this section, we present a general MLE of 6 that
may be applied for samples of any size from each of /
islands. Initially, we consider a sample of alleles from
a single locus. Let n be a matrix with dimension Ixk
and elements nl}, where this is the number of alleles of
the yth type obtained in a sample from the /th island,
where / = 1,..., /; j = 1,..., k; / i s the number of
islands; and k is the number of unique alleles among
immigrants. Let N = Nx,...,N,bt the vector of island
sample sizes, where Â  is the number of individuals
sampled from the /th island (without replacement).
Let 6 be the scale parameter of the finite Dirichlet
distribution (see above), and p = p1,...,pk be the
vector of allele frequencies among immigrants.

Assuming each immigrant is of allele type j with
probability pp the likelihood of the observed n,
conditional on N is,

i-\

To obtain MLE's of p and d the likelihood score
function is obtained from the likelihood by a
logarithmic transformation,

"or1

t
i-l Lj-i i-i |»o }• (6)

This equation may be numerically maximized, subject
to the constraints,

and = 1. (7)

It may be shown (see Levin & Reed, 1977) that if an
equal sample of size N is obtained from each island
this likelihood has at most one local maximum. This
maximum occurs for finite 6 if,

(8)
j-i Pi

and for 6 = oo otherwise, where

(9)

and n+j = SJ.j ni}. By applying Equation 8 above
using an initial method of moments estimate of p it is
possible to predict whether a unique local maximum
exists for finite 6 before attempting to locate the MLE
of 0.

(ii) MLE for multiple loci

In the sequel, we assume that E, loci are sampled and
that the haplotypes of the individuals for the different
loci are in linkage equilibrium. Let nw be the number
of observed haplotypes with the jth allele type at the
/th locus in a sample of Nlt individuals for that locus
from the /th island population. The likelihood function
is,

(10)

(11)

nHj

The likelihood score function is,
i I Ck, n , y - l N,,-l

2 £ \og(dPll
li-l (=1 lj-1 y-0 y=0

This equation may be numerically maximized subject
to the constraints,

and = l for all I =\,...,£. (12)

In general, maximization of the complete likelihood
will be a 1 + Sf=1 kt — £, dimensional problem and may
be very difficult for large numbers of loci and alleles.
Since a pseudo maximum likelihood estimate of 6 may
be obtained with much less computational effort and is
asymptotically greater than 90 % efficient (see Chuang
& Cox, 1985) we will not consider the complete
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likelihood further in this paper and will focus instead
on the properties of a pseudo maximum likelihood
estimator (PMLE; Gong & Samaniego, 1981).

5. Pseudo maximum likelihood estimator of 0

The likelihood function given in eqn 5 above depends
on the parameters 6 and p. Since we are interested
only in obtaining an estimate of 6, the vector p
represents a set of nuisance parameters that complicate
the maximization of the complete likelihood function.
A useful technique for simplifying estimation prob-
lems involving many nuisance parameters is pseudo
maximum likelihood estimation (PMLE; Gong &
Samaniego, 1981). In PMLE nuisance parameters are
replaced by consistent estimates and the reduced
system of likelihood equations are solved to obtain
estimates of the parameters of interest. Gong &
Samaniego (1981) and Parke (1986) have shown that
under fairly standard regularity conditions PMLE's
are consistent and asymptotically normal.

In the case of the multinomial-Dirichlet distribution
considered in the previous section, Chuang & Cox
(1985) have considered PMLE's. Their analyses
suggest that PMLE's possess uniformly higher asymp-
totic relative efficiencies (ARE; see Casella & Berger,
1990) than MME's. In addition, when only an estimate
of the scale parameter 6 is needed, the PMLE is
generally greater than 90% efficient relative to the
MLE, and so comes very close to the MLE in
precision with much less computational effort.

The PMLE of the parameter 6 for the multinomial-
Dirichlet distribution is calculated as follows: (1)
estimate the nuisance parameters p using the MME,

(13)
N'

where N' = S{_, S*.x ni}. This MME is a consistent
estimator of p since the expectation of a. under the
Dirichlet distribution is p; (2) maximize the likelihood
function given by eqn 5 with respect to 6 with p
substituted for p. This maximization is then one-
dimensional in 6 and a local maximum exists in
regions where the likelihood is convex (i.e. the second
derivative is negative) and the first derivative with
respect to 6 equals zero,

(14)

The extrema of 6 may be located numerically by
finding roots in 6 for the following equation,

(15)

The PMLE of 6 may also be found by a direct
graphical analysis. For the case of multiple indepen-
dent loci, the PMLE is obtained by differentiating the

likelihood score function of eqn 11 with respect to 6
and setting the resulting equation equal to zero to
obtain,

The extrema of 6 may be found numerically by solving
the following equation for the roots in 9,

(17)
I I *l

where

a-O ^

1
Yapl}

l i

I—1 ( - 1 a-O C

1

7=1,2,...,*,,

and N' = £ 2 «,„.
For the numerical analysis presented in this paper,

eqns 15 and 17 were solved for 6 using algorithms
based on Newton's method contained in the MATHEMA-
TICA computer program (Wolfram Research, Inc.,
1992). A MATHEMATICA package for estimating 6 using
the PMLE method is available upon request from
the authors or on the internet World-Wide Web
(WWW) from h t t p : //mw511 . b i d . b e r k e l e y .
edu/homepage.html.

6. Monte Carlo simulations

Computer simulations were used to study the stat-
istical properties of the PMLE and MME estimators
considered in this paper. Replicate island populations
structured according to a stochastic BDI process were
generated using the Polya urn scheme described below.
The genetic model considered a haploid species with k
allele types among immigrants in frequencies p = plt

p2,...,pk. Properties of the estimators over several
ranges of parameter values were studied. We examined
the influenced of the number of unique allele types
among immigrants (*), the distribution of allele
frequencies among immigrants (p), the number of
islands sampled (/), the number of individuals sampled
from each island (N), and the magnitude of the true
parameter 6 on the accuracy of estimates of 6 obtained
using MME's and PMLE's.

The effect of the number of loci sampled on
statistical accuracy, under the multi-locus model, was
not studied using simulations because the number of
parameter combinations to be considered becomes
too large. If the distribution of allele frequencies
among immigrants is identical for all loci, the statistical
effect of adding either more loci, or more islands, to
the sample is identical. The properties of the estimators
were compared for 48 combinations of parameter
values in total (see Table 1).

We compared the statistical properties of three
estimators: (1) the MME proposed by Slatkin &
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Barton (1989) based on a ratio of the GST statistic of
Nei (1973),

ST

(18)

calculated using the formula suggested by Cockerham
& Weir (1993) which we refer to as SB; (2) the
estimator of Cockerham & Weir (1993) based on a
ratio of the GCA statistic of Crow & Aoki (1984),

6cw G
(19)

which we refer to as CW; and (3) the pseudo maximum
likelihood estimator (PMLE) considered in Section 5.
The methods used to calculate CW and SB are
described in the paper by Cockerham & Weir (1993).

(i) Polya urn scheme for simulating island
populations

An island population of size n was generated from n
arrivals of a birth and immigration process by using
uniform (0,1) random variables to decide the type of
event (birth or immigration) at each arrival. The
probability that a new arrival is an immigrant in a
population of size N is,

(20)
N+e'

The arriving immigrant has an allele of type / with
probability pf where i = 1,2,..., k. The probability
that a new arrival is a birth in a population of size N
is,

N
N+6'

(21)

If the arrival is a birth its allele type is chosen
with probability equal to the relative frequency of
individuals of marker types i=\,2,...,k in the
population immediately prior to the birth. A program
written in C to perform these simulations is avail-
able from the authors upon request or on the WWW
from h t t p : / /mw511 . b i o l . b e r k e l e y . e d u /
homepage.html.

(ii) Evaluating estimators of 6

The statistical properties of the estimators were
compared using two optimality criteria: (1) the mean
square error (MSE) denned as,

(22)

where 6 is the expected value of the parameter under
the model, 0t is an estimate of 6 from the ith replicate
dataset using a particular statistic, and R is the total
number of simulated datasets (R = 1000 in all cases),

and (2) the bias of 6 denned as (see Casella & Berger,
1990),

= V[MSE(d)-VAR(6)]. (23)

The observed difference between 0 and 6 = \/ R2ui_^8i

was used to estimate BIAS(0) for the simulated
datasets according to the following formula,

BlAS0) = 8- (24)

To reduce the influence of extreme outliers on the
results of comparisons, we used the following criterion
to remove extreme values from the simulation distri-
butions for each estimator prior to calculations of the
summary statistics,

\ei-e\<zo1, (25)

where &$ = ^(Eif,i(0—0i)2]/VR- An application of
this criterion always reduced the total number of
simulated datasets by 23 or less and substantially
improved the variance of our estimates of MSE(#). In
the two cases where outliers were most extreme (k = 2,
/ = 1 0 , (9 = 10, /V=10, p = 0-5: 0-5 and p = 0-25:
0-75), we used 2a^ as our criterion for inclusion.

To facilitate comparisons of MSE and BIAS for
different ranges of the true parameter 6, we used the
following transformation to 'normalize' all estimates
to have expectation one,

6
(26)

The significance of observed differences in MSE
among estimators was tested using the following
statistic to perform pairwise comparisons,

1 R' • 2

where R' is the total number of simulated datasets
satisfying criterion 25 above for both estimators 1 and
2, and 0iW and 6H2) are estimates of 6 obtained for the
rth simulated dataset using estimators 1 and 2,
respectively. This statistic is asymptotically normally
distributed with standard error (S.E.),

S.E.(£>12) =

(28)

The statistic D12 was considered significant at the
a = 0-05 level if the 95 % confidence interval derived
from eqn 28 did not include zero (where C/ =
l-96xs.E.(D12)).

(iii) Simulation results

The results of the Monte Carlo simulations are
summarized in Figs 1-4 and Table 1. To study the
influence of population sample size, either N = 10 or

https://doi.org/10.1017/S0016672300033607 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300033607


B. Rannala and J. A. Hartigan
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BIAS (0)
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0=0-5,/V= 100

7=10 7=50
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0=10,^=10

7=10 7=50
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0-2

-0-2

-0-4

0=1O,JV=1OO

7=10 7=50

Fig. 1. The average normalized bias of estimates of parameter 6 for eight combinations of R = 1000 simulations with
k — 10 and p = 01,...,0-1. The histograms from left to right represent estimators PMLE, CW and SB. /denotes the
number of islands sampled, 6 is the scale parameter (see text), TV is the sample size per island, k is the number of allele
types among immigrants, and p is the array of allele frequencies among immigrants.

MSE (0)

0-25
0-2

015

01
005

0=0-5, W= 10

7=10

0-25
0-2

015
01

005

7=50

0=0-5, iV= 100

7=10 7=50

MSE (0)

0-25
0-2

015
01

005

= 10,/V=10

0-25
0-2

015

01
005

7=10 7=50

0=10,^=100

7=10 7=50

Fig. 2. The average normalized mean square error of estimates of parameter 6 for eight combinations of R = 1000
simulations with k = 10 and p = 01, . . . ,01 . The histograms from left to right represent estimators PMLE, CW and SB.
/ denotes the number of islands sampled, 6 is the scale parameter (see text), TV is the sample size per island, k is the
number of allele types among immigrants, and p is the array of allele frequencies among immigrants.

TV = 1 0 0 individuals were generated to form each
simulated island population, for each set of parameter
values, by an independent birth-immigration process
(see above). To study the influence of the number of
islands sampled, we simulated either 10 islands or 50
islands for each set of parameter values. The value of
6 was set to either 0-5, 2, or 10. We studied both the
two-allele model, with equal (p = 0-5: 0-5) or skewed
(p = 0-25: 0-75) allele frequencies, and the multi-allelic
model with k = 10 allele types and equal (p = 0-1: 0 1 :
0 1 : 0 1 : 0-1: 0 1 : 0 1 : 0 1 : 0 1 : 01) or skewed (p = 0-5:
0-1: 005 : 0 0 5 : 005: 005: 005 : 005 : 005: 005) allele
frequencies.

Fig. 1 shows the effect of the number of islands

sampled (/) on BIAS(#) for the three estimators
PMLE, CW and SB. All the estimators are biased
over some range of the parameter space. Increasing /
has a large effect in reducing BIAS(#), while the effect
of increasing N is smaller. The expected bias may be
either positive or negative, depending on the com-
bination of parameter values, and may change from a
positive to a negative value with an increase in / or 8
(see Fig. 1).

Fig. 2 shows the effect of the number of islands
sampled (/) on MSE(0). Increasing / has a large
effect in reducing MSE(0) for all three estimators,
except in the case that 6 is large and TV is small. In
general, sample size TV has its greatest effect on BIAS(0)
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MSE (0)
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0-4
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0=10,^=100

k=l *=10

Fig. 3. The average normalized mean square error of estimates of parameter 6 for eight combinations of R = 1000
simulations with p = 0-5, 0-5 (for k = 2), p = 0-1,...,01 (for k = 10), and / = 50. The histograms from left to right
represent estimators PMLE, CW and SB. / indicates the number of islands sampled, 8 is the scale parameter (see text),
N is the sample size per island, k is the number of allele types among immigrants, and p is the array of allele frequencies
among immigrants.
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008

MSE (0) 006

004
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*=2,/V=10

/?=0-50

01

008

006

004

002

/t=2,JV=100

= 0-75 ?=0-50 ^=0-75

01

008

MSE (0) 006

004

002

Jfc=10, JV=10
01

008

006

004

002

4=10,^=100

y?=0l0 /?=0-50 £=010 ^=0-50

Fig. 4. The average normalized mean square error of estimates of parameter 6 for each combinations of R = 1000
simulations with 6 = 0-5 and / = 50. /? is the frequency of the most common allele. For /? = 0-50 and k = 2, p = 0-5, 0-5,
and for £ = 0-75 and k = 2, p = 0-75, 0-25. For /? = 010 and k = 10, p = 010, . . . ,010, and for 0 = 0-50 and k = 10, p =
0-50, 010, 005, . . . ,005. The histograms from left to right represent estimators PMLE, CW and SB. / indicates the
number of islands sampled, 6 is the scale parameter (see text), N is the sample size per island, k is the number of allele
types among immigrants, and p is the array of allele frequencies among immigrants.

and MSE(0) when 6 is large. Fig. 3 shows the effect of
the number of alleles among immigrants (k) on
MSE(^). An increase in k always reduces MSE(^). For
the case of large 6 and small N, the MSE(^) is greatly
reduced by an increase in k for the PMLE, but not
the other estimators. Fig. 4 shows the effect of the
distribution of allele frequencies on the MSE(^). An
increase in the frequency of the most common allele
(/?) always results in an increase in MSE(<?) for the
three estimators considered under either a k = 2 allele
model or a k = 10 allele model (see Fig. 4).

In general, the number of islands sampled (/)
appears to have a much greater influence on MSE(^)

and BIAS(0) than the sample size per island
except in the case that 6 is large. This may be noted by
examining Figs 1 and 2. This finding is consistent with
the earlier results of Slatkin & Barton (1989) who also
noted the important influence of the number of
islands sampled on the accuracy of estimators of Nm.
The effect on MSE(^) of additional loci should be
similar. Table 1 shows the results of comparisons of
MSE(^) for the three estimators studied using the D-
statistic given by eqn 27 above. For a small sample of
individuals (N = 10) the PMLE is most efficient (i.e.
has least MSE) in 63% of cases, CW is most efficient
in 29% of cases, and SB is most efficient in 21 % of
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Table 1. Pairwise comparison of mean square error (MSE) among
estimators

6 =

7 =

0-5

10 r 50

0 =

7 =

2

10 7 = 50

e =
i =

10

10 7 = 50

k = 2, p = 0-5, 0-5
JV=10 + +
iV =100 + +
k = 2, p = 0-75, 0-25
JV=10 + +
iV=100 + +
£:= 10,p = 01, . . . ,01
JV=10 - +
A' = 100 + +
k= 10, p = 0-5, 01 , 005,...,005
W=10 + +
^ = 1 0 0 + +

The significance of pairwise D-statistics (see text) for estimators PMLE, CW and
SB are listed in each box. A minus sign in a box indicates that the PMLE was
significantly less efficient (at the a = 0-05 level) than either the CW, the SB, or both,
for the parameter values indicated. A plus sign indicates that neither of the
estimators CW or SB were significantly greater in efficiency than the PMLE. The
sample size per island is A'; 7 is the number of islands sampled; k is the number
of allele types; p is the array of allele frequencies among immigrants; 0 is the actual
value of the scale parameter (see text); PMLE is the pseudo maximum likelihood
estimator; CW is the method of moments estimator (MME) of Cockerham & Weir
(1993); SB is the MME of Slatkin & Barton (1989).

cases. For a large sample size (TV = 100), PMLE is
most efficient in 96 % of cases, CW is most efficient in
no cases, and SB is most efficient in 17% of cases.

In terms of MSE the PMLE of 0 appears to be the
best choice regardless of whether a large or a small
sample of individuals is taken. The efficiency of the
PMLE relative to the other estimators increases as the
sample size per island increases. The simulations of
Chuang & Cox (1985) comparing the PMLE of 0 for
a compound multinomial-Dirichlet with the MME of
0 proposed by Brier (1980) also showed the PMLE to
be superior.

7. Numerical examples

To illustrate the application of the PMLE derived in
this paper to interpret genetic data from natural
populations, we analysed mitochondrial DNA
(mtDNA) Restriction Fragment Length Poly-
morphism (RFLP) data and allozyme data from
subdivided populations of two species: Channel Island
foxes and African elephants. The following calcu-
lations were performed: (1) numerical estimates were
obtained for p and 0 using the MME and the PMLE
of eqns 13 and 15 above (for mtDNA data), or eqn 17
(for allozyme data), respectively; (2) standard errors
were calculated for 0 by simulating 1000 datasets
using estimates of p and 0 as parameters for the
simulation, and the observed sample sizes, and
equating the standard error of 0 to the standard

Table 2. The mtDNA haplotype distribution among
islands for Channel Island foxes

Haplotype

1
2
3
4
5

Locality

SMi

17
0
0
0
5

SRo

0
0
0
7

23

SCr

0
0
0
5

23

SNi

0
22
0
0
0

SCa

0
0
3

17
4

SCI

27
0
0
0
0

Island names are abbreviated as follows: SMi = San Miguel;
SRo = Santa Rosa; SCr = Santa Cruz; SNi = San Nicolas;
SCa = Santa Catalina; SCI = San Clemente (modified from
Wayne et al. 1991).

deviation of estimates of 0 obtained for the simulated
datasets.

(i) mtDNA and allozyme variation in Channel Island
fox populations

The morphologically-distinct island fox Urocyon
littoralis inhabits six of the eight Channel Islands,
located off the coast of southern California (Collins,
1982). The island fox is descended from the mainland
gray fox U. cinereoargenteus (Wayne et al. 1991). The
Channel Islands are between 40 and 100 km from the
mainland. Wayne et al. (1991) examined the frequen-
cies of five mtDNA haplotypes in each of six Channel
Island fox populations based on a sample of 153 foxes
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0-25
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Fig. 5. Likelihood as a function of the scale parameter 6
for Channel Island fox populations. Likelihood is
multiplied by 10"14.

Fig. 6. Likelihood as a function of the scale parameter 6
for African elephant populations. Likelihood is multiplied
by 1O-50.

in total. The observed haplotype frequencies are
shown in Table 2. The likelihood as a function of 6 is
shown in Fig. 5. The estimates obtained from these
data are: p = 0-29: 014: 002: 019: 0-36 and 0 =
0-41 ±0-35.

Wayne et al. (1991) also studied allozymes for
Channel Island foxes. The distribution of alleles at
four polymorphic allozyme loci were used to estimate
0 from their data. The allelic distributions were
inferred from the observed allele frequencies and
sample sizes in Table 4 of the Wayne et al. (1991)
gaper. The estimate of 6 obtained from these data is
8 = 1-34+ 0-42. The observed difference between the
estimate of 6 from the mtDNA and allozyme data is
D = 0-93. This is within the 95% confidence interval
derived from the standard errors of the estimates
(C/= 107).

(ii) mtDNA variation in African elephant populations

The African elephant (Loxodonta africana), indigen-
ous to eastern and southern Africa, exists in numerous

populations fragmented by human development.
Georgiadis et al. (1994) studied the distribution of
10 mtDNA RFLP haplotypes by sampling a total of
270 elephants from 10 populations in Kenya,
Zimbabwe, Botswana and South Africa. The observed
haplotype frequencies are shown in Table 3. The
likelihood as a function of 6 is shown in Fig. 6. The
estimates obtained from these data are: p = 0-07:
003: 0-36: 0-22: 006: 001: 001: 0-21: 003: 001, and
6= 1-88 + 0-61.

8. Discussion

In this paper we have considered a generalized
demographic-genetic model for island populations
receiving immigrants from a source with constant
allele frequencies. Previous studies of the genetics of
island populations have focused almost exclusively on
the discrete-generation Fisher-Wright demographic
model (i.e. Wright, 1951; Weir & Cockerham, 1984;'
Slatkin & Barton, 1989; Slatkin & Maddison, 1989;
Cockerham & Weir, 1993). We have suggested that a

Table 3. The mtDNA haplotype distribution among populations of
African elephants

Haplotype

1
2
3
4
5
6
7
8
9

10

Locality

Kr

0
0
9

25
0
0
0
0
0
0

Ma

0
0
2

15
0
0
0
0
0
0

Sa

0
0
2
0
0
0
0

18
6
1

Ch

0
0

20
8
0
0
0

12
0
0

Za

0
0
4
1
1
0
0

21
0
1

Hw

0
0
3
7
7
0
0
6
1
0

Se

0
0

11
0
8
3
0
0
0
0

Ta

0
6

27
0
0
0
2
0
0
0

Ts

8 '
2
2
2
0
0
0
0
0
0

Am

11
1

16
1
0
0
0
0
0
0

Population names are abbreviated as follows: Am = Amboselli, Kenya; Ts =
Tsavo, Kenya; Ta — Tarangire, Tanzania; Se = Sengwa, Zimbabwe: Hw =
Hwang, Zimbabwe; Za = Zambezi, Zimbabwe; Ch = Chobe, Botswana; Sa =
Savute, Botswana; Ma = Mashatu, Botswana; Kr = Kruger, South Africa
(modified from Georgiadis et al. 1994).
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Dirichlet distribution of population allele frequencies
on islands results for either a continuous or (asympto-
tically) a discrete generation island model of popu-
lation structure. This finding provides a theoretical
justification for the widespread use of an estimator of
Nm, based on Wright's F-statistics, by empiricists for
inferring gene flow in species with continuous over-
lapping generations (reviewed by Slatkin, 1985).
Wright's estimator is shown to arise as a ratio
estimator of the parameter 8 of the Dirichlet using the
method of moments (see Appendix).

There are several properties of the continuous-
generation island model that necessitate a new
interpretation of 6 by comparison with traditional
interpretations based on a discrete-generation island
model (Wright, 1931). Perhaps the most important
difference is that the complete replacement of all
individuals in the population in each generation of
Wright's model is replaced by continuous births, and
6 is interpreted as the immigration rate 0 divided by
the individual birth rate A. In general, an estimate of
8 based on molecular genetic data provides no
information about <f> without additional information
about A. The interrelationship between <f>, A and 8
highlights the importance of studying the population
biology (i.e. demography) as well as the genetics in
attempting to infer gene flow in natural populations
with overlapping generations.

Another way in which the continuous-generation
model differs from Wright's model is that the
compound multinomial-Dirichlet distribution des-
cribes the allele frequency distribution for populations
of any age, whereas for Wright's model the popu-
lations must have existed long enough to have reached
'equilibrium'. This means that estimators for the
discrete-generation model are only valid in situations
in which populations are at equilibrium, whereas for
continuous-generation species no equilibrium assump-
tion is necessary (other factors such as age-specific
birth and immigration rates may change this however).

The results of our simulation study suggest that the
pseudo maximum likelihood estimator (PMLE) is the
most efficient estimator of 8 for an island model of
population structure, except possibly in cases where
the sample size on each island is very small (e.g. N =
10) and the scale parameter 8 is large (e.g. 6 = 10). All
three estimators appear to behaviour badly for large
8, small N, and small /. Consistent with the findings of
Slatkin & Barton (1989), the number of islands
sampled (/), and the number of loci sampled (£) in the
multi-locus case, appear to be the most important
factors influencing MSE and BIAS for all three
estimators of 8 considered.

There are a number of additional estimators of 8 in
the literature that were not considered in this paper.
These include estimators of 6 using genealogical
information based on a cladistic analysis (Slatkin &
Maddison, 1989; Hudson et al. 1992). The statistical
properties of these estimators appear quite similar to

those of the MME's based on Wright's F-statistics
(see e.g. Hudson et al. 1992).

The dependence of 8 on birth rate for the
continuous-generation model has important con-
sequences when an attempt is made to compare
relative levels of gene flow between species with
different generation times. For example, in our
analysis of mtDNA data for Channel island fox and
African elephant populations we estimated for foxes
(9=0-41+0-35, and for elephants (9 = 1-88 + 0-61.
Since elephants may be expected to have lower indi-
vidual birth rates than foxes the observed difference
in 6 might be due either to a difference in birth
rate between the two species, a difference in the
immigration rate, or both.

A number of additional demographic factors that
may influence estimates of 6 for species with over-
lapping generations were not considered in this paper.
Most important is age-structure: the continuous-
generation island model we have considered, based on
a birth, death and immigration process (BDI; Rannala
& Hartigan, 1995), assumes that each individual on an
island has an equal probability of reproducing during
any interval of time. The probability of reproduction
does not depend on factors such as age, or genotype.
In natural populations, age is obviously an important
factor influencing reproduction rate and a more
satisfactory model would also take into account the
effects of age structure, both for island residents and
for immigrants.

One way to generalize the classical island model
considered in this paper to provide a better description
of many natural populations is to allow 8 to vary
among islands, while keeping p constant. It is clear
that the variance of individual estimates of 8 will be
greatly increased by this modification since each
estimate of 8 is then essentially based on a single
observation (island). By examining multiple loci it
should be possible to reduce the variance of these
estimates to reasonable levels. It is clear that 'general-
ized' island models of this form deserve more careful
study.

9. Conclusions

Much work remains to be done to evaluate the
statistical properties of the large number of existing
approaches for estimating gene flow in natural
populations. In this paper, we have concentrated on
estimators that may be derived from a theoretical
consideration of the distribution of alleles in popu-
lations under an island model of population structure.
The maximum likelihood and method of moments
estimators of 6 that we have considered are based on
a Dirichlet distribution of allele frequencies on islands.
Future studies should consider the form of the allele
frequency distribution on islands under alternative
models of population structure such as the ' stepping-
stone' model. Such studies have the potential to
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greatly increase the range of natural population
structures for which exact MLE's might be developed
and applied to estimate gene flow.

Based on comparisons of the mean square error
(MSE) from our simulation results, the pseudo
maximum likelihood method (PMLE) appears to be a
better choice for estimating 6 under an island model
of population structure than either the method of
moments estimator (MME) of Cockerham & Weir
(1993) or the MME of Slatkin & Barton (1989). We
have shown that all three estimators are justifiably
applied to estimate 6 for species with either discrete or
continuous generation times. The number of islands
sampled (/) appears to have the greatest influence on
bias and MSE, and all three estimators have low
efficiency and high bias when 8 is large, the sample size
(N) is small, and the number of islands sampled (/) is
small. The PMLE appears to be asymptotically greater
than 90 % efficient (Chuang & Cox, 1985) and is much
simpler to calculate than the complete MLE. This
makes it well suited for analyzing many empirical
datasets when a large computing effort may be
required to obtain MLE's.

Population genetic studies are frequently carried
out with limited demographic information for the
study populations and estimates of the number of
immigrants per generation are often based exclusively
on a genetic analysis (see e.g. Zink & Remsen, 1986;
Edwards, 1993; Mercure et ai, 1993). It is clear that
estimates of immigration from molecular genetic data
are not possible for a continuous-generation island
model without additional demographic information
concerning the individual birth rates on islands. This
suggests that a closer collaboration between field
ecologists and geneticists is needed in future studies of
subdivided populations aimed at predicting gene flow.
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Appendix

In this Appendix we show that the gene flow estimator
proposed by Wright (1969), based on his FST statistic,
also arises as a method of moments ratio estimator of
the parameter 6 of the compound multinomial-
Dirichlet (CMD) distribution, which is the asymptotic
sampling distribution for Wright's island model at
equilibrium.

Mosimann (1962) proved the following result for
the compound multinomial-Dirichlet distribution
which may be applied to our genetic models,

(Al)

where Z is the variance-covariance matrix of the sizes
of families of unique alleles in a sample of size N from
a compound multinomial-Dirichlet distribution, and
Y is the variance-covariance matrix of the sizes of
families of unique alleles in a sample of size N from a
multinomial distribution with parameters equal to
the expectations of the Dirichlet distribution (i.e.
Ytj = -NpiPj, YiS = Npjil -Pi), where i * / ) . Note that
the first-order moments of the Dirichlet distribution
are, in the genetic models, equal to the allele
frequencies among immigrants.

If N individuals are sampled from each of /
independent islands, then an estimator of C =

(A 2)C = JZ|

where k is the total number of unique alleles, and Z
and Y are consistent estimates of Z and Y. For
example, the method of moments estimates,

Yti = Npt{\ -A) ,

where pi = 1//Sj_i«y/-W and,

1 '
Zt} =

(A3)

(A 4)

« = 7—T 2 («(.-««)(«;.-"A ' * / (A 5)
•* l 1 - 1

u=-r-r'L(ni.-niiy, (A 6)

where n( = 1//!]'_! w(,- The determinants of eqn A 2
are calculated using k — 1 of the allele types to avoid
singularity (Mosimann, 1962).

In the case of the two-allele genetic model, an
estimator of C is then,

C =
Ns\

(A 7)

where «! = l / / 2 ( . i « j ( and^ = 1/7—1 2'_i(«1(—«i)2-
For asymptotically large iV and 7 we then obtain,

1 - .2

^4r, (A 8)
+ 0

where <r2 = 5i/7V2 and p = «1/A
f. Solving for 6

produces an estimator that is identical in form to the
one given above based on Wright's FST statistic
demonstrating that Wright's estimator of 6 is a MME
ratio estimator of the scale parameter of the CMD
distribution.
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