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Abstract. We show that locally supersoluble finitary groups over certain division
rings (e.g. fields) have local systems of hypercyclic normal subgroups.

2000 Mathematics Subject Classification. 20F19, 20H99.

In 1960, M. S. Garas̆c̆uk [1] proved that a locally nilpotent linear group is
hypercentral and in 1971, B. A. F. Wehrfritz extended this result by proving that
a locally supersoluble linear group is hypercyclic ([7] Theorem B). A. E. Zalesskii
investigated matrix groups over division rings in his 1969 paper [12]. One of the results
of this paper was the following.

THEOREM 1 ([12]). Let D be a locally finite-dimensional division algebra and let
G be a locally nilpotent matrix group over D. If G is completely reducible or D has
characteristic zero, then G is hypercentral.

Zalesskii leaves the general case (i.e. in positive characteristic when the group is not
necessarily completely reducible) as a conjecture. Despite much effort, this conjecture
has not been settled.

I. A. Stewart, in his Ph.D. thesis [5], generalized Zalesskii’s result to locally
supersoluble groups; that is, he showed that Theorem 1 holds with “nilpotent” replaced
by “supersoluble” and “hypercentral” replaced by “hypercyclic”.

A finitary skew linear group G on the (left) vector space V over the division ring
D, is a subgroup of

FGL(V ) = {g ∈ GL(V ) : dimDV (g − 1) < ∞}.
We drop the word “skew” in the above if D is a field. For an introduction to finitary
linear groups, see [3].

We shall be interested in these groups only when D is a locally finite-dimensional
division algebra over a perfect field. We assume that D satisfies this condition unless
otherwise stated.

Now there exist locally nilpotent finitary linear groups which are as far away from
being hypercentral as possible. For example, the McLain group M(�, �) (see [10]
page 421) is locally nilpotent, finitary linear and has trivial hypercentre.

Wehrfritz has studied nilpotence in the finitary skew linear groups that we are
interested in (see [10] and [9]). One of his results yields the following proposition, which
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says that locally nilpotent finitary groups, despite not necessarily being hypercentral,
have a rich local structure of hypercentral normal subgroups.

PROPOSITION 2. Let G be a locally nilpotent finitary skew linear group over D. Then
G has a local system of hypercentral normal subgroups. That is, if X is a finite subset of
G, then 〈XG〉 is hypercentral.

Proof. For by [10] Corollary 1.3, G is generated by normal subgroups which are
hypercentral of central height at most ω2.

In this note, we shall prove a generalization of Proposition 2:

THEOREM 3. Let G be a locally-nilpotent by abelian subgroup of FGL(V ). Then G
has a local system of hypercentral by finitely-generated-abelian normal subgroups.

Let G be a locally supersoluble subgroup of FGL(V ). Then any finite subset X of
G lies in a hypercentral by finitely-generated abelian normal subgroup H � G. Since
H is locally supersoluble, H is hypercyclic by [8] Lemma 11.19. Consequently:

COROLLARY 4. Let G be a locally supersoluble subgroup of FGL(V ). Then G has a
local system of hypercyclic normal subgroups.

We need some auxilary results. Note that with our assumptions on D, our results
will include the general field case; for when D is a field, we may suppose that it is
algebraically closed. Also, with our hypotheses in Theorem 3, any subgroup of G of
FGL(V ) has a maximal unipotent normal subgroup U(G) and any locally nilpotent
subgroup N of FGL(V ) has a Jordan decomposition in FGL(V ) into a unipotent part
Nu and a d-part Nd (see [9] Lemma 2.8). The following lemma is a restatement of [9]
4.2(d).

LEMMA 5 (Wehrfritz). Let G ≤ FGL(V ) and let N be a locally nilpotent normal
subgroup of G with U(N) = 1. For every finite subset X of G, there is a normal subgroup
K of G with X ⊆ K and N ∩ K is hypercentral (of central height ≤ ω2).

The Hirsch-Plotkin radical of the group G is denoted by η(G).

LEMMA 6. Let G ≤ FGL(V ) and let X be any subset of G for which n = dimD[V, X ]
is finite. Put N = η(〈XG〉). Then Nu is nilpotent of class ≤ 2n.

Proof. Let G = G(Nd × Nu). Pick any D-G composition series of V , say
(Vα,�α)α∈I . Intersecting this series with [V, X ] and removing repititions, we obtain a
finite series

0 = [V, X ] ∩ Vα1 ≤ [V, X ] ∩ �α1 = [V, X ] ∩ Vα2 ≤ . . .

≤ [V, X ] ∩ �αi−1 = [V, X ] ∩ Vαi ≤ . . .

≤ [V, X ] ∩ �αn = [V, X ]

where α1 ≤ α2 ≤ . . . ≤ αn are elements of I .
Consider the series

0 ≤ Vα1 ≤ �α1 ≤ Vα2 ≤ . . . ≤ Vαn ≤ �αn ≤ V. (1)

Now [V, X ] = [V, X ] ∩ �αn and [Vα1 , X ] ≤ [V, X ] ∩ Vα1 = 0. Also if 1 < i ≤ n then
[
Vαi , X

] ≤ [V, X ] ∩ Vαi = [V, X ] ∩ �αi−1 ≤ �αi−1 .
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Furthermore, the series 1 is G-invariant and since N ≤ 〈XG〉, we have [V, N] ≤
�αn, [Vα1 , N] = 0 and [Vαi , N] ≤ �αi−1 for 1 < i ≤ n.

Let B ≤ A be D-G modules with [A, N] ≤ B and choose n ∈ N. On the factor
A/B, we have 1 ≡ n ≡ nund as a Jordan decomposition for n. By the uniqueness of
Jordan decomposition, nu ≡ 1 on the factor A/B. In other words, [A, Nu] ≤ B. Thus
[V, Nu] ≤ �αn , [Vα1 , Nu] = 0 and [Vαi , Nu] ≤ �αi−1 for 1 < i ≤ n.

Put Cα = CG(�α/Vα). Then NuCα/Cα is a unipotent normal subgroup of the
irreducible group G/Cα for every α ∈ I . By [11] 2.2, Nu ≤ Cα and so [�α, Nu] ≤ Vα for
every α ∈ I .

Consequently, Nu stabilizes the series 1 and thus Nu is nilpotent of class ≤ 2n (for
example, by [2] Theorem 1.C.1).

Proof of 3
Let X be a finite subset of G and put H = 〈XG〉. Set N = η(H) = H ∩ η(G). Since

G/η(G) is abelian,

H/N ∼= Hη(G)/η(G) = 〈η(G)x : x ∈ X〉.
Thus H/N is a finitely generated abelian group. Now it is sufficient to prove that N is
hypercentral.

There is an epimorphism N −→ Nd with kernel U = U(N) (see [9] Lemma 2.8).
Also U � G; for Ug is a unipotent normal subgroup of N for every g ∈ G. Let X
be the set {Ux : x ∈ X}. Now N/U is a locally nilpotent normal subgroup of H/U
with U(N/U) = 1 on its action on the sum of the composition factors of V as a D-G
bimodule. Thus by 5, there is K � G/U with X ⊆ K and (N/U) ∩ K hypercentral.
Also 〈XG〉 = H/U , so Nd ∼= N/U is hypercentral.

By 6, Nu is nilpotent and thus NuNd is hypercentral (of height ≤ ω2). Since N ≤
NuNd , we have that N is hypercentral, as required.

To finish, we note the following result. It is a small extension of [6] Theorem 2.3.

PROPOSITION 7. Let G be a locally supersoluble finitary skew linear group over the
division ring D, which is locally finite-dimensional over some (not necessarily perfect)
subfield F. Then G is locally-nilpotent by periodic-abelian.

Proof. Any finitely generated subgroup of G is supersoluble and thus nilpotent by
finite-abelian. The result follows using the local Zariski topology (for example, see [4]
2.2 Part 1).
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