LOCAL SYSTEMS OF LOCALLY SUPERSOLUBLE FINITARY GROUPS

C. J. E. PINNOCK*

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS U.K. e-mail: chris.pinnock@ukuug.org

(Received 21 January, 2002; accepted 20 August, 2002)

Abstract. We show that locally supersoluble finitary groups over certain division rings (e.g. fields) have local systems of hypercyclic normal subgroups.

2000 Mathematics Subject Classification. 20F19, 20H99.

In 1960, M. S. Garaščuk [1] proved that a locally nilpotent linear group is hypercentral and in 1971, B. A. F. Wehrfritz extended this result by proving that a locally supersoluble linear group is hypercyclic ([7] Theorem B). A. E. Zalesskii investigated matrix groups over division rings in his 1969 paper [12]. One of the results of this paper was the following.

THEOREM 1 ([12]). Let D be a locally finite-dimensional division algebra and let G be a locally nilpotent matrix group over D. If G is completely reducible or D has characteristic zero, then G is hypercentral.

Zalesskii leaves the general case (i.e. in positive characteristic when the group is not necessarily completely reducible) as a conjecture. Despite much effort, this conjecture has not been settled.

I. A. Stewart, in his Ph.D. thesis [5], generalized Zalesskii's result to locally supersoluble groups; that is, he showed that Theorem 1 holds with "nilpotent" replaced by "supersoluble" and "hypercentral" replaced by "hypercyclic".

A finitary skew linear group G on the (left) vector space V over the division ring D, is a subgroup of

$$FGL(V) = \{g \in GL(V) : \dim_D V(g-1) < \infty\}.$$

We drop the word "skew" in the above if D is a field. For an introduction to finitary linear groups, see [3].

We shall be interested in these groups only when D is a locally finite-dimensional division algebra over a perfect field. We assume that D satisfies this condition unless otherwise stated.

Now there exist locally nilpotent finitary linear groups which are as far away from being hypercentral as possible. For example, the McLain group $M(\mathbb{Q}, \mathbb{C})$ (see [10] page 421) is locally nilpotent, finitary linear and has trivial hypercentre.

Wehrfritz has studied nilpotence in the finitary skew linear groups that we are interested in (see [10] and [9]). One of his results yields the following proposition, which

^{*} This work was supported by an EPSRC grant whilst the author was at Queen Mary, University of London.

says that locally nilpotent finitary groups, despite not necessarily being hypercentral, have a rich local structure of hypercentral normal subgroups.

PROPOSITION 2. Let G be a locally nilpotent finitary skew linear group over D. Then G has a local system of hypercentral normal subgroups. That is, if X is a finite subset of G, then $\langle X^G \rangle$ is hypercentral.

Proof. For by [10] Corollary 1.3, G is generated by normal subgroups which are hypercentral of central height at most ω 2.

In this note, we shall prove a generalization of Proposition 2:

THEOREM 3. Let G be a locally-nilpotent by abelian subgroup of FGL(V). Then G has a local system of hypercentral by finitely-generated-abelian normal subgroups.

Let G be a locally supersoluble subgroup of FGL(V). Then any finite subset X of G lies in a hypercentral by finitely-generated abelian normal subgroup $H \triangleleft G$. Since H is locally supersoluble, H is hypercyclic by [8] Lemma 11.19. Consequently:

COROLLARY 4. Let G be a locally supersoluble subgroup of FGL(V). Then G has a local system of hypercyclic normal subgroups.

We need some auxilary results. Note that with our assumptions on D, our results will include the general field case; for when D is a field, we may suppose that it is algebraically closed. Also, with our hypotheses in Theorem 3, any subgroup of G of FGL(V) has a maximal unipotent normal subgroup $\mathcal{U}(G)$ and any locally nilpotent subgroup N of FGL(V) has a Jordan decomposition in FGL(V) into a unipotent part N_u and a d-part N_d (see [9] Lemma 2.8). The following lemma is a restatement of [9] 4.2(d).

LEMMA 5 (Wehrfritz). Let $G \leq FGL(V)$ and let N be a locally nilpotent normal subgroup of G with U(N) = 1. For every finite subset X of G, there is a normal subgroup K of G with $X \subseteq K$ and $N \cap K$ is hypercentral (of central height $\leq \omega 2$).

The Hirsch-Plotkin radical of the group G is denoted by $\eta(G)$.

LEMMA 6. Let $G \leq \operatorname{FGL}(V)$ and let X be any subset of G for which $n = \dim_D[V, X]$ is finite. Put $N = \eta(\langle X^G \rangle)$. Then N_u is nilpotent of class $\leq 2n$.

Proof. Let $\overline{G} = G(N_d \times N_u)$. Pick any $D - \overline{G}$ composition series of V, say $(V_\alpha, \Lambda_\alpha)_{\alpha \in I}$. Intersecting this series with [V, X] and removing repititions, we obtain a finite series

$$0 = [V, X] \cap V_{\alpha_1} \le [V, X] \cap \Lambda_{\alpha_1} = [V, X] \cap V_{\alpha_2} \le \dots$$

$$\le [V, X] \cap \Lambda_{\alpha_{i-1}} = [V, X] \cap V_{\alpha_i} \le \dots$$

$$\le [V, X] \cap \Lambda_{\alpha_n} = [V, X]$$

where $\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_n$ are elements of *I*.

Consider the series

$$0 \le V_{\alpha_1} \le \Lambda_{\alpha_1} \le V_{\alpha_2} \le \ldots \le V_{\alpha_n} \le \Lambda_{\alpha_n} \le V. \tag{1}$$

Now
$$[V, X] = [V, X] \cap \Lambda_{\alpha_n}$$
 and $[V_{\alpha_1}, X] \leq [V, X] \cap V_{\alpha_1} = 0$. Also if $1 < i \leq n$ then

$$[V_{\alpha_i}, X] \leq [V, X] \cap V_{\alpha_i} = [V, X] \cap \Lambda_{\alpha_{i-1}} \leq \Lambda_{\alpha_{i-1}}.$$

Furthermore, the series 1 is \overline{G} -invariant and since $N \leq \langle X^{\overline{G}} \rangle$, we have $[V, N] \leq \Lambda_{\alpha_n}, [V_{\alpha_1}, N] = 0$ and $[V_{\alpha_i}, N] \leq \Lambda_{\alpha_{i-1}}$ for $1 < i \leq n$.

Let $B \le A$ be $D - \overline{G}$ modules with $[A, N] \le B$ and choose $n \in N$. On the factor A/B, we have $1 \equiv n \equiv n_u n_d$ as a Jordan decomposition for n. By the uniqueness of Jordan decomposition, $n_u \equiv 1$ on the factor A/B. In other words, $[A, N_u] \le B$. Thus $[V, N_u] \le \Lambda_{\alpha_n}, [V_{\alpha_1}, N_u] = 0$ and $[V_{\alpha_i}, N_u] \le \Lambda_{\alpha_{i-1}}$ for $1 < i \le n$.

Put $C_{\alpha} = C_{\overline{G}}(\Lambda_{\alpha}/V_{\alpha})$. Then $N_u C_{\alpha}/C_{\alpha}$ is a unipotent normal subgroup of the irreducible group \overline{G}/C_{α} for every $\alpha \in I$. By [11] 2.2, $N_u \leq C_{\alpha}$ and so $[\Lambda_{\alpha}, N_u] \leq V_{\alpha}$ for every $\alpha \in I$.

Consequently, N_u stabilizes the series 1 and thus N_u is nilpotent of class $\leq 2n$ (for example, by [2] Theorem 1.C.1).

Proof of 3

Let *X* be a finite subset of *G* and put $H = \langle X^G \rangle$. Set $N = \eta(H) = H \cap \eta(G)$. Since $G/\eta(G)$ is abelian,

$$H/N \cong H\eta(G)/\eta(G) = \langle \eta(G)x : x \in X \rangle.$$

Thus H/N is a finitely generated abelian group. Now it is sufficient to prove that N is hypercentral.

There is an epimorphism $N \longrightarrow N_d$ with kernel $U = \mathcal{U}(N)$ (see [9] Lemma 2.8). Also $U \triangleleft G$; for U^g is a unipotent normal subgroup of N for every $g \in G$. Let \overline{X} be the set $\{Ux : x \in X\}$. Now N/U is a locally nilpotent normal subgroup of H/U with $\mathcal{U}(N/U) = 1$ on its action on the sum of the composition factors of V as a D-G bimodule. Thus by 5, there is $K \triangleleft G/U$ with $\overline{X} \subseteq K$ and $(N/U) \cap K$ hypercentral. Also $(\overline{X}^G) = H/U$, so $N_d \cong N/U$ is hypercentral.

By 6, N_u is nilpotent and thus N_uN_d is hypercentral (of height $\leq \omega 2$). Since $N \leq N_uN_d$, we have that N is hypercentral, as required.

To finish, we note the following result. It is a small extension of [6] Theorem 2.3.

PROPOSITION 7. Let G be a locally supersoluble finitary skew linear group over the division ring D, which is locally finite-dimensional over some (not necessarily perfect) subfield F. Then G is locally-nilpotent by periodic-abelian.

Proof. Any finitely generated subgroup of *G* is supersoluble and thus nilpotent by finite-abelian. The result follows using the local Zariski topology (for example, see [4] 2.2 Part 1).

REFERENCES

- 1. M. S. Garaščuk, On the theory of generalized nilpotent linear groups (Russian), *Dokl. Akad. Nauk BSSR* 4 (1960), 276–277.
 - 2. O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups (North-Holland, 1973).
- **3.** R. E. Phillips, Finitary linear groups: A survey in *Finite and locally finite groups* (A. V. Borovik, R. M. Bryant, B. Hartley, and G. M. Seitz, eds.) (Kluwer Academic Publishers, 1995), 111–146.
- **4.** C. J. E. Pinnock, Lawlessness and rank restrictions in certain finitary groups, *Proc. Amer. Math. Soc.* **130** (2002), 2815–2819.
- **5.** I. A. Stewart, *Locally supersoluble skew linear groups*, Ph.D. thesis (Queen Mary College, 1986).

- **6.** I. A. Stewart, Supersolubility in certain skew linear groups, *J. London Math. Soc.* (2) **35** (1987), 91–97.
- 7. B. A. F. Wehrfritz, Supersoluble and locally supersoluble linear groups, *J. Algebra* 17 (1971), 41–58.
 - **8.** B. A. F. Wehrfritz, *Infinite linear groups* (Springer-Verlag, 1973).
- **9.** B. A. F. Wehrfritz, Nilpotence in finitary skew linear groups, *J. Pure and Applied Alg.* **83** (1992), 27–41.
- 10. B. A. F. Wehrfritz, Nilpotence in finitary linear groups, *Michigan Math. J.* 40 (1993), 419–432.
- 11. B. A. F. Wehrfritz, Locally soluble finitary skew linear groups, *J. Algebra* 160 (1993), 226–241.
- 12. A. E. Zalesskii, The structure of several classes of matrix groups over a division ring, (Russian) *Sibirsk. Math. Ž.* 8 (1967), 1284–1298. Translated in *Siberian Math. J.* 8 (1967), 978–988.