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BY 
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ABSTRACT. Let G be a locally compact group and H an open 
subgroup of G. The embeddings of group C*-algebras associated 
with H into the group C*-algebras associated with G are studied. 
Three conditions for the embeddings given in terms of C*-norms of 
the group algebras, group representations and positive definite 
functions are shown to be equivalent. As corollary, we prove that 
the full C*-algebra of H can be embedded into the full C*-algebra 
of G in a natural way as well as the case for the reduced group 
C*-algebras. We also show that the embeddings hold for their duals 
and double duals. 

§0. Introduction. Group C*-algebras provide some of the most interesting 
and important examples in the theory of operator algebras. In studying these 
algebras one naturally asks what are the connections between algebras as­
sociated with a group and algebras associated with its subgroups. The most 
popular choices for group C*-algebras have been the full group C*-algebras 
and the reduced group C*-algebras. For locally compact abelian group G, 
these two group C*-algebras associated with G can be identified [10; 1.17] and 
realized as C0(G), the algebra of the complex-continuous functions vanishing 
at infinity on the dual group G of G. If H is an open subgroup of G, then 
C0(H) can be embedded into C0(G) in a canonical way since H is a quotient 
group of G (cf. [14; Theorem 54, p. 274]). Furthermore, since the dual of 
C0(G) is MX(G), the Banach involutive algebra (under convolution) of 
bounded complex measures on G, the embedding of the dual of C0(H) into the 
dual of C0(G) exists. In general, the full C*-algebra is different from the 
reduced one. Eymard showed in [10] that the natural embedding holds in 
general for the reduced group C*-algebras. This paper deals with questions 
concerning the embeddings of the general group C*-algebras [see §1 for 
definition]. 
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Three conditions for the existence of the embedding in terms of C*-algebra 
norms, group representations and continuous positive-definite functions are 
shown to be equivalent as in Theorem 2.5. As corollaries, we obtain that the 
embeddings hold for both the reduced and the full group C*-algebras. 
Moreover, the embeddings exist for their duals and double duals too. In the 
last section, we give an example to show that embeddings of group C*-algebras 
and their duals are independent. Also, we prove that if a locally compact group 
G contains a nontrivial amenable normal open subgroup, then the reduced 
C*-algebra C*P{G) is not simple (cf. [16; Proposition 1.6]). 

The author would like to express his hearty thanks to Professors C. A. 
Akemann, A. Hopenwasser, and L. Harris for helpful discussions. 

§1. Notations and preliminaries. We shall adopt the notations used by 
Eymard [10]. Throughout this paper G will denote a locally compact group 
with identity e. We choose, once and for all, a left Haar measure À on G; and 
we denote by A the modular function of G. For 1 <p<oo ? we define LP(G) as 
the usual Lp-space relative to À. We identify LX(G) with the closed two sided 
ideal of M1(G) consisting of measures absolutely continuous with respect to À 
by /—>/dÀ. We designate the class of all continuous unitary representations of 
G by 2(G), as shown in [8, Propositions 13.3.1 and 13.3.4] we may identify 
2(G) with the class of all non-degenerate representations of LX{G). For 
r c S ( G ) we renorm L\G) by defining ||/||r = s u p i r e r | k ( / ) | ^ ) where <£{WJ 
denotes the algebra of bounded operators on 5^ , the Hilbert space corres­
ponding tO 7T. 

DEFINITION 1.1. The group C*-algebra C*(G) is the completion of L\G)HT 

under the norm ||-||r where 

I r = { /€L 1 (G)K( / ) = 0 ,7 re r} . 

If T = 2(G), then we have I r = {0} and we shall use C*(G) to denote the 
completion of LX(G) under the norm IHISCG); C*(G) is called the full group 
C*-algebra of G, and we are able to identify 2(G) with the class of all 
non-degenerate representations of C*(G) (cf. [8; 13.9.3]). If F = {p} where p is 
the left regular representation of G in L2(G), then again Ip ={0} and C*(G) is 
the C*-algebra generated by L\G) (or rather p(L\G))) in £(L2(G)). We 
define Pr(G) and BY(G) as in [10, 1.21 and 2.2] for T<=2(G). We note that 
Pr(G) can be identified as the set of all positive linear functionals of Cf(G), 
and Br(G) can be regarded as the dual of Cf(G). We denote by Wf(G) the 
enveloping von-Neumann algebra of Cf(G), and we may identify W*(G) as 
the second dual of C^G) (cf. [8; 12.1.4]). We recall that P(G) is the set of all 
continuous positive definite functions on G and B(G) consists of all finite 
complex-linear combinations of functions in P(G). As in [10; 2.16], B(G) with 
the dual norm of C*(G) is a commutative Banach algebra; and it contains an 
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ideal, A(G) as defined in [10; 3.5], called the Fourier algebra of G. We denote 
by VN(G) the von-Neumann algebra generated by L1(G) in i?(L2(G)), and 
note that A(G) may be regarded as the predual of VN(G). We remark that 
W*(G), the enveloping von-Neumann algebra of C*(G), corresponds to the 
"big group algebra" defined by Ernest in [9]. 

If K c G, and if / : G -> X, /1 K is the restriction of / to K. If » is a family of 
functions of G to X, then &\K = {f\K:fe9b}.Jff:K-*C, then f : G - * C is 
the extension of / such that / is identical zero outside K and /Œ | K = /, where C 
is the set of complex numbers. 

Finally, for A, T c 2 we shall write A = T if A is weakly equivalent to T (cf. 
[12; chapter 1,5]). 

§2. Embedding theorems for group C*-algebras. Let H be a locally com­
pact subgroup of G with A(H)>0. Then À | H is a left Haar measure of H, and 
we shall simply write À for À | H. In this section, we are concerned about the 
extensions of the natural embedding /—»/°" from LX{H) into LX(G) to their 
corresponding group C*-algebras. First, we note that A(H)>0 if and only if H 
is an open subgroup of G (cf. [13; Vol. I, Corollary 20.17]). Therefore, from 
now on H will denote an open subgroup of G for the extensions of the 
embeddings. The following proposition is immediate since / ^ > / o r is a *-homo-
morphism from LX{H) to LX(G). 

PROPOSITION 2.1. Let Tc%(H) and A <=2(G) be such that H/llr^l/IL for all 
ftlMH). Then the embedding / ^ / ° " from ^(H) into LX(G) induces an 
isometric *-homomorphism from C*(H) into C%(G). 

DEFINITION 2.2. We shall write CUH)<C%(G) if C£(H) can be embedded 
in C%(G) as in Proposition 2.1. 

THEOREM 2.3 (cf. [10; 2.31]). Let us denote by px the left regular representa­
tion of H. Then we have C*X{H) < C%G). 

Proof. We shall show that ||/||PlH|/1lp f o r a11 / e L l ( # ) - L e * {Hx\xel} be 
the collection of right cosets of H in G. Then L2(G) =Lc e j L2(Hx), the direct 
sum of L2(HJC)'S. Since 

(p(D)g(y)=r * g(y) = f /(^)g(z-1y) dz, 

L2(Hx) is invariant under p ( D . For geL2(Hx), define g'eL2(H) by g'(y) = 
A(x)""1/2g(yx-1). Then g -> g' is an isomorphism of L2(Hx) onto L2(H) and for 
every yeHx, (f* * g)'(y) = A(x)_1/2 inftogiz^yx'1) dz =f<r * g'(z). Hence 
PCD | L2(Hx) is unitarily equivalent to p(f(T)\L2(H) = Pl(f). It follows that 
ll/IU, = IIPaĈ IL̂ CL-CH» = IIP(/")IU?CL-CG» = ILT'IU Therefore, by Proposition 2.1, 
C%(H)<C*P(G). 
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THEOREM 2.4. If C*{H)<C%(G) and a is the embedding, then la, the 
transpose of a, is a norm decreasing homomorphism of BA(G) onto BY(H) such 
that ta(u) = u\H for ueBA(G). The bitranspose tta is an isomeric normal 
*-homomorphism of W*(H) into W%(G) which extends a. 

Proof. The transpose la maps BA{G) onto BT(H) since a is injective; and 
for ueBA(G), feL\H), we have 

Ca(M))(/) = <M,ao/> = <M,/->= f r(x)u(x)dx 

= f / (x) (u |H)(x)dx = <u|H,/>. 
JH 

Therefore, la(u) = u\H. H'cKiOH^HuH is clear since a embeds the unit ball of 
C* (H) into the unit ball of C*(G). ua is a normal *-homomorphism of W*(H) 
into W%(G) which extends a by [8; 12.5.11]. Since na is injective, it is an 
isometry. 

THEOREM 2.5. Let Tc:2(H) and A<=2(G). Then the following conditions are 
equivalent: 

(i) CUm^CXiG); 
(ii) \\f\\r = \\r\\AforallfeL\H); 

(iii) T = A | H ; 
(iv) Pr(H) = PA(G)\H. 

Proof. Proposition 2.1 gives (i)<^(ii). For (ii)O(iii), we observe that ||/||r = 
||/||A1„ for all feL\H) is equivalent to T = A | H by [10; 1.24]. So it suffices to 
show that ||/||A|H = llrllA- Indeed, for TTGA and feL\H)9 ( i r |H)( / ) = 
SHTr(x)f(x)dx=$GTr(x)r(x)dx = 7r(rh thus ||/||A|H = II/1IA. 

Assume (i), and let uePr(H). We may treat u as a positive linear functional 
on C*(H), and identify C*(H) as a C*-subalgebra of CA(G). Since positive 
functional on the subalgebra extend to positive functions on the containing 
algebra, we obtain a vePA(G) and v\H =uePA(G)\H. This shows that 
PT(H)c:PA(G)\H. Conversely, let vePA(G); then for feL\H), 

|<t;|H,/>| = | ( t>(x)/(x)dx| = | ( v(x)r(x)dx\<v(e)\\r\\A. 

Since ||/||r = ||/°"||A by the assumption, v\HePr(H) by [10; Proposition 
1.21(iii)]. Thus PA(G) \ HaPr(H) and we have shown that (i) => (iv). 

To prove that (iv) => (ii), we note that it suffices to show that (ii) holds for 
hermitian elements in LX(H). Let feL1^) and / is hermitian. By [18; 1.5.4], 
||/||r = sup{|<u,/>|: u ePr(H), \\u\\ = l}. Since Pr(H) = PA(G)\H by assumption, 
and for v e PA(G) (v, D = (v\H9 / ) ; it is easy to see that ||/||r = H/0^. The proof 
of the Theorem is now complete. 
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We let A~ be the class of all representation weakly contained in A c 2(G). 

PROPOSITION 2.6. Let A c 2(G). Then A~ is the class of all representations of 
CJ(G). 

Proof. Let N'A be the kernel of the quotient map from C*(G) onto C*(G) 
as in [10; 1.15]. Then IT is a representation of C*(G) if and only if 7 T G 2 ( G ) 

and NA c ker IT, i.e., IT e A~. 

COROLLARY 2.7. Let T c 2(H), A c 2(G) and T = A | H. Then for any IT e T~, 
there exists a IT' e A~ such that IT = (IT' \ H) | 3K„.. 

Proof. By Theorem 2.5, we may consider C*(H) as a C*-subalgebra of 
C*(G). The corollary follows immediately from Proposition 3.5 and [8; 
2.10.2]. 

LEMMA 2.8. IfueP(H), then uCTeP(G). 

Proof. It follows from [13; vol. II, 32.43] and the assumption that H is 
open. 

THEOREM 2.9. C*(H)<C*(G) if H is an open subgroup of G 

Proof. By Lemma 2.8, we have P ( H ) c ? ( G ) | H. Since P(G) \ H c P ( H ) is 
obvious, P(H) = P(G) | H follows; and Theorem 2.5 asserts C*(H)<C*(G). 

REMARK 2.10. From [9; Remarks, pp. 476-477], for any locally compact 
group G, we may embed G, L\G), M\G) and C^(G) into W*(G). If H is an 
open subgroup of G, then Theorem 2.9 together with Theorem 2.4 enables us 
to identify W*(H) as a W^-subalgebra of W*(G) and this identification 
extends the natural embeddings from H(L\H)9 MX(H), C*(H) resp.) into 
G(L\G), M\G), C*(G) resp.) 

§3. Embedding theorems for the duals. For A c 2 ( G ) , recall that the dual 
BA(G) of C%(G) is a Banach subalgebra of the Fourier-Stieltjes algebra B(G). 
This section centers at the question when Br(H) can be embedded in BA(G) 
via u —» u° for u G Br(H). 

THEOREM 3.1. For Tci^H) and A c 2 ( G ) , the following conditions are 
equivalent: 

(i) l l / |H| | r<| | / | |A for feLHG); 
(ii) There exists a bounded *-linear map r from C%(G) to C*(H) which 

extends f-^f\ H for feLl(G); 
(iii) For every uePr(H), we have M < T GP A (G) . 

Proof, (i) => (ii) is clear. Assume (ii) and consider the transpose V : Br(H) —» 
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BA(G). Let ueBr(H). Then for feL\G), 

<V(u), / ) = <M, T(/)> = £ u(x) / (x) dx = <U-, / ) . 

Thus tT(w) = Kcr; and if uePr(H), then 

|<u-,/>| = |<ii, T ( / ) > | ^ 11(e) | |T( / ) | |T. 

Since r is bounded, M^GPACG) by [10; Proposition 1.21(iii)]. 

To show that (iii) implies (i), we need the following lemma which can be 
shown by straight-forward calculation. 

LEMMA 3.2. If we write Hc = G\H, then for feLl(G), g e LP(G) and xeH, 
f*g(x) = (f\H)*(g\H)(x) + (f\Hc)*(g\Hc)(x). 

Now assume (iii), and let uePr(H). For f^Lx{G), 

<u~, /**/> = <", (/**/) I H) 
= <u, (/* I H) * (/1 H)) + (M-, (/* | H T * (/1 HT>. 

Since uT e PA(G) and (/* | HCT * (/1 HCT is positive in C£(G), it follows that 
<uCT, /**/>><u, (/* | H) * (/1 H)>. Note that /* | H = (/1 H)*, we have 

H(f iH)**(/ iH)i i r<iir*/ i iA 

in view of [18; 1.5.4]; thus | | / | H| | r<||/ | |A and the proof of Theorem 3.1 is 
complete. 

The equivalent conditions in Theorem 3.1 show when the map u-^u<r 

defines a homomorphism from Br(H) into BA(G). In order to assure that it is 
an isometry, we have 

THEOREM 3.3. If the conditions in Theorem 3.1 are satisfied and C*(H)< 
C%(G), then the map u-^u* is an isometry from Br(H) into BA(G). Further­
more, the map /—>/1 H from LX(G) onto LX(H) induces an expectation <ï> from 
W%(G) onto Wf(H) such that <Ï>(CA(G)) = C?(H). 

Proof. Let ueBr(H), feL\H) and geL\G). We have Ku", g>| = 
\(u, g | H)\ < N | ||g | H\\r<\\u\\ \\g\\A and |<u, / ) | = |<u', f >MI"1I IITL - ll"1l ll/llr, 
thus ||u|| = ||u°"|| and u —» wŒ is an isometry from Br(H) into BA(G). Let <I> be 
the dual of this isometry, then <J> maps W%(G) onto W*(H). It is easy to see 
that <&(/)=/1 H for feL\G); thus if we identify W?(H) as a W*-subalgebra 
of W A ( G ) via the natural embedding, we have <3> © ^ ( a ) = <I>(a) and ||<E>(a)|| <||a|| 
for all aeC%(G). Since CAXG) is weakly dense in W%(G), we have $ 0 $ = $ 
and ||4>(a)||<||a|| for a e W%(G); by a result of Tomiyama [19], it follows that O 
is an expectation. It is clear that <I>(CÏ(G)) <= Cf(H); hence <Ï>(CA(G)) = Cf (H). 
This completes the proof. 
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THEOREM 3.4. If H is an open subgroup of G, then the map u-^u* is an 
isometry of B(H) into B(G), which maps BPi(H) into BP(G). Furthermore, the 
map f-*f\ H extends to an expectation <J>0P resp.) from W*(G)(W*(G) resp.) 
onto W*(H)(W*(H) resp.) and 3>(C*(G)) = C*(H)mC*p(G)) = C*(H) resp.). 

Proof. Since C*(H)<C*(G) by Theorem 2.9 and ueP(H) implies u* e 
P(G) by Lemma 2.8, it follows that u —» u°" is an isometry of B(H) into B(G) 
by Theorem 3.3. To show the rest of the Theorem, it is sufficient to prove 
ll/ |H||Pl<||/ | |p for feL\G) in view of Theorem 3.3. Let feL\G) and 
geL2(H). Then / * g = / | H * g + / | Hc * g, and / | Hc *geL2(Hc) by Lemma 
3.2; thus | | /*g | | 2 ^ | | ( / |H)*g | | 2 . It follows that \\f \ H\\Pi = sup{||(/1 H) * g||2 | 
geL2(H) and ||g||2=s2l}<||/||p for all feL\G). 

COROLLARY 3.5 (cf. [10; 3.21]). Let H he an open subgroup of G. Then 

(1) The map v-+v\H is a norm decreasing homomorphism of A(G) onto 
A(H). Its transpose is an isometric *-homomorphism of VN(H) into VN(G) 
which extends the embedding of C*(H) into C*(G); 

(2) The map u-^u* is an isometric homomorphism of A(H) into A(G). Its 
transpose is an expectation of VN(G) onto VN(H) which maps C*(G) onto 
C*(H). 

Proof. (1) By Theorem 2.3 and 2.4, the map v —» v | H is a norm decreasing 
homomorphism of BP(G) onto BPi(H). It follows from [10; Proposition 3.4] 
that v —> v | H maps A(G) onto A(H). Clearly, its transpose is injective and 
extends f-^f* of ^(H) into ^(G); hence the transpose extends the embed­
ding of C*(H) into C*(G). Hence the transpose is a *-homomorphism from 
VN(H) into VN(G) since C^(H) and C%G) are weakly dense in VN(H) and 
VN(G) respectively. It is an isometry since it is injective. 

(2) It follows from Theorem 3.4 that u-^u" maps A(H) into A(G) 
isometrically, and its transpose is an expectation of VN(G) onto VN(H) if we 
identify VN(H) as a subalgebra of VN(G) by the isometry in (1). 

§4. Applications and examples. First we generalize a result of Paschke and 
Salinas [16; Proposition 1.6]. 

COROLLARY 4.1. Let G be a locally compact group with a non-trivial amena­
ble normal open subgroup H. Then there is a tracial state r on C*(G) such that 
T(f)=$nfdk for all feL1(G). Furthermore, C*(G) is not simple. 

Proof. Since H is amenable, the positive definite function T1? defined 
by TX(X) = 1 for all xeH, is in PPl(H). By Theorem 3.4, T ? G P P ( G ) . Write 
T = T?. Then r can be considered as a state of C*(G) and T( / ) = <T^,/> = 

<T1,/|H> = J„/dA for feL\G). For f,geL\G), r(f*g)=$Hf*gd\ = 
JG JG T(jcy)/(x)g(y) dx dy. Since H is normal in G, r(xy) = r(yx) for x, y e G; it 
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follows that T ( / * g) = r(g * /) ; hence T is a tracial state. Let I = {T: T(T* * T) = 0 
for T e C*(G)}. Then I is an ideal of C*(G) as T is tracial. Observe that T is 
multiplicative on the subalgebra Cpx(H) of C*(G), ker(T | C^H)) is not trivial 
and contained in I. Thus C%G) is not simple. This completes the proof. 

Discrete groups have been used to construct examples (counterexamples) of 
different types of operator algebras ever since Murry and von Neumann began 
the serious study of operator algebras. Among them, the free group F2 on two 
generators was the most prominent. Recently, attention has been paid to 
groups containing F 2 as a subgroup (see [1], [2], [5] and [6]). For the rest of 
this section, G will denote a countable discrete group with identity e. Fn 

denotes the free group n generators and F^ the free group on infinite 
generators. We shall write elements of L2(G) as formal sums £ X G G «X* where 
XxeGlax|2<0°- For yeG, let |3(y) be the operator is L2(G) defined by 

0(y)( Z ttx*)= Z «xvxy"1. 

It is immediate that |8 is a unitary representation of G in L2(G). We shall call 
/3 the inner representation of G. Let H be a subgroup of G with f3u the inner 
representation of H in L2(H). Unlike the left regular representation, |3 | H in 
general is not weakly equivalent to f$x as the following example shows. 

EXAMPLE 4.2. Let G = F2 and H = F1. Then p1 is just the trivial representa­
tion, however, |8 | H is not. Therefore, C^^H) in general cannot be embedded 
in C%(G) as a C*-subalgebra in the canonical way. 

By a similar argument used by Akemann in [1; Theorem 3] and [4; Theorem 
1], we prove the following theorem. 

THEOREM 4.3. Let H be a subgroup of G such that C*(H) is simple and 
{z e H: zw = wz} is amenable for e ¥* w e G. Then C^^H) < C%(G). 

Proof. It suffices to show that ||/||3i = \\f% for feL\H). For weG let 
Cw ={xwx~1: xeH}. We denote by Lw the closed subspace of L2(G) spanned 
by Cw. 

We claim that ||rllp|i^ = ll/llp for e¥=weG and feL\H) where p is the left 
regular representation of H. To prove the claim, we write / = ZxeH«x^ and 
fixed e^weG. Write T = {xeH: xw = wx}. Let H/T be the left coset space 
and let 6 be the unitary representation of H in L2(H/T) defined by left 
translation. Since T is amenable by assumption, the trivial representation is 
weakly contained in the left regular representation of T. By [11; Theorem 4.2] 
and [14; p. 121], 0 is weakly contained in p. By [10; Lemma 1.23], ||/||0 <||/||p. 
Therefore, the identity map i:Lx{H)^Lx{H) extends to a *-homomorphism 
i : C*P{H) -+ Ct(H). Since C*(H) is simple, i is injective; hence ||/||e = ||/||p. Now 

https://doi.org/10.4153/CMB-1983-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1983-026-9


1983] EMBEDDING THEOREMS IN GROUP C*-ALGEBRAS 165 

let geLw and g = £ X G H axxwx~x, define g' = £ x e H ax(xT). It is clear that g -* g' 
is an isomorphism of Lw onto L2(H/T), and we have, for every y e H , 

0 ( y ) ( g ) ) ' = ( p ( y ) ( l «Xxwx~l))'= I «xyxT=0(y)(g'). 

Hence j3 | Lw is unitary equivalent to 6 on H. It follows that H/llpn^ = \\f\\e, hence 

ll/llpli^HI/IU a n d t h e c l a i m i s proved. 
It is clear that {Cw: weG} partitions G and Pif*) reduces Lw for weG 

Therefore, we have |||8(/cr)|| = supweG|||3(/or) | Lw||. Since {Cw: weH} partitions 
H and 0i(f) | LW is unitarily equivalent to j3(/<T)|Lvv for weH, we have 
HPi(/)ll = supw e H | |0(T)|Lwl|. By definition (see §1), ||/3(f) | i^w|| = il/H3|x_; 
whence it follows from the claim that ||j8(/°") | L j | = ||/||p for e¥=weG Thus 
| | |8(r) |hmax{| | / |Le | | , ||/||p} = |l0i(/)ll- This completes the proof. 

REMARK 4.4. Under the same hypothesis of Theorem 4.3, we have ||/||3l = 

\\f% =max{|LceH«xUI/llp} for / = Z x e H « x x since | | / | L e | | - E x e H a x | . 

COROLLARY 4.5. Let Gt and G2 be nontrivial groups (not both of order 2) with 
G^Gx* G2, their free product. Then C%n(Fn) can be embedded in C%(G) as a 
C*-subalgebra for n>l or equals oo where j3n denotes the inner representation of 
Fn on L2(Fn). 

Proof. By [2; Corollary 6], G contains a free non-abelian subgroup F for 
which {z e F: wz = zw} is abelian for each e¥=weG. As any non-abelian free 
group contains free subgroup of any rank, the corollary follows. 

Using Corollary 4.5 and Remark 4.4, we can easily find examples of groups 
and group representations such that they satisfy the conditions in Theorem 2.5 
but fail the conditions in Theorem 3.1. 

EXAMPLE 4.6. Let F3 be the free group on generators w, v and w. Let F2 be 
the subgroup of F 3 generated by u and v. Let ft denote the inner representa­
tion of Ft on L2(Ft) for i = 2 ,3 . Then by Corollary 4.5, we have C%2(F2)< 
C%3(F3). Now let {xt | i = 1, 2 , . . .} be a free set of F2 . Let fn = QJ= 1 xt) - w. Then 
fneL\F3) and fn\F2 = ZU*i- By Remark 4.4, ||/n||33 = max{n-l, | | /n | |p} and 
| | / n |F 2 | | 3 2 = max{n,||/n |F2 | |p}. By Theorem 1V.K. of [3], | | /Jp=2>/n and 
ll/n l-f̂ llp = 2 V ( n - l ) . Therefore, by choosing a sufficiently large n, we have 
ll/nll(33

<ll/n I J l̂lfe- It follows by Theorem 3.1 that u^u* is not an embedding 
of JB32(F2) into /333(F3). 

REMARK 4.7. In [6], [7] and [20], some unusual aspects of C*(F2) and 
C*(F2) have been shown. We remark that by using embedding theorems for 
group C*-algebras and their duals those results can easily be extended to 
C*(Fn) and C*n(Fn) for n>\ or equals oo. 
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