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Abstract. Let G be a torsion-free, finitely generated, nilpotent and metabelian group.
In this work, we show that G embeds into the group of orientation-preserving
C1+α-diffeomorphisms of the compact interval for all α < 1/k, where k is the torsion-free
rank of G/A and A is a maximal abelian subgroup. We show that, in many situations,
the corresponding 1/k is critical in the sense that there is no embedding of G with
higher regularity. A particularly nice family where this happens is the family of
(2n+ 1)-dimensional Heisenberg groups, for which we can show that the critical
regularity is equal to 1 + 1/n.
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1. Introduction
Given an integer n ≥ 0 and a real number α ∈ [0, 1), we denote by Diff n+α+ ([0, 1]) the
group of all orientation-preservingCn-diffeomorphisms of the closed interval [0, 1] whose
nth derivative is α-Hölder continuous (Cn+α-diffeomorphisms for short). Observe that,
with this notation, the group Diff 0+([0, 1]) is the group of all homeomorphisms of [0, 1]
isotopic to the identity. Finally, observe that the family of groups Diff n+α+ ([0, 1]) is totally
ordered by inclusion because Diff n+α+ ([0, 1]) ⊇ Diff n

′+α′
+ ([0, 1]) if and only if n < n′, or

n = n′ and α ≤ α′.
We are interested in computing the critical regularity of an abstract group G acting on

the interval [0, 1]. Recall that, given a group G, the critical regularity of G on [0, 1] is, by
definition,

Crit[0,1](G) = sup{n+ α | n ≥ 0, α ∈ [0, 1) and G embeds into Diff n+α+ ([0, 1])},
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2 M. Escayola and C. Rivas

where we set Crit[0,1](G) = −∞ if G does not embed into Diff 0+([0, 1]). The problem of
computing the critical regularity of a group G is quite natural and turns out to be very
interesting in the case when G is finitely generated (the reader may wish to consult [15] for
an introduction). For example, we know from a theorem of Deroin, Kleptsyn and Navas
[8] (see also [7]) that every countable subgroup of Diff 0+([0, 1]) is conjugated to a group
of bi-Lipschitz transformations, and hence 1 ≤ Crit[0,1](G) for every countable subgroup
of Diff 0+([0, 1]) (for uncountable subgroups of Diff 0+([0, 1]) this is no longer true; see
[5]). However, the celebrated stability theorem of Thurston [26] implies that every finitely
generated subgroup of Diff1+([0, 1]) admits a surjective homomorphism onto the integers,
and so not every group of homeomorphisms of the interval can be realized as a group
of diffeomorphisms. (Concrete examples of finitely generated subgroups of Diff 0+([0, 1])
having trivial abelianization can be found in [2, 24, 26]. However, Thurston’s obstruction is
not the only obstruction for C1 smoothability, as there are also known examples of finitely
generated and locally indicable groups having no faithful C1 action on the interval; see
[3, 5, 16, 19].) Further obstructions appear in higher regularity: for C2 there is the
important Kopell obstruction [17], and between C1 and C2 there is the generalized Kopell
obstruction from [8]. In a related spirit, Kim and Koberda [14], and later Mann and Wolff
[18], have shown that, for every n ≥ 1 and every α in [0, 1), there is a finitely generated
group whose critical regularity on [0, 1] is exactly n+ α.

In this work, we focus on actions on the interval of finitely generated and torsion-free
nilpotent groups (basic definitions will be recalled in §2). Let G be one such group. It
follows from the work of Mal’cev that G embeds into Diff 0+([0, 1]) (see, for example, [25,
§5.2] and [9, §1.2]), and we know from the work of Farb and Franks [10] that every action
of G on [0, 1] by homeomorphisms can be conjugated inside Diff1+([0, 1]) (see also the
universal construction from Jorquera [12]). This was further refined by Parkhe [21] who
showed that actually any C0-action of G on [0, 1] can be conjugated inside Diff1+α+ ([0, 1])
as long as α < 1/τ , where τ is the degree of the polynomial growth of the nilpotent group
G. On the other hand, Plante and Thurston [23] have shown that every nilpotent subgroup
of Diff2+([0, 1]) must be abelian. So, if G is a torsion-free, finitely generated and nilpotent
group that is non-abelian, then

1 + 1/τ ≤ Crit[0,1](G) ≤ 2.

The exact critical regularity of concrete nilpotent groups has been computed in only
few cases and one important goal of this work is to provide new explicit computations
of critical regularity for certain groups. Castro, Jorquera and Navas [6] build a family of
nilpotent abelian-by-cyclic groups whose critical regularity is two. These examples can
be made of arbitrarily large nilpotency degree, yet they are all metabelian (that is their
commutator subgroup is abelian). Jorquera, Navas and the second author showed in [13]
that the critical regularity of N4 (the group of 4-by-4 upper triangular matrices with 1 on
the diagonal) is 1 + 1/2. We point out that, at the time of writing this article, N4 is the
only torsion-free nilpotent group whose critical regularity is known and turns out not to be
an integer. Note that N4 is also a metabelian group.

The main purpose of this article is to exhibit many other nilpotent groups whose critical
regularity is strictly between one and two. Our main technical result is an improvement
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of Parkhe’s lower bound for the critical regularity in the class of finitely generated,
torsion-free nilpotent groups that are metabelian (see Remark 1.1). For the statement, recall
that the torsion-free rank of an abelian group H is the dimension of the Q-vector space
H ⊗ Q. We denote this rank by rank(H).

THEOREM A. Let G be a non-abelian, torsion-free, finitely generated nilpotent group
that is metabelian, and let A be a maximal abelian subgroup containing [G, G]. If
k = rank(G/A), then

G embeds into Diff1+α+ ([0, 1]) for all α < 1/k.

In particular, 1 + 1/k ≤ Crit[0,1](G).

Remark 1.1. By the Bass–Guivarc’h formula [1, 11], the degree of the polynomial growth
of a nilpotent group G is τ = ∑

i≥1 irank(γi/γi+1), where G = γ1 � γ2 � · · · is the
lower central series of G. In particular, for a nilpotent group G as in Theorem A with
maximal abelian subgroup A, we have that rank(G/A) < τ . Hence, the lower bound for
Crit[0,1](G) in Theorem A is (strictly) greater than Parkhe’s lower bound.

The proof of Theorem A is given in §3. Taking inspiration from the abelian-by-cyclic
action from [6, §4], in §3.1, we build, for a metabelian and finitely generated torsion-free
nilpotent group G, a family of actions of G on the interval [0, 1] by orientation-preserving
homeomorphisms. This is done by first building actions of G on Zk+1 that preserve a
lexicographic order and then ‘projecting’ them into the interval. In §3.2, we use the
Pixton–Tsuboi technique [22, 27] to show that these actions can be smoothed to actions by
C1+α-diffeomorphisms for any α < 1/k. This section closely follows the work in [6], the
main difference being that we do not have explicit polynomials in the construction of the
actions, but only bounds on them (see Proposition 3.1). Although these actions may not be
faithful, in §3.3, we explain how to glue some of these actions to obtain an embedding of
G into Diff1+α+ ([0, 1]) for any α < 1/k.

In some situations, even the lower bound in Theorem A is not sharp in the sense that
there are groups for which the theorem applies yet their critical regularity is strictly greater
than the predicted lower bound. This is related to the possibility of splitting the group as a
product of two groups that each allow an embedding with higher regularity. We provide an
easy example of this phenomenon in §4.3. However, in many cases, we can ensure that the
inequality in Theorem A is indeed optimal and, in §§4.1 and 4.2, we provide two families
of examples where we can obtain upper bounds for the regularity and hence compute the
critical regularity.

The first family of examples are the (2n+ 1)-dimensional discrete Heisenberg groups,
which we denote by Hn. Recall that, by definition,

Hn :=
⎧⎨
⎩

⎛
⎝ 1 	x c

	0 t In 	y t
0 	0 1

⎞
⎠ : 	x, 	y ∈ Zn and c ∈ Z

⎫⎬
⎭,

where In is the identity matrix of size n and 	0 t , 	y t are the transposes of 	0, 	y, respectively. It
is easy to see that these groups are nilpotent of degree two and hence they are metabelian.
Moreover, a maximal abelian subgroup A of Hn is given by the set of matrices whose
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corresponding vector 	x = 0. In particular, Hn/A has torsion-free rank equal to n. For this
family, we show in §4.1 that there is no embedding of Hn into Diff1+α+ ([0, 1]) for α > 1/n.
In particular, we obtain the following theorem.

THEOREM B. Let Hn be the (2n+ 1)-dimensional discrete Heisenberg group. Then

Crit[0,1](Hn) = 1 + 1
n

.

Finally, in §4.2, we produce examples of metabelian and torsion-free nilpotent groups
for which we can compute the critical regularity but whose nilpotency degree can be
chosen to be arbitrarily large. More precisely, we show the following theorem.

THEOREM C. For any integers k and d with d > k, there is a nilpotent group G and a
maximal abelian subgroup A containing [G, G] such that d is the nilpotency degree of G,
k is the torsion-free rank of G/A and

Crit[0,1](G) = 1 + 1
k

.

In both cases, the key to obtaining an upper bound for the regularity is to use the internal
algebraic structure of the groups to be able to apply the generalized Kopell lemma from [8].

Remark 1.2. We know from the results of Kim and Koberda [14] that, for any real number
α ≥ 1, there is a finitely generated group whose critical regularity is exactly α. However,
in all known cases where the critical regularity of a torsion-free nilpotent group has been
computed, it is of the form 1 + 1/n for some integer n. See Theorems B, C and [6, 13]. So,
we wonder whether this is always the case for torsion-free and finitely generated nilpotent
groups (not necessarily metabelian).

2. Preliminaries on nilpotent groups and invariant orders
Given a group G and two elements f , g ∈ G, we let [f , g] = fgf−1g−1 denote the
commutator of f and g. Further, if G is finitely generated and S is a finite generating set, an
element of the form [s1, s2] with s1, s2 ∈ S is called a simple commutator of weight two.
Inductively, a simple commutator of weight n is defined as an element of the form

[s1, . . . , sn] := [s1, [s2, . . . , sn]], s1, . . . , sn ∈ S.

Note that, given n, there exists only a finite number of simple commutators of weight n.
Let H and K be subgroups of G. [K , H ] denotes the subgroup of G generated by

commutators [g, h] with g ∈ K and h ∈ H . The subgroup [G, G] is called the commutator
subgroup and we say that G is metabelian if [G, G] is abelian.

Remember that the lower central series of G is

G = γ0 � γ1 � γ2 � · · · ,

where γ1 = [G, G] and γi = [G, γi−1]; and the upper central series of G is

{e} = ζ0 � ζ1 � ζ2 � · · · ,

where ζi/ζi−1 = Z(G/ζi−1), and Z(G) denotes the center of G.
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We recall some classic results about nilpotent groups. See [25] for an in-depth
exposition of them. The group G is nilpotent of degree n if ζn = G but ζn−1 
= G. In
this case, it also happens that γn = {e} but γn−1 
= {e}. Therefore, in a finitely generated
nilpotent group of degree n, we only have a finite number of simple commutators (for a
fixed generating set). This is because all simple commutators of weight n are trivial.

It is a result of Mal’cev that, if G is a torsion-free nilpotent group, then the factors
ζi/ζi−1 are also torsion free for all i ∈ {1, . . . , n} (see [25, Proposition 5.2.19]). Recall
also that finitely generated nilpotent groups are polycyclic, and hence every subgroup of a
finitely generated nilpotent group is finitely generated as well (see [25, Proposition 5.4.12]).
In addition, nilpotent groups also satisfy that their non-trivial normal subgroups always
intersect non-trivially the center of the group (see [25, Proposition 5.2.1]). An immediate
consequence of this is the following useful result.

PROPOSITION 2.1. Let G be a nilpotent group, let H be a group and let ϕ : G → H be
a group homomorphism. Then ϕ is injective if and only if ϕ |Z(G) (the restriction of ϕ to
Z(G)) is injective.

For g ∈ G, Centr(g) = {h ∈ G | gh = hg} denotes the centralizer of g. The following
proposition, although elementary, will be very important for building actions of G on Zk+1

in §3.1.

PROPOSITION 2.2. Let G be a torsion-free and finitely generated nilpotent group that is
metabelian.
• Given g ∈ G and 0 
= m ∈ Z, we have that Centr(gm) = Centr(g).
• Let A � G be a maximal abelian subgroup. If A is normal in G, then G/A is torsion

free.

Proof. Assume that f , g ∈ G and m ∈ Z are such that [f , gm] = e. Define H := 〈f , g〉,
the subgroup generated by f and g. Since [g, gm] = [f , gm] = e, we have that gm ∈ Z(H),
and, since H/Z(H) is torsion free (see [25, Proposition 5.2.19]), we have that g ∈ Z(H).
Therefore, Centr(gm) ⊆ Centr(g) (the other inclusion is obvious).

The second point follows from the first. Let A be a maximal abelian subgroup that is
also normal and assume that G/A is not torsion free. Suppose g ∈ G is such that g /∈ A
but gm ∈ A for some m 
= 0. Then, since A is abelian, we have that A ⊆ Centr(gm) =
Centr(g). In particular, 〈A, g〉, the group generated by A and g, is an abelian subgroup
larger than A, which contradicts our assumption.

2.1. On the action of G/A on A. Let G be a torsion-free and finitely generated nilpotent
group of degree n that is also metabelian. Let A be a maximal abelian subgroup containing
[G, G] (in particular, it is normal). In view of Proposition 2.2, we have that G is an
extension of Zk by Zd ,

1 −→ Zd −→ G −→ Zk −→ 1,

where A � Zd and G/A � Zk . In this section, we study the natural action of G/A on A
coming from the conjugacy action of G on A.
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Let {g1, . . . , gd} and {f1A, . . . , fkA} be generating sets of A and G/A, respectively.
Since A is normal, the subgroup of G generated by f1, . . . , fk acts on A by automorphisms
yielding a homomorphism

〈f1, . . . , fk〉 −→ Aut(Zd).

Therefore, the action of each f ∈ 〈f1, . . . , fk〉 is given by a matrix Af ∈ GLd(Z), which
depends on the set {g1, . . . , gd}. We call Af the conjugacy matrix of f. In the special case
of the generators f1, . . . , fk , we denote the conjugacy matrix of fi simply by Ai .

In the next lemma, we will see that we can always choose a generating set of A such that
the conjugacy matrices of the elements f1, . . . , fk belong to Ud(Z), the group of upper
triangular matrices with 1 in the diagonal. This is due to Mal’cev in the case where the
matrix coefficients belong to a field. We write a direct proof in our special case. For the
proof, we say that a generating set of a group is minimal if it has least possible cardinality.

LEMMA 2.3. Let A � G be a maximal abelian subgroup satisfying that [G, G] ⊆ A.
Suppose that Zd � A and Zk � G/A = 〈f1A, . . . , fkA〉. Then there exists a generating
set {g1, . . . , gd} of A such that the conjugacy matrices of the elements f1, . . . , fk belong
to Ud(Z). In particular, the nilpotency degree of G is bounded by d + 1.

Proof. Since G is nilpotent of degree n, the upper central series

{e} = ζ0 � ζ1 � · · · � ζn = G,

is finite. Remember that all the factors ζi/ζi−1 are torsion free. Combining this with the
fact that G/A is also torsion free (see Proposition 2.2), we have, for g ∈ G, that

gj ∈ ζi ∩ A ⇒ g ∈ ζi ∩ A for all i ∈ {0, . . . , n}, j ∈ Z. (2.1)

Define �i := ζi ∩ A and let m be the smallest element in {1, . . . , n} such that �m = A.
This yields the filtration

{e} = �0 � �1 � · · · � �m = A,

such that

[G, �i] ⊆ �i−1, (2.2)

and, by (2.1), it also has the property that each factor �i+1/�i is torsion-free abelian.
Note that, if�m−1 � Znm−1 and�m/�m−1 � Znm , then, since�m = A � Zd is abelian,

we have that d = nm−1 + nm. Therefore, if {g1, . . . , gnm−1} and {gnm−1+1�m−1, . . . ,
gnm−1+nm�m−1} are minimal generating sets of �m−1 and �m/�m−1, respectively, then
{g1, . . . , gnm−1 , gnm−1+1, . . . , gd} is a minimal generating set of �m = A.

Recursively, we obtain a minimal generating set {g1, . . . , gd} of A which, by (2.2),
has the property that, for gs ∈ {g1, . . . , gd} ∩ �i , it holds that [fj , gs] ∈ �i−1 ⊆
〈g1, . . . , gs−1〉 for all j ∈ {1, . . . , k}. In other words, the conjugacy matrices of each
f ∈ {f1, . . . , fk} belong to Ud(Z).

The fact that G has nilpotency degree bounded by d + 1 follows from the fact that
Ud(Z) has nilpotency degree d + 1.
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2.2. Invariant orders and their dynamical versions. We close these preliminaries with
the concepts of order and dynamical realization. A group G is left-orderable if it admits a
total order relationship, say, �, which is invariant under multiplication from the left: that
is, if f � g, then hf � hg for all h ∈ G. An important family of left-orderable groups is
that of finitely generated and torsion-free abelian groups. Indeed, we will repetitively use
the lexicographic order of Zn defined by

(i1, . . . , in) ≺ (i′1, . . . , i′n) ⇔ there exists k ∈ {1, . . . , n} such that

ik < i′k and is = i′s for s < k. (2.3)

What is important for this work is that a countable group is left-orderable if and only
if it embeds into Diff 0+(R) (see [20, §2] or [9, §1.1.3] for details). Since Diff 0+(R) is
isomorphic to Diff 0+([0, 1]), left-orderability of a countable group is equivalent to being
isomorphic to a subgroup of Diff 0+([0, 1]). More generally, given a group G that acts on
a countable and totally ordered set (�, �) by order-preserving bijections, say, ω �→ g(ω),
for g ∈ G and ω ∈ �, then there is a dynamical realization of this action. This means
that there is an order-preserving map i : (�, �) → ([0, 1], ≤) and a homomorphism
ψ : G → Diff 0+([0, 1]) satisfying that ψ(g)(i(ω)) = i(g(ω)) for every ω ∈ � and every
g ∈ G. See [4, Lemma 2.40] for a proof. Clearly,ψ is an embedding whenever the G action
on � is faithful.

3. Proof of Theorem A
Throughout this section, G will denote a non-abelian, torsion-free, finitely generated
nilpotent group that is metabelian, and A will denote a maximal abelian subgroup
containing [G, G] (in particular, it is normal). Recall that then G is an extension of
G/A � Zk by A � Zd (see §2.1). In particular, the nilpotency degree of G is bounded
by d + 1 (see Lemma 2.3).

3.1. An action of G on a totally ordered set.

PROPOSITION 3.1. Fix a generating set {g1, . . . , gd , f1, . . . , fk} of G such that
{g1, . . . , gd} is a generating set of A given by Lemma 2.3 and 〈f1A, . . . , fkA〉 = G/A �
Zk . Then, for a fixed s ∈ {1, . . . , d}, there is an action of G on Zk+1 that satisfies the
following.
(1) For all m ∈ {1, . . . , d} and all t ∈ {1, . . . , k}, there exist functions �t , rm : Zk →

Z, such that

ft · (i1, .., it , .., ik , j) = (i1, .., it + 1, .., ik , j + �t (i1, . . . , ik)),

gm · (i1, . . . , ik , j) = (i1, . . . , ik , j + rm(i1, . . . , ik)).

In particular, the action of G on Zk+1 preserves the lexicographic order. In addition,
rs ≡ 1 and r1 = r2 = · · · = rs−1 ≡ 0.

(2) There exists a positive constant M such that, for all t ∈ {1, . . . , k}, m ∈ {1, . . . , d}
and (i1, . . . , ik) 
= (0, . . . , 0),

|�t (i1, . . . , ik)| ≤ M(|i1| + · · · + |ik|)d , |rm(i1, . . . , ik)| ≤ M(|i1| + · · · + |ik|)d .
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Proof. We start by showing item 1. To this end, fix s ∈ {1, . . . , d} and consider the
subgroup Hs = 〈{g1, . . . , gd} \ {gs}〉. Since the sets {f i11 · · · f ikk A : i1, . . . , ik ∈ Z} and
{gjs Hs : j ∈ Z} are partitions of G and A, respectively, the coset space can be described by
the normal forms

G/Hs = {f i11 · · · f ikk gjs Hs : i1, . . . , ik , j ∈ Z}. (3.1)

Hence, we can identify G/Hs with Zk+1 (as sets) by identifying f i11 · · · f ikk gjs Hs with
(i1, . . . , ik , j). In particular, the left-multiplication action of G on G/Hs provides an
action of G on Zk+1. This is the action that we want to consider.

Now, by Lemma 2.3, we have that, for all i, j ∈ {1, . . . , k} and l ∈ {1, . . . , d}, it holds
that

fifj ∈ fjfi〈g1, . . . , gd〉 and glfj ∈ fjgl〈g1, . . . , gl−1〉.
Therefore, for t ∈ {1, . . . , k}, the action of ft is addition by 1 on the t coordinate and the
action on the k + 1 coordinate depends on previous k coordinates, and hence the function
�t . The function rm, for m ∈ {1, . . . , d}, can be found analogously. Finally, as the maps �t
and rm depend only on the coordinates (i1, . . . , ik), the reader can easily verify that the G
action on Zk+1 preserves the lexicographic order.

Now we check item 2. Let t ∈ {1, . . . , k}. Recall that the action of ft on Zk+1 is nothing
but the left-multiplication action of ft on G/Hs . Hence, in order to compute the image
of f i11 · · · f itt · · · f ikk gjs Hs under ft , we need to multiply and find the representative in
normal form (3.1). To do this, observe that ftfj = [ft , fj ]fjft . Hence, bringing ft to the
tth position generates at most |i1| + · · · + |ik| simple commutators of weight two, which
we now need to move to the rightmost place (i.e. after the f ikk but before gjs ). Since G
is metabelian, the commutators commute with each other. So, moving them all to the
rightmost place generates at most (|i1| + · · · + |ik|)2 simple commutators of weight three.
Analogously, moving them all to the rightmost place, we have at most (|i1| + · · · + |ik|)3
simple commutators of weight four, and so on. Since G has nilpotency degree bounded
by d + 1, all simple commutators of this weight are trivial (see Lemma 2.3). Therefore,
repeating the previous argument d + 1 times gives

ft .(f
i1
1 · · · f itt · · · f ikk gjs Hs) = f

i1
1 · · · f it+1

t · · · f ikk ggjs Hs ,
where g ∈ A is the product of at most

d∑
i=1

(|i1| + · · · + |ik|)i ≤ d(|i1| + · · · + |ik|)d

simple commutators. Now note that

g.gjs Hs = g�t (i1,...,ik)
s g

j
s Hs ,

since �t (i1, . . . , ik) agrees with the exponent of gs in the expression of g over the
generators g1, . . . , gd . Therefore, letting S ⊆ A be the set of all simple commutators of G
(which is finite), and defining

λ := max{|ms | : there exists m1, . . . , md for which (gm1
1 · · · gmss · · · gmdd ) ∈ S},
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we see that �t (i1, . . . , ik) is bounded by λ times the number of simple commutators that
were used to write g. Hence,

|�t (i1, . . . , ik)| ≤ λd(|i1| + · · · + |ik|)d .

Analogous computations give the inequality for the functions rm.

Remark 3.2. Note that the action built in Proposition 3.1 is not necessarily faithful.
However, it is such that the elements g1, . . . , gs−1 act trivially and gs(i1, . . . , ik , j) =
(i1, . . . , ik , j + 1). This will be used in §3.3 to build a faithful action.

3.2. Action by diffeomorphisms of [0, 1]. For a fixed s ∈ {1, . . . , d}, Proposition 3.1
builds an action of G on Zk+1 that preserves the lexicographic order. Hence, we can
consider the dynamical realization of this action (see the beginning of §2.2) to get a
G-action by orientation-preserving homeomorphisms of [0, 1].

Now, since the group is nilpotent and we have good control from the polynomials
appearing in Proposition 3.1, we will see that this action can actually be smoothed to an
action by diffeomorphisms of [0, 1]. For this, we need the following result from Pixton and
Tsuboi [22, 27]. See the proof of Proposition 1.2 in [27] for details.

LEMMA 3.3. There exists a family of C∞-diffeomorphisms ϕJ
′,J

I ′,I : I → J , ranging over
all bounded intervals I, I ′, J, J ′ of R, where I ′ (respectively, J ′) is adjacent to I
(respectively, J) by the left, such that:
(1) for all I , I ′, J , J ′, K , K ′ as above,

ϕ
K ′,K
J ′,J ◦ ϕJ ′,J

I ′,I = ϕ
K ′,K
I ′,I ;

(2) for all I , I ′, J , J ′,

Dϕ
J ′,J
I ′,I (x−) = |J ′|

|I ′| and Dϕ
J ′,J
I ′,I (x+) = |J |

|I | ,

where x− (respectively, x+) is the left (respectively, right) endpoint of I;
(3) there is a constant M such that, for all I , I ′, J , J ′ as above, and all x ∈ I ,

D log(DϕJ
′,J

I ′,I )(x) ≤ M

|I |
∣∣∣∣ |I ||J

′|
|J ||I ′| − 1

∣∣∣∣,
provided that max{|I |, |I ′|, |J |, |J ′|} ≤ 2 min{|I |, |I ′|, |J |, |J ′|}; and

(4) given I , I ′, J , J ′, K , K ′, L, L′, as above, then

|log(DϕK
′,K

I ′,I )(x)− log(DϕL
′,L

J ′,J )(y)| ≤
∣∣∣∣log

|K||J |
|I ||L|

∣∣∣∣ +
∣∣∣∣log

|K ′||I |
|I ′||K|

∣∣∣∣ +
∣∣∣∣log

|L′||J |
|J ′||L|

∣∣∣∣,
for all x ∈ I , y ∈ J .

Now, let {Ii1,...,ik ,j : (i1, . . . , ik , j) ∈ Zk+1} be a family of intervals whose disjoint
union is dense in [0, 1] and that are disposed preserving the lexicographic order of Zk+1.
We identify the generators g1, . . . , gd , f1, . . . , fk from Lemma 2.3 with elements in
Diff 0+([0, 1]) as follows: ft and gs will be homeomorphisms of [0, 1] whose restriction
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to Ii1,...,ik ,j coincides, respectively, with

ϕ
Ii1,...,it+1,...,ik ,j+�t (i1,...,ik )−1, Ii1,...,it+1,...,ik ,j+�t (i1,...,ik )
Ii1,...,ik ,j−1, Ii1,...,ik ,j

and ϕ
Ii1,...,ik ,j+rs (i1,...,ik )−1, Ii1,...,ik ,j+rs (i1,...,ik )
Ii1,...,ik ,j−1, Ii1,...,ik ,j

,

for t ∈ {1, . . . , k} and s ∈ {1, . . . , d}. Thus, by (1) in Lemma 3.3, we have a group
homomorphism G → Diff 0+([0, 1]). The main technical step for proving Theorem A is
the following proposition.

PROPOSITION 3.4. Given α < 1/k, there is a choice of lengths of the intervals |Ii1,...,ik ,j |
such that the homeomorphisms f1, . . . , fk , g1, . . . , gd are diffeomorphisms of class
C1+α .

The rest of §3.2 is devoted to the proof of Proposition 3.4. We assume that k ≥ 2 since,
after Condition (3) in Proposition 3.1, we can use the estimates from [6, §4] to ensure that,
when k = 1, the action is by C1+α diffeomorphisms for any α < 1.

So let k ≥ 2 and consider α < 1/k. Choose positive real numbers p1, . . . , pk , r such
that, for all n ∈ {1, . . . , k}:

(I) α + r ≤ 2;
(II) d(r − 1) ≤ (1 − α);

(III) 2dr ≤ pn;
(IV) 2d ≤ pn(1 − α);
(V) 1/p1 + · · · + 1/pk + 1/r < 1; and

(VI) α ≤ 1/pn + 1/r and α ≤ r/pn(r − 1).
For example, one can take p1 = · · · = pk = 3d/α and r = 3d/(3d − 1).

Now define the lengths of the intervals Ii1,...,ik ,j as

|Ii1,...,ik ,j | = 1
|i1|p1 + · · · + |ik|pk + |j |r + 1

.

From condition (V,) it follows that
∑|Ii1,...,ik ,j | < ∞, and hence this family of intervals can

be disposed on a finite interval respecting the lexicographic order. After renormalization,
we can assume that this interval is [0, 1].

Following [13], we say that two real-valued functions f and g satisfy f ≺ g if there is
a constant M > 0 such that |f (x)| � Mg(x) for all x. We also write f � g if f ≺ g and
g ≺ f .

Let θ be a non-negative C2 real-valued function satisfying θ(ξ) = |ξ |r for |ξ | � 1 and
θ(0) = 0. Consider the auxiliary functions (C2 with respect to ξ ):
• ψ(i1, . . . , ik , ξ) := 1 + |i1|p1 + · · · + |ik|pk + θ(ξ); and
• �i1,...,ik (ξ) := log(ψ(i1, . . . , ik , ξ)).

LEMMA 3.5. Let S = 1 + |i1|p1 + · · · + |ik|pk . Given C > 0, there exists a positive
constant M such that the inequality

1
M
ψ(i1, . . . , ik , j) ≤ ψ(i1, . . . , ik , ξ) ≤ Mψ(i1, . . . , ik , j),

holds for any ξ satisfying |ξ − j | ≤ C(S1/r + (|i1| + · · · + |ik|)d).
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We remark that, in the situation of Lemma 3.5, we will still use the notation
ψ(i1, . . . , ik , j) � ψ(i1, . . . , ik , ξ). Even if this is a slight abuse of notation, it is justified
by comparing the functions ψj and ψξ defined by ψξ (i1, . . . , ik) = ψ(i1, . . . , ik , ξ) and
ψj (i1, . . . , ik) = ψ(i1, . . . , ik , j) whenever the inequality |ξ − j | ≤ C(S1/r + (|i1| +
· · · + |ik|)d) holds.

Proof of Lemma 3.5. By symmetry, it is enough to show that ψ(i1, . . . , ik , ξ)/
ψ(i1, . . . , ik , j) is bounded above. For this we note that

ψ(i1, . . . , ik , ξ)
ψ(i1, . . . , ik , j)

≺ 1 + |i1|p1 + · · · + |ik|pk + |j |r + |ξ − j |r
ψ(i1, . . . , ik , j)

≺ 1 + S + (|i1| + · · · + |ik|)dr
ψ(i1, . . . , ik , j)

≺ 2 + (|i1| + · · · + |ik|)dr
ψ(i1, . . . , ik , j)

,

where we repeatedly use the inequality |x + y|a ≺ |x|a + |y|a , which holds for any a > 0.
Now, notice that the last expression is bounded. Indeed, since (|i1| + · · · + |ik|)dr ≺
|i1|dr + · · · + |ik|dr , it is enough to observe that, for each n ∈ {1, . . . , k},

|in|dr ≤ (ψ(i1, . . . , ik , j))dr/pn ≤ ψ(i1, . . . , ik , j),

which holds due to condition (III).

3.2.1. The maps gs are C1+α-diffeomorphisms. We start the proof of Proposition 3.4 by
showing that the maps gs , for s ∈ {1, . . . , d}, are of class C1+α . That is, we want to show
that gs is a C1-diffeomorphism and that there is a constant C > 0 such that

|log Dgs(x)− log Dgs(y)|
|x − y|α ≤ C for all different x, y ∈ [0, 1].

To check this, it is enough to find a uniform C, as above, for points x, y in
⋃
j Ii1,...,ik ,j

(independent of i1, . . . , ik). Indeed, after condition (2) in Lemma 3.3 and the definition of
gs , it follows that gs has derivative 1 at the end points of the intervals

⋃
j Ii1,...,ik ,j . Hence

the conditions from [20, Lemma 4.1.22] are satisfied, and therefore we obtain that the gs
are of class C1+α .

Case 1: The points x, y belong to the same I := Ii1,...,ik ,j . Condition (3) in Lemma 3.3
provides a Lipschitz constant for log(Dgs). So it is enough to bound

1
|I |α

∣∣∣∣ |I ||J
′|

|J ||I ′| − 1
∣∣∣∣,

where I ′ = Ii1,...,ik ,j−1, J = Ii1,...,ik ,j+rs (i1,...,ik) and J ′ = Ii1,...,ik ,j+rs (i1,...,ik)−1.
We will, in fact, bound the following (a posteriori) asymptotically equivalent expression

1
|I |α log

|I ||J ′|
|J ||I ′| .

For this, notice that log |I ||J ′|/|J ||I ′| is equal to

�i1,...,ik (j + rs(i1, . . . , ik))−�i1,...,ik (j + rs(i1, . . . , ik)− 1)− (�i1,...,ik (j)

−�i1,...,ik (j − 1)).
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So, applying the mean value theorem first to the function x �→ �i1,...,ik (j + 1 + x)−
�i1,...,ik (j + x) and then to the function x �→ D�i1,...,ik (x) gives∣∣∣∣log

|I ||J ′|
|J ||I ′|

∣∣∣∣ = |rs(i1, . . . , ik)||D2(�i1,...,ik )(ξ)|, (3.2)

where ξ is a point in the convex hull of {j − 1, j , j − 1 + rs , j + rs}. We find an upper
bound for |D2(�i1,...,ik )(ξ)|. Since Dθ and D2θ are bounded on [−1, 1], and

D2(�i1,...,ik )(ξ) = D2θ(ξ)

ψ(i1, . . . , ik , ξ)
− (Dθ(ξ))2

(ψ(i1, . . . , ik , ξ))2
,

we have that

D2(�i1,...,ik )(ξ) ≺ 1
ψ(i1, . . . , ik , ξ)

for all ξ ∈ [−1, 1]. On the other hand, for ξ /∈ [−1, 1], we have that θ(ξ) = |ξ |r . So, since
|ξ |r−2 < 1 and |ξ |r/ψ(i1, . . . , ik , ξ) < 1, it follows that

D2(�i1,...,ik )(ξ) ≺ |ξ |r−2

ψ(i1, . . . , ik , ξ)
≺ 1
ψ(i1, . . . , ik , ξ)

. (3.3)

Now, going back to equation (3.2) and using (3) of Proposition 3.1,

log
|I ||J ′|
|J ||I ′| ≺ |i1|d + · · · + |ik|d

ψ(i1, . . . , ik , ξ)
.

Note that, for all n ∈ {1, . . . , k}, condition (IV) yields

|in|d ≤ (ψ(i1, . . . , ik , ξ))d/pn ≤ (ψ(i1, . . . , ik , ξ))(1−α).

Finally, thanks to the fact that ξ belongs to the convex hull of {j − 1, j , j − 1 + rs , j +
rs}, we use the bounds of rs from Proposition 3.1 to apply Lemma 3.5 and conclude that

1
|I |α log

|I ||J ′|
|J ||I ′| ≺ (ψ(i1, . . . , ik , ξ))−α

|I |α ≺ (ψ(i1, . . . , ik , j))−α

|I |α = 1,

as desired.
Case 2: The point x belongs to Ii1,...,ik ,j and y belongs to Ii1,...,ik ,j ′ . We assume, without

loss of generality, that j < j ′. Condition (4) of Lemma 3.3 tells us that |log Dgs(x)−
log Dgs(y)| is bounded above by∣∣∣∣log

|Ii1,...,ik ,j+rs ||Ii1,...,ik ,j ′ |
|Ii1,...,ik ,j ||Ii1,...,ik ,j ′+rs |

∣∣∣∣ +
∣∣∣∣log

|Ii1,...,ik ,j+rs−1||Ii1,...,ik ,j |
|Ii1,...,ik ,j−1||Ii1,...,ik ,j+rs |

∣∣∣∣
+

∣∣∣∣log
|Ii1,...,ik ,j ′+rs−1||Ii1,...,ik ,j ′ |
|Ii1,...,ik ,j ′−1||Ii1,...,ik ,j ′+rs |

∣∣∣∣.
The estimates in Case 1 allow us to control the last two terms (divided by |x − y|α), and

thus we only need to bound the first term. So we look for a uniform bound for

1
|x − y|α

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣, (3.4)
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where I = Ii1,...,ik ,j , I ′ = Ii1,...,ik ,j ′ , J = Ii1,...,ik ,j+rs and J ′ = Ii1,...,ik ,j ′+rs . Assume that
j, j ′ are positive (the case where both are negative follows by symmetry, and if they
have different sign, it suffices to consider an intermediate comparison with the term
corresponding to j ′′ = 0). Assume, further, that j ′ − j ≥ 2 (the case where j ′ − j = 1
follows from Case 1, passing through the point that separates the intervals and using
the triangle inequality). Again, applying the mean value theorem first to the function
x �→ �i1,...,ik (j + 1 + x)−�i1,...,ik (j + x) and then to the function x �→ D�i1,...,ik (x)

gives

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣ = |j − j ′| · |rs(i1, . . . , ik)| · |D2(�i1,...,ik )(ξ)|, (3.5)

for a certain ξ in the convex hull of {j , j ′, j + rs , j ′ + rs}.
We start by bounding |x − y|−α . For this, note that, by Case 1 and the triangle

inequality, we can (and will) assume that x is the left endpoint of I and y is the right
endpoint of I ′. This yields

1
|x − y|α =

(
1∑j ′

�=j |Ii1,...,ik ,�|

)α
≤

(
1

|j − j ′||Ii1,...,ik ,j ′ |
)α

,

where the last inequality holds because |Ii1,...,ik ,j ′ | < |Ii1,...,ik ,�| for � < j ′. Note that if, in
addition, |j ′ − j | ≤ C(S1/r + (|i1| + · · · + |ik|)d), for some C > 0, we can use Lemma
3.5 to compare |I | with |I ′|, and we eventually obtain the inequality

1
|x − y|α ≺

(
1

|j − j ′||Ii1,...,ik ,j |
)α

. (3.6)

We now exhibit a bound for (3.4). We consider three separate cases. Let M be the
constant in Proposition 3.1.

(i) The integers j , j ′ belong to [0, 2M(|i1| + · · · + |ik|)d ]. Since ξ ∈ conv{j , j ′, j +
rs , j ′ + rs}, it follows from (3.3) and Lemma 3.5 that

|D2(�i1,...,ik )(ξ)| ≺ 1
ψ(i1, . . . , ik , ξ)

� 1
ψ(i1, . . . , ik , j)

.

Furthermore, we have that

|j − j ′||rs(i1, . . . , ik)| ≺ (|i1| + · · · + |ik|)2d ≺ (ψ(i1, . . . , ik , j))1−α ,

where the last inequality holds by condition (IV). If we combine this with (3.5),
(3.6), we conclude that

1
|x − y|α

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣ ≺ 1
|I |α

(ψ(i1, . . . , ik , j))1−α

ψ(i1, . . . , ik , j)
= 1.

(ii) The integers j , j ′ belong to (the constant kd is just to ensure that the interval
is non-empty) [2M(|i1| + · · · + |ik|)d , 2MkdS1/r ]. Similarly to i), the reader can
check that we are in the hypotheses of Lemma 3.5 and that |ξ | ≥ M(|i1| + · · · +
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|ik|)d . Therefore, by (3.3), (3.5) and (3.6), we get

1
|x − y|α

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣ ≺
(

1
|j − j ′||Ii1,...,ik ,j |

)α
|j ′ − j | (|i1| + · · · + |ik|)d |ξ |r−2

ψ(i1, . . . , ik , ξ)

≺ |j ′ − j |1−α (|i1| + · · · + |ik|)d(r−1)

ψ(i1, . . . , ik , j)1−α .

To prove that this last expression is bounded, it is enough to show that

|j ′ − j |1−α(|i1| + · · · + |ik|)d(r−1) ≺ ψ(i1, . . . , ik , j)1−α .

Since j ′ − j ≤ 2MkdS1/r , it follows that

|j ′ − j |1−α(|i1| + · · · + |ik|)d(r−1) ≺ (1 + |i1|p1 + · · · + |ik|pk )(1−α)/r

× (|i1| + · · · + |ik|)d(r−1),

so it suffices to prove that, given n, m ∈ {1, . . . , k},
|in|pn(1−α)/r |im|d(r−1) ≺ (ψ(i1, . . . , ik , j))1−α . (3.7)

However, note that

|in|pn(1−α)/r |im|d(r−1) ≤ (ψ(i1, . . . , ik , j))(1−α)/r+d(r−1)/pm ,

and that conditions (II) and (V) guarantee that (1 − α)/r + d(r − 1)/pm ≤
(1 − α), which implies (3.7).

(iii) Finally suppose that the integers j , j ′ belong to [2MkdS1/r , ∞).
If j ′ ≤ 2j , then

ψ(i1, . . . , ik , j ′)
ψ(i1, . . . , ik , j)

≺ 1 + |j − j ′|r
ψ(i1, . . . , ik , j)

≺ 1 + |j |r
ψ(i1, . . . , ik , j)

≤ 2. (3.8)

In particular, the intervals |I ′| and |I | have comparable size and hence we conclude
that (3.6) still holds. Also note that j ′ ≤ 2j implies that |ξ − j | ≤ |j | +M(|i1| +
· · · + |ik|)d . Then, proceeding as in ii), we have that

1
|x − y|α

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣ ≺ |j |1−α(|i1| + · · · + |ik|)d(r−1)

ψ(i1, . . . , ik , j)1−α .

The reader can check, again as in ii), that this last expression is bounded.
For the case j ′ > 2j , we have

|x − y| =
j ′∑
�=j

|Ii1,...,ik ,�| =
j ′∑
�=j

1
|i1|p1 + · · · + |ik|pk + |�|r

�
j ′∑
�=j

1
|�|r �

∫ j ′

�=j
1
xr
dx � 1

|j |r−1 ,

where the last inequality holds because j ′ > 2j . On the other hand, applying the
mean value theorem, it follows that
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log
|I ||J ′|
|I ′||J | = |rs(i1, . . . , ik)||D(�i1,...,ik )(ξ)−D(�i1,...,ik )(ξ̃ )|,

where ξ ∈ conv{j , j + rs} and ξ̃ ∈ conv{j ′, j ′ + rs}. Therefore, observing that the
function ξ �→ D(�i1,...,ik )(ξ) = r|ξ |r−1/ψ(i1, . . . , ik , ξ) is decreasing,

1
|x − y|α

∣∣∣∣log
|I ||J ′|
|I ′||J |

∣∣∣∣ ≺ (|i1| + · · · + |ik|)d |j |(α+1)(r−1)

ψ(i1, . . . , ik , j)
.

Now we want to see that this last expression is bounded, in other words, that
the inequality |j |(α+1)(r−1)(|i1| + · · · + |ik|)d ≺ ψ(i1, . . . , ik , j) holds. For this,
arguing as in (3.7), it is enough to check that, for all n ∈ {1, . . . , k}, the inequality

(α + 1)(r − 1)
r

+ d

pn
≤ 1

holds. To see this, note that, from IV) it follows that d/pn ≤ (1 − α)/2. Finally
notice that (α + 1)(r − 1)/r + (1 − α)/2 ≤ 1 ⇔ r ≤ 2, which is ensured by con-
dition (I).

3.2.2. The maps ft are C1+α-diffeomorphisms. In the same way as for the maps gs , we
want to see that there is a constant C > 0 such that

|log Dft(x)− log Dft(y)|
|x − y|α � C for all different x, y ∈ [0, 1].

To simplify notation, we only work with t = 1, as the other cases are analogous. As for the
case of the maps gs , we only have two cases to analyze.

Case 1: The points x, y belongs to the same interval Ii1,...,ik ,j . By Lemma 3.3, it is
enough to show that the expression

1
|Ii1,...,ik ,j |α log

|Ii1,...,ik ,j ||Ii1+1,i2,...,ik ,j+�1−1|
|Ii1+1,i2,...,ik ,j+�1 ||Ii1,...,ik ,j−1|

is uniformly bounded. To see this, simply note that the above expression is equal to

1
|Ii1,...,ik ,j |α log

|Ii1,...,ik ,j ||Ii1+1,i2,...,ik ,j−1|
|Ii1+1,i2,...,ik ,j ||Ii1,...,ik ,j−1|

+ 1
|Ii1,...,ik ,j |α log

|Ii1+1,i2,...,ik ,j ||Ii1+1,i2,...,ik ,j+�1−1|
|Ii1+1,i2,...,ik ,j+�1 ||Ii1+1,i2,...,ik ,j−1| .

By condition (VI), we know from [6, §3.3] that the first term is uniformly bounded. The
second term is bounded as well since it is the same as we bounded when dealing with gs
(changing i1 to i1 + 1).

Case 2: The point x ∈ I = Ii1,...,ik ,j and y ∈ J = Ii1,...,ik ,j ′ , with j < j ′. Here we can
use (4) from Lemma 3.3 to bound |log Df1(x)− log Df1(y)| by∣∣∣∣log

|Ii1+1,...,ik ,j+�1 ||Ii1,...,ik ,j ′ |
|Ii1,...,ik ,j ||Ii1+1,...,ik ,j ′+�1 |

∣∣∣∣ +
∣∣∣∣log

|Ii1+1,...,ik ,j+�1−1||Ii1,...,ik ,j |
|Ii1,...,ik ,j−1||Ii1+1,...,ik ,j+�1 |

∣∣∣∣
+

∣∣∣∣log
|Ii1+1,...,ik ,j ′+�1−1||Ii1,...,ik ,j ′ |
|Ii1,...,ik ,j ′−1||Ii1+1,...,ik ,j ′+�1 |

∣∣∣∣,
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and then work in the same way as for the functions gs . For example, we express the term

1
|x − y|α log

|Ii1+1,i2,...,ik ,j+�1 ||Ii1,...,ik ,j ′ |
|Ii1,...,ik ,j ||Ii1+1,i2,...,ik ,j ′+�1 |

as
1

|x − y|α log
|Ii1+1,i2,...,ik ,j ||Ii1,...,ik ,j ′ |
|Ii1+1,i2,...,ik ,j ′ ||Ii1,...,ik ,j | + 1

|x − y|α log
|Ii1+1,i2,...,ik ,j+�1 ||Ii1+1,i2,...,ik ,j ′ |
|Ii1+1,i2,...,ik ,j ||Ii1+1,i2,...,ik ,j ′+�1 |

.

The first term is bounded by [6, §3.3] and the second is also bounded by the same argument
as used for the functions gs .

3.3. Faithful actions. Given s ∈ {1, . . . , d} and a compact interval Is , we have seen in
Proposition 3.4 how to produce an action

φs : G → Diff1+α+ (Is).

Recall that the action from Proposition 3.4 is a smoothing of the dynamical realization of
the action given in Proposition 3.1. In particular, the subgroup 〈g1, . . . , gs−1〉 acts trivially,
whereas 〈gs〉 acts faithfully.

To obtain a faithful action of G, we do the following. Consider compact intervals
I1, . . . , Id such that, for all s ∈ {1, . . . , d − 1}, Is+1 is contiguous to Is by the right.
Then define on I := I1 ∪ · · · ∪ Id the action φ : G → Diff1+α+ (I ) as

φ |Is= φs .

We claim that φ is injective. Indeed, since Z(G) � A = 〈g1, . . . , gd〉, by Proposition 2.1
we only need to check that φ |A is injective. Let g ∈ A be an element that acts trivially
on I. Then, there exist j1, . . . , jd ∈ Z such that g = g

j1
1 · · · gjdd . Now, since φ(g) = id, it

follows that

φs(g) = id for all s ∈ {1, . . . , d}.
This yields that jd = · · · = j1 = 0 and hence g is the trivial element. This finishes the
proof of Theorem A.

4. Examples
In this section, we give examples of nilpotent groups for which we can compute the
critical regularity. In each case, we use Theorem A to obtain a lower bound for the critical
regularity, and we argue that, in our examples, this is also an upper bound for the regularity.

We begin by recalling that if G is a finitely generated nilpotent group of homeo-
morphisms of (0, 1) that has no global fixed points, then there is a well-defined group
homomorphism ρ : G → R, which is usually called the translation number of the action.
This map characterizes the elements of G that have fixed points, in the sense that ρ(g) = 0
if and only if g has a fixed point in (0, 1). Further, the action of G on the interval has no
crossings. By this, we mean that if an element f ∈ G fixes an open subinterval I of (0, 1)
and satisfies that f (x) 
= x for all x in I , then, for any other g ∈ G, we have that g(I) = I

or g(I) ∩ I = ∅. See [20, §2.2.5] for details. With this, it is easy to prove the following
result that we will repeatedly use.
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LEMMA 4.1. Let G � Diff 0+(0, 1) be a nilpotent group and let c ∈ G be a non-trivial
element such that c = [a, b] for some elements a, b ∈ G. If c fixes an open interval I and
has no fixed point inside, then either a or b moves I (disjointly).

Proof. Looking for a contradiction, assume that a and b fix I. Then we have the translation
number homomorphism for the group 〈a, b, c〉 � Diff 0+(I ). Since c is a commutator, it is
in the kernel of this homomorphism. Hence, we conclude that c has a fixed point inside I,
which is contrary to our assumptions.

To obtain upper bounds for the regularity of our groups we will use a result from Deroin,
Kleptsyn and Navas [8]. We use the version from [6, Proposition 2.1].

THEOREM 4.2. Let f1, . . . , fk be C1-diffeomorphisms of the interval [0, 1] that commute
with a C1-diffeomorphism g. Assume that g fixes a subinterval I of [0, 1] and that its
restriction to I is non-trivial. Moreover, assume that, for a certain 0 < α < 1 and a
sequence of indexes ij ∈ {1, . . . , k}, the sum

∑
j≥0

|fij · · · fi1(I )|α < ∞.

Then, f1, . . . , fk cannot be all of class C1+α .

The following lemma is useful to get into the hypotheses of Theorem 4.2. Although it
is stated in a slightly different way, the reader can check that the proof is exactly the same
as that of [8, Lemma 3.3].

LEMMA 4.3. Let f1, . . . , fk be C1-diffeomorphisms of [0, 1] and let I be a subinterval of
[0, 1] such that Zk � 〈f1, . . . , fk〉/Stab(I ), where Stab(I ) is the stabilizer of I (which is
assumed to be a normal subgroup). Then, if α > 1/k, there exists a sequence (fij )j∈N of
elements in {f1, . . . , fk} such that∑

j≥0

|fij · · · fi1(I )|α < ∞.

4.1. Heisenberg groups. For a natural number n ≥ 1, the discrete (2n+ 1)-dimensional
Heisenberg group, is defined as the set of matrices

Hn :=
⎧⎨
⎩

⎛
⎝ 1 	x c

	0t In 	y t
0 	0 1

⎞
⎠ : 	x, 	y ∈ Zn, c ∈ Z and In is the identity matrix of size n

⎫⎬
⎭,

with the usual matrix product. Note that the center of Hn coincides with the commutator
subgroup and is generated by the matrix

C :=
⎛
⎜⎝

1 	0 1
	0t In 	0 t
0 	0 1

⎞
⎟⎠.
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We want to prove Theorem B, but before this, it will be useful for us to bound the rank
of maximal abelian subgroups. Assume that there exists a maximal abelian subgroup of
Hn of rank m. Then we can choose elements

Ai :=
⎛
⎜⎝

1 	ai ci
	0t In 	bi t
0 	0 1

⎞
⎟⎠ ∈ Hn for i ∈ {1, . . . , m− 1},

such that 〈A1, . . . Am−1, C〉 � Zm. Note that the commutativity of these matrices is
equivalent to the equations

	ai · 	bj = 	aj · 	bi for all i, j ∈ {1, . . . , m− 1}. (4.1)

Note also that if {A1, . . . , Am−1, C} generates a free abelian group of rank m, then
the set of vectors B := {(	bi , 	ai) ∈ Zn × Zn : 1 ≤ i ≤ m− 1} generates a free abelian
group of rank m− 1. Indeed, if we have a dependency relationship, say, r(	b1, 	a1) ∈
〈(	b2, 	a2), . . . , (	bm−1, 	am−1)〉 for some 0 
= r ∈ Z, then Ar1 ∈ 〈A2, . . . , Am−1, C〉, which
contradicts that the abelian group has rank m.

Having said this, we claim thatm ≤ n+ 1. To see the latter, note that, by equations (4.1),
any vector of the form (	ai , −	bi), with 1 ≤ i ≤ m− 1, is perpendicular to 〈B〉. Hence,
we have two orthogonal subgroups of Zn × Zn that both have rank m− 1, and thus m−
1 ≤ n, which proves our claim.

Realization. Consider the abelian subgroup

A :=
⎧⎨
⎩

⎛
⎝ 1 	x c

	0 t In 	0 t
0 	0 1

⎞
⎠ : 	x ∈ Zn and c ∈ Z

⎫⎬
⎭.

Notice that A has rank equal to n+ 1, which is the largest we can expect. Since the rank of
Hn/A is n, we have that Theorem A provides an injective group homomorphism

Hn ↪→ Diff1+α+ ([0, 1]) for α < 1/n.

Bounding the regularity. Now we consider a faithful action φ : Hn ↪→ Diff1+([0, 1]).
Abusing notation, we can think that Hn � Diff1+([0, 1]).

Since the commutator subgroup of Hn is generated by C, we deduce from Lemma 4.1
that C has fixed points inside (0, 1). Therefore, we can find an interval I � [0, 1] such
that C(I ) = I and C(x) 
= x for all x in the interior of I. Let Stab(I ) be the stabilizer of
I. It is easy to see that this is an abelian subgroup. Indeed, if we take A, B ∈ Stab(I ) and
assume that they do not commute, then there must exist m ∈ Z such that [A, B] = Cm.
Since C has no fixed points inside I, Lemma 4.1 tells us that either A or B moves I, which
is a contradiction. Note that Stab(I) is a normal subgroup as it contains the commutator
subgroup. Further, we know that there is a natural number k and elements B1, . . . , Bk ∈
Hn such that

Zk � Hn

Stab(I )
= 〈B1, . . . , Bk〉

Stab(I )
.
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So, given α > 1/k, we can find by Lemma 4.3 a sequence (Bij )j∈N of elements in
{B1, . . . , Bk} such that

∑
j≥0

|Bij · · · Bi1(I )|α < ∞,

and hence Theorem 4.2 yields that φ is not an action by C1+α-diffeomorphisms.
Now, since the rank of Stab(I ) is bounded above by n− 1 = rank(A),

k = rank
(

Hn

Stab(I )

)
≥ rank

(
Hn

A

)
= n,

which implies that the regularity of the action φ is bounded above by 1 + 1/n. So we
conclude that

Crit[0,1](Hn) = 1 + 1
n

.

Remark 4.4. If G is a finitely generated, torsion-free nilpotent group whose center is cyclic
and satisfies [G, G] � Z(G), then the proof of Theorem B yields that the lower bound for
Crit[0,1](G) given by Theorem A is the critical one.

4.2. Examples with large nilpotency degree. Theorem B gives us the critical regularity
for the Heisenberg groups, which are groups having nilpotency degree two. In this section,
we provide more examples of nilpotent groups for which we can compute the critical
regularity, but whose nilpotency degree can be arbitrarily large. As for the Heisenberg
groups, in these examples, we show that the lower bound provided by Theorem A is also
an upper bound.

Fix d , k ∈ N, assume that d ≥ k and consider a matrix (mi,s) ∈ Mk(Z) with non-zero
determinant and positive entries. We let G be the group generated by the set

{g0} ∪ {gi,j : (i, j) ∈ {1, . . . , k} × {1, . . . , d}} ∪ {f1, . . . , fk},
subject to the relationships:
• [g0, gi,j ] = [g0, fi] = [fs , fi] = [gi,j , gl,m] = e, for all s, i, l ∈ {1, . . . , k}, j , m ∈

{1, . . . , d};
• [fs , gi,j ] = g

mi,s
i,j−1 for all s, i ∈ {1, . . . , k} and j ∈ {2, . . . , d}; and

• [fs , gi,1] = g
mi,s
0 for all s, i ∈ {1, . . . , k}.

Note that, from the identities [ab, c] = a[b, c]a−1[a, c] and [a, bc] = [a, b]b[a, c]b−1,
we immediately have the following additional relationships:
• [f−1

s , gi,j ] ∈ 〈g0, gi,1, . . . , gi,j−2〉g−mi,s
i,j−1 for all s, i ∈ {1, . . . , k}, j ∈ {2, . . . , d};

and
• [f−1

s , gi,1] = g
−mi,s
0 for all s, i ∈ {1, . . . , k}.

It is easy to see that G is a nilpotent group of degree d + 1, and that A = 〈{g0} ∪
{gi,j : (i, j) ∈ {1, . . . , k} × {1, . . . , d}}〉 is a maximal abelian subgroup containing the
commutator of G (see Lemma 4.5 below). Moreover, k is the torsion-free rank of G/A.
Therefore, in view of Theorem A, we know that G embeds in Diff1+α+ ([0, 1]) for α < 1/k.
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To show that 1 + 1/k is actually an upper bound for the regularity, we need the following
elementary lemma.

LEMMA 4.5. For all (i, j) ∈ {1, . . . , k} × {2, . . . , d} and n1, . . . , nk ∈ Z:
(1) [f n1

1 · · · f nkk , gi,j ] ∈ 〈g0, gi,1, . . . , gi,j−2〉gλii,j−1; and

(2) [f n1
1 · · · f nkk , gi,1] = g

λi
0 ,

where λi = ∑k
s=1 nsmi,s . In particular, the subgroup A is a maximal abelian subgroup.

Proof. We show (1) by induction on n = ∑k
s=1|ns |.

Note that, when n = 1, we have the result by the relationships of G. So, consider an
arbitrary natural number n = ∑k

j=1|nj | and assume that nk < 0 (the other case is similar).
For all i ∈ {1, . . . , k} and j ∈ {2, . . . , d},

[f n1
1 · · · f nkk , gi,j ] = [f n1

1 · · · f nk+1
k , [f−1

k , gi,j ]] [f−1
k , gi,j ] [f n1

1 · · · f nk+1
k , gi,j ],

and since [f−1
k , gi,j ] belongs to 〈g0, gi,1, . . . , gi,j−2〉g−mi,k

i,j−1 , it follows that [f n1
1 · · ·

f
nk+1
k , [f−1

k , gi,j ]] ∈ 〈g0, gi,1, . . . , gi,j−2〉. Also, by induction,

[f n1
1 · · · f nk+1

k , gi,j ] ∈ 〈g0, gi,1, . . . , gi,j−2〉g(
∑k−1
s=1 nsmi,s+(nk+1)mi,k)

i,j−1 .

Plugging these into the previous equation yields assertion (1). The proof of assertion (2) is
analogous.

Remark 4.6. The most useful part of Lemma 4.5 is the explicit expression for the integers
λi appearing. These will be used in the proof of Theorem C.

Proof of Theorem C. Suppose that G embeds into Diff1+α+ ([0, 1]) for some α > 1/k. Let
x0 be a point in (0, 1) such that g0(x0) 
= x0 and define the intervals

I0 :=
(

inf
n
gn0 (x0), sup

n
gn0 (x0)

)
and Ii,j :=

(
inf
n
gni,j (x0), sup

n
gni,j (x0)

)
.

Case 1: f (I0) ∩ I0 = ∅ for all f ∈ 〈f1, . . . , fk〉 � Zk . In this case, I0 is a wandering
interval for the dynamics of 〈f1, . . . , fk〉. A contradiction is provided by Lemma 4.3
followed by Theorem 4.2, because the central element g0 acts non-trivially on I0.

Case 2: There is a non-trivial element f ∈ 〈f1, . . . , fk〉 such that f (I0) = I0. We put
f = f

n1
1 · · · f nkk . Given i ∈ {1, . . . , k}, by Lemma 4.5,

[f , gi,1] = g
λi
0 and [f , gi,j ] ∈ 〈g0, gi,1, . . . , gi,j−2〉gλii,j−1 for all j ∈ {2, . . . , d},

(4.2)

where λi = ∑k
j=1 njmi,j . Since the vectors (mi,1, . . . , mi,k) are linearly independent in

Rk , we can choose i to obtain λi 
= 0. Then, the relationships (4.2) and Lemma 4.1 imply
that gi,1(I0) ∩ I0 = ∅. Since the action has no crossings, the element f also fixes the
intervals Ii,j and hence the same argument also yields that gi,j (Ii,j−1) ∩ Ii,j−1 = ∅ for
all j > 2. Therefore, I0 is a wandering interval for the action of 〈gi,1, . . . , gi,k〉 � Zk . So,
a contradiction is reached using Lemma 4.3 and Theorem 4.2, as before.
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4.3. An example with even higher regularity. It is easy to see that, in some situations,
the regularity given by Theorem A is not critical. In the examples that we know of, this is
related to the fact that the group can be split as a direct product of groups, each of which
allows an embedding with better regularity. Take, for example, the groups of [6, §4]. These
are given by the presentation

Gd := 〈f , g1, . . . , gd : [gi , gj ] = id, [f , g1] = id, [f , gi] = gi−1 for all j ≥ 1, i > 1〉.
Note that Gd is isomorphic to a non-trivial semidirect product of the form Zd � Z. Now
define the group G := Gd ×Gd . On one hand, it is easy to see that

G � Z2d � Z2,

and Z2d × {0} is a maximal abelian subgroup of G. Therefore, if we apply Theorem A,
we obtain an embedding of G into Diff1+α+ ([0, 1]) for all α < 1/2. However, on the other
hand, the critical regularity of G is two. Indeed, we can apply Theorem A to each factor of
G to obtain an embedding of the factor into Diff1+α+ ([0, 1]) for all α < 1. If we put these
two actions together acting on disjoint intervals (as we did in §3.3), we end up with an
embedding of G into Diff1+α+ ([0, 1]) for all α < 1.
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