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SOME RESULTS ON THE COUNTABLE COMPACTNESS
AND PSEUDOCOMPACTNESS OF HYPERSPACES

JOHN GINSBURG

1. Introduction. Let X be a Hausdorff space. Let 2¥ denote the set of all
non-empty closed subsets of X. Forasubset 4 of X, weset24= {F € 2X: FC A}.
Recall that the finite topology on 2% is that topology having as a sub-basis the
family {2¢: G is open in X} \U {2¥ — 27 : Fis closed in X}. When endowed
with this topology, 2% is referred to as the hyperspace of X. For the fundamental
properties of hyperspaces, we refer the reader to [6; 7]. Following [6], we
adopt the following notation: If A,, 4,,..., A, are subsets of X, we set
B(Ao; Al, ce ey A,,) = 240N m¥=1 (2X - 2X_Ai) = {F € 2X . F C 4, and
FMA;,#@foralli =1,2,...,n}. Using this notation, we see that the sets
of the form B(Gy; Gy, ..., G,), where Gy, Gy, ..., G, are open in X and
U1 G; C Gy, form a basis for the finite topology on 2%,

We are concerned here with the countable compactness and pseudo-
compactness of 2%¥. At this point, let us recall several concepts related to
countable compactness and pseudocompactness, which will be useful in our
discussion.

Let X be a topological space. Let (S, :n € N) be a sequence of subsets of X.
A point p € X is a limit point of the sequence (S, : n € N), if, for each neighbor-
hood Wof p, {n € N: WNS, # 0} is infinite. Let & be a free ultrafilter on
the set (discrete space) N of positive integers. We say that p is «
D-limit point of the sequence (S, : n € N) if, for every neighborhood W of p,
{n: WNS, =0} € 9.

X is countably compact if every sequence of points in X has a limit point.

Let 2 be a free ultrafilter on N. Following [1], we say that X is &-compact
if every sequence of points in X has a Z-limit point in X.

X is pseudocompact if every continuous real-valued function on X is bounded.

X is G-pseudocompact if every sequence of non-empty open subsets of X
has a limit point in X.

Let Z be a free ultrafilter on N. We say that X is & -pseudocompact, if every
sequence of non-empty open subsets of X has a Z-limit point.

Finally, X is No-bounded if every countable subset of X is contained in a
compact subset of X.

The following facts relating these concepts are elementary and easy to verify.
A D-compact space is countably compact. A %-pseudocompact space is
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pseudocompact. A completely regular space X is pseudocompact if, and only if’
it is 9 -pseudocompact. A Z-pseudocompact space is %-pseudocompact’
Every Z-compact space is & -pseudocompact.

We shall have occasion to use the following two theorems.

TuroreM 1.1. (Bernstein) D-compactness is closed-hereditary, and produc-
tive. A completely regular space X is No-bounded if, and only if, it is & -compact
for every free ultrafilter & on N. (See [1].)

THEOREM 1.2. (Ginsburg-Saks) Let X be a Hausdorff space. Then the following
are equivalent:
(1) Every power of X 1s countably compact,
(i1) X?° 1s countably compact;
(iii) x1¥1®0 s countably compact;
(iv) X 1is D-compact for some free ultrafilter & on N. (See [4].)

For a discussion of the above results and related ideas, we refer the reader to
(1;4].

As mentioned above, this paper is concerned with the countable compactness
and pseudocompactness of hyperspaces. We will establish the following results.
X is @D -compact if, and only if, 2% is &Z-compact. X is Z-pseudocompact if,
and only if, 2% is &-pseudocompact. If all powers of X are countably compact,
then 2% is countably compact. If 2% is countably compact, then all finite
powers of X are countably compact. If X is completely regular and 2% is
pseudocompact, then all finite powers of X are pseudocompact. We give an
example of a completely regular space X, all of whose finite powersare countably
compact, such that 2% is not pseudocompact.

2. Some theorems on the countable compactness and pseudo-
compactness of 2¥. Our first result compares the &Z-compactness of 2% with
that of X.

THEOREM 2.1. Let X be a Hausdorff spuce, and let D be a free ultrafilter on N.
Then X 1is D-compact if, and only if, 2% is D -compuct.

Proof. 1f X is Hausdorff, then the singletons in 2% form a closed subset
homeomorphic to X. (See 2.4 of [7].) Since & -compactness is closed hereditary
by 1.1, if 2¥ is & -compact, so is X.

For the converse, suppose X is Z-compact. We show 2% is &-compact. Thus,
let (F,: n € N) beasequencein2¥. Let L = {p € X : pisa Z-limit point of
the sequence (F, : n € N)}. Clearly L is a non-empty, closed subset of X. That
is, L € 2¥. We claim that L is a Z-limit point of the sequence (F, : n € N) in

2% Tosee this, let ¥ = B(Go; Gy, . . ., Gr) be a basic neighborhood of L in 2%,
We must show that {n: F, ¢ #} ¢ Z. Now let Ng = {n € N: F, € G},
and for 7€ {1,2,...,7} let N;={n€ N:F,N\G;#@}. Clearly

(n€ N: F, ¢ W} =N LoN, Thus, to show that {n ¢ N: F, ¢ #} € 9,
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we need prove that N; € 9 foreachi € {0,1,..., T}. Now,since L € ¥, we
have L N\ G; # 0. Let p € L N\ G Then p is a Z-limit point of the sequence
(F,: n € N)and G;is a neighborhood of p,so {n: Gi;N\ F, # @} = N, € 9.
Thus N, € @ fori =1,2,...,T. Finally, we show N, € Z. For the sake of
contradiction, assume No ¢ &. Then N — Ny € 9. For each n € N — N,
choose a point x, € F, — G,. For each n € Ny, choose a point x, arbitrarily
from F,. The sequence (x, : n € N) so obtained has a &-limit point a, by the
D -compactness of X. Clearly a is a Z-limit point of the sequence (F,: n € N),
and so ¢ € L. But L € ¥, so that L C G,. Therefore a € G,. Since a is a
D -limit point of the sequence (x,: n € N), we have {n: x, € Gy} € Z. But
this last set is disjoint from N — Ny, which also lies in &. This is a contradic-
tion. Therefore Ny € &, and L is a &-limit point of the sequence (F, : n € N)
in 2%, Thus 2% is 9 -compact.

From 2.1 we can obtain, as a corollary, the following theorem due to
J. Keesling [5].

COROLLARY 2.2. Let X be a normal space. Then X is Ro-bounded if, and only if,
2% 45 Ny-bounded.

Proof. If X is normal, then, by 4.9.5 of [7], 2% is completely regular. By 1.1,
2% is Xo-bounded if, and only if, it is &-compact for every free ultrafilter & on
N. By 2.1, this happens exactly when X is &-compact for all free ultrafilters &
on N, which by 1.1, is equivalent to X being Xo-bounded.

Theorem 2.1 also allows us to establish the following relation between the
countable compactness of 2¥ and that of powers of X.

COROLLARY 2.3. Let X be a Hausdorff space. If all powers of X are countably
compact, then 2% is countably compact. If 2% 1is countably compact, then all finite
powers of X are countably compact.

Proof. 1f all powers of X are countably compact, then, by 1.2, there is a free
ultrafilter £ on N such that X is &-compact. By 2.1, 2% is also &-compact,
and so, in particular, is countably compact.

Suppose 2% is countably compact. For each n € N,let# ,(X) = {F € 2¥: |F|
< n}. By 2.4 of [7], % ,(X) is a closed subspace of 2% for each n € N. For each
n, define the map S, : X” — % ,(X) by S, (%1, X2, . . ., X,) = {%1, X2, . . ., X,}.
Then, for each #n, S, is a continuous, closed, finite-to-one map from X" onto
& .(X) [3]. As countable compactness is closed hereditary and preserved under

perfect pre-images, the countable compactness of 2¥ implies that of X” for each
n € N.

We next turn to pseudocompactness. The next result is an analogy to 2.1.

THEOREM 2.4. Let 9 be a free ulirafilter on N. Then X is 2 -pseudocompact if,
and only if, 2% is D -pseudocompact.
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Proof. Suppose 2% is &-pseudocompact. We show that X is &-pseudo-
compact. Thus, let (G, : » € N) be a sequence of non-empty open subsets of X.
Then (2% : n € N) is a sequence of non-empty open subsets of 2. As 2¥ is
9 -pseudocompact, this sequence has a Z-limit point F € 2X. Choose any
point p € F. We show that pisa Z-limit pointin X, of the sequence (G, : n € N).
For, let W be any neighborhood of p in X. Then, since F M\ W # @, 2¥ — 2X-W
is a neighborhood of F in 2%. Since F is a Z-limit point of the sequence
(2% :m € N),{n:20N (2X¥ —2X-") £ g} ¢ 9. But2 N (2¥ —2¥-"¥) =g
if, and only if, G, AW # 0. Thus {n: G, W # @} € &, and so p is a
D-limit point of the sequence (G, : # € N). Therefore X is &-pseudocompact.

Conversely, suppose X is & -pseudocompact. Since thesets B(Gy; Cy, . .., Gr),
with Go, Gy, . . ., Gpopenin X and U G; € G,, form a basis for the topology
on 2%, to show that 2¥ is &-pseudocompact we need only show that open
sequences of these sets have Z-limit points. Thus, suppose we are given a
sequence (¥, : n € N) of non-empty basic open sets ¥, in 2¥X. Write ¥, as
B(Gon; Giny - - ., Gryn), wWith Gy, open in X and U/ G;, C Gy, Let
L = {p € X: pisa Z-limit point of the sequence (Gy, : n € N)}. Then Lisa
non-empty, closed subset of X. That is, L € 2¥. We claim that L is a Z-limit
point in 2% of the sequence (¥, : n € N). Now the sets of the form 29 and
B(X; G) form a sub-basis for 2%. Since filters are closed under finite intersec-
tion, to show that L is a Z-limit pointof (¥, : n € N), itisenough to establish
the following two statements.

(i) If Gisopenin X and L € 2% then {n € N:2°N ¥, =0} ¢ 9.
(i) If GisopeninX and L € B(X;G), then{n € N: B(X;G)N Y ,#0} ¢ 2.
Let us first establish (i). Note that 2¢ N\ &, # @ if, and only if, GN G, # 0

foralli =1,2,..., T, LetS={n€ N:2N Y, #0@}andletT = N — S.
For the sake of contradiction, suppose S ¢ &Z. Then T ¢ &. Foreachn € T,
find an integer 1, € {1,2,..., T,} such that G N G, , = 9. Define a sequence

(H, : n € N) of non-empty open subsets of X as follows. Forn € T, H, = Gy, »,
and for n € S, H, = Gy, Now, since X is Z-pseudocompact, the sequence
(H,: n € N)hasa Z-limit pointa € X. Clearly« € L.Since L € 2¢ we have
L C G,andsoa € G.Sinceaisa @-limit pointof (H,: n € N),{n € N:GN
H, # 0} € 9. But this latter set is disjoint from 7, and 7" € £. This is a
contradiction. Therefore S € 2, establishing (i). To establish (ii), suppose G
isopenin X and L € B(X; G). Observe that B(X; G) N\ ¥, # @if, and only if,
GNGo,#B.Let M = {(n€ N:BX;G)NY,#8} ={n€c N:GN Gy, # 0}.
Now, since L € B(X;G), LN G # 0. Let p € LN G. Then p is a Z-limit
point of the sequence (Gy, : n € N), and G is a neighborhood of p. Therefore
mMEN:GNGy, #0) € @. Thatis, M € D, establishing (ii).

We have thus shown that L is a Z-limit pointof (¥, : n € N). Therefore 2¥
is @-pseudocompact, as desired.

Even having established 2.4, we cannot conclude that the pseudocompactness
of all powers of X implies the pseudocompactness of 2%, at least not by an
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argument analogous to the one used in 2.3. The problem here is that &-
pseudocompactness is not a necessary condition for pseudocompact powers
(see 4). We can, however, establish a pseudocompact counterpart to the second
assertion in 2.3.

THEOREM 2.5. Let X be regular. If 2% is G -pseudocompact, then all finite
powers of X are G -pseudocompact.

Proof. Assume 2% is ¥ -pseudocompact. Firstly, X is & -pseudocompact. For,
if (G,:n € N) is a sequence of non-empty open subsets of X, the sequence
(29 : N) has a limit point L in 2*. Choosing any point p € L, it is easy to see
that p is a limit point of (G, : » € N). Thus every sequence of non-empty open
subsets of X has a limit point in X. That is, X is ¥ -pseudocompact.

Next, we show that X X X is @-pseudocompact, for which it suffices to
show that every sequence (U, X V,: n € N) where U,, V, are non-empty
open subsets of X, has a limit point in X. We will assume not, and we will
derive a contradiction. So assume (U, X V,: n € N) has no limit point in
X X X. Now X is % -pseudocompact, as has already been established, so the
sequence (U, : n € N) has a limit point p € X. Since (U, X V,:n € N) has
no limit point in X X X, in particular, (p, ) is not a limit point of
(U, X V,:n € N). Therefore, there is a neighborhood W of p in X such that
me N: (WX W)N (U, X V,) #0}isfinite. Let S = {n € N: (W X W) N
(U, X V,) 5 0}. By regularity, find a neighborhood W; of p in X such that
cx Wi S W. Let T'={né& N: W, U, # @}. Since p is a limit point of
(U, : n € N), Tisinfinite. Let N; = T" — S. Then N, is infinite. Consider the
sequence (WM U,) X V,: n € N,). Being a refinement of a subsequence of
(U, X V,:n € N), the sequence ((W, M U,) X V,:n € N;) also has no
limit point in X X X. Let A = cly W, and let B = cly (\U,en, V). Then 4
and B are disjoint regular-closed subsets of X, and U,ex, [(W1 M U,) X V,] C
A X B. Now, since A and B are disjoint closed sets, 4 \U B is homeomorphic to
A + B, the free union of 4 and B. By 5a., page 166 of [6], 24+% is homeo-
morphic to 24 X 22 Now %-pseudocompactness is evidently inherited by
regular-closed subsets. As 2% is % -pseudocompact, so is 24Y % and so, by the
above remarks, is 24 X 22. It follows easily that 4 X B is % -pseudocompact.
But (Wi U,) X V,:n € Ni) has no limit point in X X X, which is a
contradiction. Thus X X X is ¥ -pseudocompact.

One can now prove by induction on 7z that X" is % -pseudocompact for all
n € N. The essential idea in going from X" to X"*+! is the same as going from
X?to X3, but the details are more cumbersome. Accordingly, we will show how
to deduce the % -pseudocompactness of X? from that of X2 (and that of 2%, of
course), and leave the induction as a straightforward extension of this step.

Thus, from the % -pseudocompactness of 2¥ and X X X, we are to deduce
the % -pseudocompactness of X X X X X.Weassume that X X X X X is not
%4 -pseudocompact, and we will reach a contradiction. So, let (4, X B, X
C,: n € N) be an open sequence in X? which has no limit point. Now X2 is
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% -pseudocompact, so the sequence (4, X B, : n ¢ N) has the limit point
(a, b) in X X X. Neither (a, b, a) nor (a, b, b) is a limit point of (4, X B, X
C,:n € N)in X3 Thus we can find neighborhoods G and H of a and b respec-
tively, such that the two sets

Mi={neEN: (GXHXG N (4, X B, XC,) # 0} and
My={n€N:(GXHXH)N (A, X B, X C,) # @} are finite.

Find neighborhoods G and H; of @ and b respectively such that cly G © G and
cly Hi € H. Let

Since (a, b) is a limit point of (4, X B,: n € N), M, is infinite. Now let
Ny = M; — (M,\JU M,). Then N, is infinite. Let 4, = G, M 4,, and let
B, = H, M B,. The sequence (4, X B, X C,:n € N,), being a refinement
of a subsequence of (4, X B, X C,: n € N), also has no limit point in X?3.
But X? is %-pseudocompact, so the sequence (B, X C,: n € N;) has a
cluster point (¢, d) in X2. Neither (¢, ¢, d) nor (d, ¢, d) is a cluster point of
(4,) X B, X C,:n € N;).So we may find neighborhoods U and V of ¢ and d
respectively, such that the two sets

Li={n€ N :(UXUXV)N (4, X B, XC,) 50} and
Ly={n e Ni: (VX UXV)N (4, X B, X C,) # @} are finite.

Find neighborhoods U; and V; of ¢ and d respectively, such that cly U, C U
and cly V; C V. Now, let

Ls = {71« S N1: (Ul X Vl)m (Bn, X Cn) ¢0}

Since (¢, d) is a limit point of (B, X C,:n € Ny), theset Ny = Ly — (L, \U Lj)
is infinite. For n € Ny, set 4, = A4/, B, = U N\ B/, C,)' = V.M C,. The
sequence (4, X B, X C,”: n € Ny) has no limit point in X3 Let
A = cly (Unens 427), B = clx (Unews Bx''), C = cly (Uen, C)'). Then 4, B, C
are pairwise disjoint regular-closed subsets of X, and U,ey, (4, X B,”" X
G'') © A X B X C. By the same argument used earlier, 24 X 2% X 2¢ is
homeomorphic to 24Y5Y ¢ which, as a regular-closed subspace of 2%, inherits
% -pseudocompactness. Thus 4 X B X C is %-pseudocompact, which con-
tradicts the fact that (4, X B,” X C,” : n € N») has no limit point. This
contradiction proves that X3 is &-pseudocompact.

As was mentioned in the introduction, a completely regular space X is
% -pseudocompact if, and only if, it is pseudocompact. Although 2% is com-
pletely regular only when X is normal, these concepts remain equivalent for 2%
when X is completely regular, as we now show.

PROPOSITION 2.6. Let X be completely regular. Then 2% is G -pseudocompact 1f,
and only if, it is pseudocompact.
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Proof. 9 -pseudocompactness always implies pseudocompactness. We need
only show that if 2% is not %-pseudocompact, then 2% is not pseudocompact.
If 2% is not ¥ -pseudocompact, there isa sequence %, = B(Gon; Gimy - - Gram)
of non-empty basic open subsets of 2%, which has no limit point in 2*. For
each n and each 7 € {1, 2, ..., T,}, choose a point p, ; € G;,. Let F, =
{pni:1=1,2, ..., T,}. Now F, C Gy, so, by complete regularity, we can
find, for each #, a continuous, real-valued function f, on X such that f,(x) = 1
foreachx € F,,and f,(x) = Oforeachx € X — Gy ,,andsuch that0 = f, = 1.
Given n and 7 € {1, 2, ..., T,}, by complete regularity, we can find a con-
tinuous, real-valued function g, ;on X such that 0 £ g, ; < 1, g,.; (Pn.s) = 1,
and g, ;(x) = 0 for each x € X — G;,. Now, for each #n, define f,, on 2% by
fn (F) = infyer fo(x). For each n and each 7 € {1, 2, ..., T,}, define g,;','i on 2%
by g «(F) = supser go,:(x). By 4.7 of [7], the functions f, and gf, are all
continuous, real-valued functions on 2X. Now, for each %, let G, = f, - g;{, .
g5 7.. Then G, is continuous and G,(F,) = 1, and G,(F) = 0 for each F €
2¥ — &, Since the sequence (¥, : n € N) has no limit point, the function
> new nG, is continuous on 2%, and is clearly unbounded. Thus 2% is not
pseudocompact.

COROLLARY 2.7. Let X be completely regular. If 2% is pseudocompact, then all
finite powers of X are pseudocompact.

Proof. This follows immediately from 2.6 and 2.7.

3. An example. In [2], Z. Frolik constructs, for each positive integer n, a
space X such that X" is countably compact but X”*!is not pseudocompact.
In [5], J. Keesling shows that the hyperspaces of these spaces are not pseudo-
compact. This conclusion also follows from 2.7. Also in [2], Frolik constructs
a space Y, all of whose finite powers are countably compact, such that ¥Xois
not pseudocompact. We will see below that 2% is not pseudocompact, thus
providing a counterexample to the converse of 2.7 and to the converse of the
last statement in 2.3.

3.1. Example. A completely regular space Y, all of whose finite powers are
countably compact, such that 2Y is not pseudocompact.

Frolik constructs a sequence X, for 7 € N, of subspaces of BN — N, such
that Ilxey VU Xk is not pseudocompact, while every finite subproduct is
countably compact. In his example, MNiny X = 0. The desired space Y is the
free union of the spaces N \U X,, together with a point at infinity, whose
neighborhoods are complements of finitely many of the spaces N \U X ;. To
avoid ambiguity, let us replace N\U X; by V¥V, = (NU X,) X {z}. The space
Vis then (Uen Vi) U {00}, with the topology described above. We will show
that 2¥ is not pseudocompact. We will in fact produce an open-closed sub-
space of 2¥ homeomorphic to N. For each #, we let

F,=1{(n1), (n,2),..., (n n)}.
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Since each point of each copy of NV is isolated in Y, it follows that, for every #,
F, is an isolated point of 2¥. Thus D = {F, : n € N} is a discrete, open sub-
space of 2%, and our proof will be complete if we show D is closed in 2*. Let
A € 2¥Y, We show that 4 is not a cluster point of D.

Case 1. A N [Uiew N X {k}] # 0. In this case, let (n, k) € A. Now (n, k)
is isolated in ¥, so B(Y; {(n, k)}) is a neighborhood of 4 in 2¥. At most one
Fiisin B(Y; {(n, k)}). Therefore 4 is not a cluster point of D.

Case 2. There is an integer ¢ such that A N V; = @. In this case, 2¥-¥i is
a neighborhood of 4 in 2¥ meeting D in a finite set. Thus 4 is not a cluster
point of D.

Case 3. For some integer %, |4 M Y,| > 1. In this case, 4 meets two disjoint
open subsets G; and G of Y. Since each F, contains at most one element from
each Y, B(Y; G,, G,) is a neighborhood of A in 2Y that is disjoint from D.
So again, 4 is not a cluster point of D.

Case 4. In light of the first three cases, we may now assume that 4 =
{ (%, ) : m € N} U {0}, where, for each n, x, € X,. Now, since Nyexy X, = 0,
we can find integers # and m such that x, # x,. Find disjoint open sets U and
Vin BN such thatx, € Uandx, € V.Nowset U, = [UN (N VU X,)] X {n},
and V; = [V (NN X,)] X {m}. Then U, and V, are open in Y, and
(xp, ) € Uy, (xp, m) € Vy. Thus B(Y; Uy, V1) is a neighborhood of A4 in 2Y.
Since B(Y; U,, V1) is clearly disjoint from D, A is not a cluster point of D.

Cases 1 to 4 combine to show that D is closed in 2¥, completing the proof.

3.2. Remark. In light of the results of 2.3 and 2.7, and Example 3.1, it is
natural to ask whether there is any relation between the pseudocompactness
(countable compactness) of XX and that of 2*. It would also be interesting
to characterize those spaces X whose hyperspaces are countably compact
(pseudocompact). The author has been unable to resolve these questions, and
leaves them open to the reader. Natural examples of &-compact and Z-
pseudocompact spaces can be found in [4]. These spaces provide non-trivial
examples of pseudocompact and countably compact hyperspaces.
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