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Abstract: Three main areas of relativistic stellar dynamics are 
reviewed: (a) Relativistic clusters, (b) Systems containing a 
massive black hole, and (c) Perturbed expanding Universes. The 
emphasis is on the use of orbit perturbations. 

There are three main areas of research that belong to the field 
of Relativistic Stellar Dynamics, namely: 

(a) The dynamics of clusters, or nuclei of galaxies, of very 
high density, 

(b) The dynamics of systems containing a massive black hole, and 

(c) The dynamics of particles (and photons) in an expanding 
Universe. 

(a) Up to now the emphasis has been put on the first subject. It 
is known that clusters evolve by condensing their central parts while 
expanding their outer parts. If the density contrast between the center 
and the envelope is sufficiently high the evolution produces a collapse 
of the center to theoretically infinite density. This is what Lynden-
Bell calls a "gravothermal catastrophe" (Lynden-Bell and Wood, 1968). 

Although infinite densities cannot be realized in practice, one 
expects that the core of the cluster will become relativistic. Rela­
tivistic effects become significant for densities of the order of 
10 M^/pc , in which case the stars are at distances similar to those 
of the planets in the solar system. 

A review of the dynamics of relativistic clusters was provided by 
Ipser (1975). The main topic in this review was the stability of 
clusters. It seems that highly relativistic clusters are unstable in 
general. 

A recent development in this direction was provided by Vandervoort 
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and Ipser (1982). These authors proved that a large class of clusters 
are unstable because of gravitational radiation. This result led them 
to the conjecture that gravitational radiation makes all clusters 
unstable. 

A similar theorem in the case of fluid systems (stars) was formu­
lated a few years ago by Friedman (1978; see also Friedman and Shutz, 
1978). Friedman proved that all stars are unstable, because of gravi­
tational radiation. The unstable modes have angular dependence of the 
form exp(imS) where m (> 2) must be sufficiently large. The growth 
rate of the instability is proportional to (c/v) 2 m +*, where v is a 
characteristic velocity. 

On the other hand the unstable modes of the stellar axisymmetric 
systems considered by Vandervoort and Ipser are of the Dedekind type 
(ellipsoids with fixed boundaries in an inertial system, and with a 
strong internal circulation), i.e. they have m = 2 . The instability 
appears for all angular velocities £3>0. Therefore we may state that 
relativistic stellar systems are more unstable than the corresponding 
fluid systems. 

(b) The second subject of interest is the dynamics of a system 
under the influence of a large central black hole. In very dense 
nuclei of clusters, or galaxies, one may have frequent collisions that 
may lead to the formation of a massive central black hole. Thus it is 
quite possible that the dynamics of the nuclei of some clusters, or 
galaxies, are dominated by a large black hole. This black hole should 
be in general of the Kerr type (rotating black hole). 

The study of the orbits of particles and photons (geodesies) around 
Kerr black holes has received a great impetus after the discovery by 
Carter (1968) that such systems are completely integrable. Carter 
proved that the equations of motion of particles (or photons) around 
a Kerr black hole have one more integral of motion besides the classical 
ones (rest mass, energy and angular momentum). By using Carter's 
integral one can solve explicitly the equations of motion, using 
elliptic integrals (for a review see Sharp, 1979; see also 
Chandrasekhar, 1982, and Contopoulos, 1982). One can distinguish the 
following main types of orbits: 

1) Orbits staying outside the ergosphere, 

2) Orbits entering the ergosphere and coming out again, 

3) Orbits staying always in the ergosphere, 

4) Orbits entering the outer horizon of the black hole; such 
orbits do not come out again in finite coordinate time. 

5) Orbits inside the inner horizon, which, however, are of no 
importance for the outside observer. 
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The relative position of the orbits with respect to the ergosphere 
is of interest in connection with the Penrose effect (Penrose, 1969). 
A particle in the ergosphere may split into one particle of negative 
energy and one of positive energy. The first particle enters the 
horizon, while the second one acquires a larger energy than the energy 
of the incoming particle. The energy excess is taken from the black 
hole itself, therefore it can be larger than the rest mass (E=mc^) of 
the particle. The Penrose process has been invoked as a source of 
energy in the nuclei of galaxies. Although it is known now that the 
Penrose process is much less effective than previously thought 
(Bardeen et al., 1972; Chandrasekhar, 1982) the problem is of great 
theoretical and practical importance. 

One problem of theoretical interest is whether negative energy 
particles can ever go out of the ergosphere. If this would happen, we 
might have closed time-like geodesies, which would lead to causality 
violation. However it can be proved that if we impose the condition 
that the coordinate time and the proper time increase together 
(dt/dx> 0) no negative energy orbit can go out of the ergosphere. 
However, this condition cannot be derived from the local dynamics of 
the splitting of a particle in the ergosphere. 

Among the orbits around black holes of special interest are the 
nearly circular orbits. In fact if a quasi-stationary stellar system 
is formed around the black hole such orbits should contain most of the 
mass. Such orbits are the counterparts of the familiar epicyclic orbits 
of classical galactic dynamics. They have two basic frequencies, the 
rotation frequency ft, and the epicyclic frequency K of radial oscilla­
tions. 

We come now to the problem of the perturbations of a Kerr black 
hole. 

The linearized problem of perturbed Kerr black holes has been 
solved recently by Chandrasekhar (1982). This problem involves the 
solution of 76 coupled differential equations containing 50 unknown 
functions. It seems almost miraculous that this problem has an explicit 
solution. 

The perturbations depend on the time through factors of the form 
exp(iat), where a is complex and can be considered as an eigenvalue of 
the system. 

From now on the problem takes the familiar aspect of galactic 
dynamics. The perturbations can be considered as due to a density 
distribution of matter (and radiation) around the black hole, which we 
call the imposed density. On the other hand the same distribution 
produces deviations in the orbits of particles (or photons) around the 
black hole. Thus the study of the orbits around perturbed black holes 
gives the response density, which must be equal to the imposed density. 
This condition is the well known self-consistency equation of galactic 
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dynamics 
imposed _ response Q>J 

Its solution will give the eigenvalues of the problem, i.e. the allowed 
values of a. 

The perturbed epicyclic orbits can be written in the form 

r = r + EF exp[i(mft + n« + a)t] . (2) 

This form is similar to that of the orbits of stars in a spiral galaxy, 
if we set 

a = -m(fis + i^) , (3) 

where Q is the angular velocity of the spiral pattern and mfi. its 
growth rate. 

If we solve now the collisionless Boltzmann equation we find the 
response density in the form 

exp[i(mfi + nx + q)t] ( . 
mQ + nK + a ^ ' 

which contains the expression (mft + nK + a) in the denominator. If a 
has a zero, or small, imaginary part, then (mQ + nK + a) may be zero, 
or close to zero, i.e. we have a resonance. The values of Q and K 
depend on the radius r, therefore at particular radii we have particular 
resonances. The most important resonances are the Lindblad resonances, 
where m/n = +2, or 

= ±2 , (5) n - Q 
s 

and the particle resonance (or corotation) where n=0, or 

a = ns . (6) 
Such resonances play an important role in spiral and barred 

galaxies and also in the rings of Saturn. Namely, when such resonances 
appear, the perturbations are so large that gaps are formed in the 
distribution of matter, both in galaxies and in Saturn?s rings. We 
expect therefore a similar behavior in the distribution of matter around 
black holes; e.g., if an accretion disk is formed, it should have the 
form of the rings of Saturn with several gaps here and there. The same 
should be the case for a cluster, or a galaxy, that is dominated by the 
central black hole. 
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A similar problem refers to the dynamics of a system dominated by 
a massive central body with axial symmetry. Such is the case of a 
dense elliptical galaxy. In such a system we can consider perturbations 
in the same way as in the case of the third integral of motion of 
galactic dynamics (Contopoulos, 1960). This problem has been treated 
recently in the post-Newtonian approximation by Spyrou and Varvoglis 
(1982), and can be considered as a first approach to the problems of 
relativistic galactic dynamics. 

(c) The third type of problems of relativistic stellar dynamics 
refers to perturbations in an expanding Universe. 

It is well known that the equations of motion in a Friedmann 
Universe are integrable. Thus, we can write explicitly the solutions 
for the motions of particles (and photons) in such a Universe. 

A more general integrable case is given by the metric 

ds 2 2 dt - RZ(t) dr 
2n 
r 

+ r2(de2 + sin29d())2) 
kr 

(7) 

which may represent a spherical condensation in an expanding Universe. 
This formula includes as limiting cases the Friedmann Universes if 
u = 0 and k = -1, 0 or +1. 

The geodesies in such a metric are plane and we can take 6 = TT/2. 
Thus the Lagrangian can be written 

cf"*H i 2y , 2 1 — - - kr r 

2J2 + r cp if (8) 

where dots mean derivatives with respect to the affine parameter T. 
The conserved angular momentum is 

and we have also 

that gives 

d 
dx 

[ R2r 
1 -^i-" r 

2 2' R r (|> = L 

the Eulerian equation 

a fail dT W 
3* 

" 9r ' 

' 

kr2J 
R r (kr-y/r ) 

V^-kr2)2 L2 
+ R2r3 

(9) 

(10) 

(11) 
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Thus we find 
n4-2 R r 
^ - k r 2 
r 

2 _ IT 1 2 > r (12) 

where T is a constant, and we derive 

R r = 17 2 r J 
1-^H-kr2 (13) 

where B = L/T. 

On the other hand R is assumed to be given by the Friedmann 
equation with zero cosmological constant 

^ 2 = a - k 
dt R 

(14) 

Thus, R is a given function of t; hence, the above equations can 
be solved to give r and <J> implicitly as functions of t. 

Then the problem of perturbations is dealt with as in the case of 
a black hole. If we consider, in particular, nearly circular motions, 
we can define the rotational end epicyclic frequencies Q and K . 
Then we consider perturbations proportional to exp(iat), and find a 
response of the form (4). Thus we can search for eigenvalues a, that 
define self-consistent solutions of the linearized Einstein equations 
and collisionless Boltzmann equations in the same way as in the case of 
a central black hole. 

This type of research is still in its first stages. However, it 
a useful approach if we want to understand the results of the N-body 
calculations in an expanding Universe of the kind presented to us by 
the movies of R. Miller and others during this Symposium. 

is 
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Discussion 

Vignato: Is it possible by Lindblad resonance theory to take into 
account nonmonotonic density distribution in a spherically 

symmetric system? 

Contopoulos: Yes, the theory can take care of all cases. 

McCvea: Why should causality not be violated? 

Contopoulos: This is a philosophical question and I will not answer it 
here. But we may discuss it privately and I have a few 

things to tell you. 
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