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Abstract

The existence of 1-factorizations of the complete multigraph \Kn which cannot be decomposed into
1-factorizations with smaller X is studied.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15

1. Introduction

Any 1-factorization of the complete graph K2n provides a schedule for the In — 1
rounds of a simple round robin tournament for 2n teams, with each team meeting
each other team exactly once. If each team is to meet each other team exactly X
times, one schedule for such a multiple round robin tournament is obtained by
combining any X schedules (whether identical or not) for a single round robin
tournament. In graph-theoretic terms, combining any X 1-factorizations of K2n

yields a 1-factorization of \K2n.
One might ask the converse question: given a 1-factorization of \K2n, X > 1, is

it the union of X 1-factorizations of K2nl It is readily seen that the answer can be
"no"; it suffices to take the 15 distinct 1-factors of K6, remove the 5 1-factors of
the unique 1-factorization, and observe that the remaining 10 1-factors cannot be
partitioned into two 1-factorizations of K6. A more general question would be as
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follows: given a l-factorization of XK2n, X > 1, can it be written as a union of
1-factorizations of \'K2n and X"K2n for some X', X" < X, for which X' + X" = X? If
a l-factorization cannot be written in this way, we call it indecomposable. We
examine the existence of indecomposable 1-factorizations of K2n in this paper,
and show that there exist indecomposable 1-factorizations of XK2n for arbitrarily
high values of X. We also settle existence of indecomposable 1-factorizations for
2 < X < 6, leaving a few small open cases.

2. Main results

A l-factorization of the complete multigraph XK2n is a pair (V, F) where V is
the vertex set of K2n, and F is a collection of X(2w — 1) 1-factors. A comprehen-
sive survey of research on 1-factorizations of complete graphs is given in [3]. If no
two members of F are identical as 1-factors (i.e., no 1-factors are "repeated"), the
l-factorization is said to be simple. We denote a l-factorization of XK2n by
OF(2n, X); when it is indecomposable, we denote it by IOF(2n, X).

In what follows we need an auxiliary result on the existence of 1-factorizations
of certain graphs. For x e Zn, define |x | as x if 0 < x < [n/2\, and — x if
[n/2\ < x < n. For n > 2 and L c ( 1 , 2 , . . . , [n/2\}, let G(n, L) be the regular
graph with vertex set Zn and edge set E given by {x, y} e E if and only if
\x-y\* L.

LEMMA 1. Let n be an even positive integer, and let 0 # L c {1 ,2 , . . . , n /2 ) .
Then G(n, L) has a l-factorization if and only ifn/gcd(j, n) is even for at least one
jeL.

PROOF. See [2, 4].

Our first result shows that there are indecomposable 1-factorizations with
arbitrarily high index X.

THEOREM 2. There exists a simple IOF(2n, n — 1) whenever 2n — 1 is a prime.

PROOF. Let V = Z2n_x U {oo}, and let 6 be a generator of Z2n_1. Let F be the
1-factor {{2/ - l,2i}|l < / < «} U {{0, oo}}. Let Ft = 6'F, 0 < i < n - 2, and
let FF = {FJO < i < n - 2} mod2n - 1. Then (F, FF) is an OF(2n, n - 1),
which by construction is simple. Let us show that it is also indecomposable.
Assume that there exists an OF(2n, X)(F, F') with F' c FF, X < n - 1. Con-
sider all of the pairs {x, y), x, y e Z2n_x having \x - y\ = 1. There are 2« - 1
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such pairs, each of which is contained in exactly X factors of F'. On the other
hand, F' contains m 1-factors for some m < 2n — 1 whose edges {x, y) are such
that \x — y\ = 1, and each of these 1-factors contains 2n — 2 such edges. Thus we
have X(2n — 1) = m(2n — 2), which is a contradiction.

Any nonempty set of edges of a 1-factor F is a subfactor of F. An OF(2n, X)
(V, F) is said to be a sub-OF of an OF(2s, X) {W, G) if V c W, and for each
/ e F there is a g e G such that / is a subf actor of g. We also say that (V, F) is
embedded in (W, G).

THEOREM 3. Any OF(2n, X) can be embedded in a simple OF(2s, X) for s ^ In
provided X < 2n — 1.

PROOF. Let (V, F) be an OF{2n,X) with V = {v1,v2,...,v2n} and F =
{Fj j\l < / < 2/i - 1, 1 < y < X}. Note that (V, F) is not required to be simple.
However, we may assume without loss of generality that if (F, F) contains
repeated 1-factors whenever Fuj and Fkl are identical as 1-factors, then i ¥= k.

Let w = s - n, and consider the complete graph K2w with vertex set Z2w (we
assume here that Vn Z2w = 0 ) . The graph G(2w, {w - n + 1, w - n +
2,... ,H>}) is regular of degree 2n — 1, and by Lemma 1 has a 1-factorization. Let
Ht, 1 < / < 2/j — 1 be the 1-factors of such a 1-factorization. We construct a set
A: of 1-factors on the 2s vertices V U Z2w, taking K = { Ktj = FUj U #,|1 < / <
2n - 1,1 < y < X}. A^is a set of X(2n - 1) distinct 1-factors.

The remaining 1-factors involve edges between V and Z2w, and are constructed
as follows. Let A = {^4r|l < r < w — n} be a set of w — n disjoint pairs: Ar =
{ar, br}, ar, br e Z2w, \ar - br\ = r,ATC\ Aq= 0 for r ± q. Such a set A always
exists and is easy to construct by taking a Skolem or hooked Skolem (w — 1)-
sequence and omitting from it the n — 1 pairs with largest differences w — n +
l , . . . , w - l .

Let Y = {y l t . . . , y 2 n } = Z2w - U^x"A r . Define, for i e Z2w, M, = {{«„ j , +
I } | 1 < r < 2M} U {{ar + i, br + i}\l < r < w - «} . Clearly M, is a 1-factor of
A"2j on V U Z2 w. Now let C be any X X 2w Latin rectangle, and let b} be the
permutation given by theyth row of C. Let MUj = {{yr, y,b + i}\l < / < 2n) U
{{ar + i, Z>r + I } | 1 '< r < w - n} . It is straightforward to verify that M =
{M,j\i e Z2w, 1 < 7 < X} is a set of 2wX distinct 1-factors, and further that
(V U Z2w, K u M) is a simple OF(2s, X) containing the (not necessarily simple)
OF(2n, X)(F, F ) .

COROLLARY 4. / / ?«ere ex«r* an IOF(2n, X) WJ7/I X < 2« - 1, there exists a
simple IOF(2s, X)fors > 2/j.
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Before proceeding further, we observe that any OF(4, X), X > 1, is trivially
decomposable. Thus if an I0F(2n, X) exists for X > 1, then n > 3.

THEOREM 5. A simple IOF(2n, 2) exists if and only ifn > 3.

PROOF. An IOF(6,2) exists by Theorem 2 (and also by the remarks in the
introduction). Theorem 3 then gives a simple IOF(2n, 2) for all n > 6. It remains
only to exhibit solutions for n = 4 and 5. One simple IOF(S, 2) has V = Z7 U
{oo}, and F = F' U F " where F ' = {{0, oo}, (1,6), {2,3}, {4,5} mod7} and
F" = {{0,oo}, {1,5}, {2,4}, {3,6} mod7}.

An /0F(1O,2) is developed similarly with F ' = {{0, oo}, {1,4}, {2,6}, {3,7},
{5,8} mod9} andF" = {{0,oo}, {1,3}, {2,4}, {5,6}, {7,8} mod9}.

THEOREM 6. A simple IOF(2n, 3) exists if and only ifn^4.

PROOF. An exhaustive search easily verifies that there is no IOF(6,3), whether
simple or not. Theorem 2 yields a simple /OF(8,3), and then Theorem 3 gives a
simple IOF(2n, 3) for every n > 8. It remains only to give simple IOF(2n, 3) for
n = 5,6, and 7; these are given in the appendix.

THEOREM 7. A simple IOF(2n, 4) exists if and only ifn^A.

PROOF. Necessity is obvious. For sufficiency, Theorem 3 together with a simple
IOF(2n, 4) for n = 4,5,6, and 7 is enough; these IOFs are given in the appendix.

THEOREM 8. A simple IOF(2n, 5) exists for n = 5,6,7 and all n > 10.

PROOF. A simple IOF(12,5) exists by Theorem 2, and a simple /0F(10,5) and
/OF(14,5) are given in the appendix; Theorem 3 then gives simple IOF(2n, 5) for
all n > 10.

THEOREM 9. A simple IOF(2n, 6) exists for all n > 6.

PROOF. A simple /OF(14,6) exists by Theorem 2, and a simple IOF{\2,6) is
given in the appendix. Theorem 3, together with a non simple 7OF(8,6) given in
the appendix, give simple IOF(2n, 6) for all n > 8.

Of course, the application of the techniques developed does not merely apply to
small values of X; for example, we have
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THEOREM 10. (i) A simple IOF(2n, \)for\ = 8 or 9 exists for n = 6,7 and all
n > 12.

(ii) A simple IOF(2n, 10) exists for n = 7 and all n > 14.
(iii) A simple IOF(2n, 12) exists for all n > 16.

PROOF. Simple JOF(12,8), /OF(14,8), /OF(12,9), /OF(14,9) and /OF(14,10)
and a nonsimple IOF(16,12) are given in the appendix. The rest follows from
Theorem 3.

3. Conclusions and open problems

There are exactly three nonisomorphic OF(6,2)'s of which exactly one is
indecomposable [5]. There exists no indecomposable IOF{6,3), whether simple or
not. This can be determined by exhaustive search. Virtually nothing else is known
about the enumeration of OF(2n, X)'s for X > 1.

One might ask what is the maximum X = X(2w) such that there exists a simple
IOF(2n, X). Taking all distinct 1-factors of K2n obviously produces a simple
OF(2n,(2n — 3)!!), where «!! is the product of all odd numbers up to n. Thus
X(2«) < (2« — 3)!! - 1. One has X(6) = 2, but nothing else seems to be known
about X (2 n).

Let us mention one other (undoubtedly difficult) problem concerning 1-factori-
zations of \K2n. Suppose P = (px, p2>--->Pk) ls a partition of the number
(2n — 3)!!. Is it possible to partition the 1-factors of K2n on V into subsets
F1,...,Fk such that each (V, Ft) is an IOF(2n, />,-)? Let us call P admissible if the
answer is yes. It is easily seen that (1,2) is the only admissible partition for n = 3.
Cameron [1] has shown that for n = 4, the partition (1*15) is admissible but it
follows from Theorems 5-7 that many other partitions are admissible for n = 4.
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Appendix

We list here the "base" 1-factors for the IOF(2n, X)'s referred to in Section 2.
These were produced using a straightforward backtracking algorithm by com-
puter. The vertex set is always taken to be Z2n-i U {<x>}.
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Simple IOF(1Q, 3)

{0,oo} {1,8} {2,3} {4,5} {6,7}
{0,<»} {1,3} {2,7} {4,6} {5,8}
{0,oo} {1,6} {2,5} {3,8} {4,7}

Simple 7OF(12,3)
{0,oo} {1,7} {2,3} {4,5} {6,10} {8,9}
{0,oo} {1,7} {2,9} {3,5} {4,6} {8,10}
{0,oo} {1,4} {2,7} {3,10} {5,8} {6,9}

Simple IOF(14,3)
{0,oo} {1,12} {2,3} {4,5} {6,7} {8,10} {9,11}
{0,oo} {1,10} {2,11} {3,12} {4,7} {5,8} {6,9}
{0,oo} {1,7} {2,10} {3,8} {4,9} {5,11} {6,12}

Simple IOF(%, 4)

{0,^} {1,2} {3,6} {4,5}
{0,oo} {1,4} {2,3} {5,6}
{0,oo} {1,6} {2,4} {3,5}
{0,oo} {1,5} {2,4} {3,6}

Simple /OF(10,4)

{0,«} {1,2} {3,4} {5,6} {7,8}
{O.oo} {1,4} {2,7} {3,5} {6,8}
{0,oo} {1,7} {2,6} {3,5} {4,8}
{0,oo} {1,3} {2,6} {4,7} {5,8}

Simple IOF(12,4)

{0,oo} {1,2} {3,4} {5,10} {6,7} {8,9}
{0,oo} {1,10} {2,8} {3,5} {4,6} {7,9}
{0,o,} {1,4} {2,5} {3,8} {6,9} {7,10}
{0,*.} {1,7} {2,6} {3,10} {4,8} {5,9}
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Simple /OF(14,4)

[7]

{0,oo} {1,2}
{0,oo} {1,3}
{0,oo} {1,8}
{0,oo} {1,6}

Simple /OF(10,5)

{0,o
{0,o
{0,o
{0,o

0}

0}

0}

0}

{0,oo}

Simple 7OF(14,5)

{0,oo} {1,8}
{0,oo} {1,3}
{0,oo} {1,11}
{0,oo} {1,10}
{0,oo} {1,6}

Nonsimple JOF(8,6)

{0,oo}
{0,oo}
{0,oo}

Simple 7OF(12,6)

{0,oo}
{0,oo}
{0,oo}
{0,oo}
{0,oo}
{0,oo}

{1
{1
{1
{1
{1

{1

{3,4}
{2,10}
{2,5}
{2,10}

{1,2}
{1,5}
{1,4}
{1,7}
{1,7}

{2,3}
{2,4}
{2,12}
{2,11}
{2,8}

{1,2}
{1,4}
{1,3}

,2} {3
,3} {2
,4} {2
,4} {2
,5} {2
,6} {2

{5,11}
{4,12}
{3,6}
{3,12}

{3,4}
{2,6}
{2,3}
{2,5}
{2,4}

{4,5}
{5,7}
{3,10}
{3,7}
{3,11}

{3,4}
{2,5}
{2,5}

,4} {5
,4} {5
,5} {3
,8} {3
,9} {3
,7} {3

{6,12}
{5,7}
{4,11}
{4,8}

{5,6}
{3,7}
{5,7}
{3,6}
{3,5}

{6,7}
{6,12}
{4,7}
{4,8}
{4,9}

{5,6}
{3,6}
{4,6}

,6} {7
,6} {7
,6} {7
,6} {5
,7} {4
,8} {4

{7,8}
{6,8}
{7,10}
{5,9}

{7,8}
{4,8}
{6,8}
{4,8}
{6,8}

{9,10}
{8,10}
{5,8}
{5,9}
{5,10}

twice

three times

,9} {8,
,8} {9,
,9} {8,
,9} {7,
,8} {6,

,9} {5,

10}
10}
10}
10}
10}
10}

{9,
{9,
{9,
{7,

{11
{9,
{6
{6,
{7,

10}

11}
12}

11}

,12}
11}
,9}

12}
12}
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Simple IOF(U, 8)

{0,oo} {1,2} {3,4} {5,10} {6,7} {8,9}
{0,oo} {1,2} {3,8} {4,5} {6,7} {9,10}
{0,oo} {1,5} {2,7} {3,9} {4,8} {6,10}
{0,oo} {1,6} {2,7} {3,10} {4,8} {5,9}
{0,«>} {1,9} {2,7} {3,6} {4,10} {5,8}
{0,<x>} {1,10} {2,4} {3,5} {6,8} {7,9}
{0,oo} {1,9} {2,10} {3,6} {4,7} {5,8}
{0,oo} {1,10} {2,6} {3,5} {4,8} {7,9}

Simple IOF(14,8)

{0,oo} {1,11} {2,3} {4,5} {6,7} {8,9} {10,12}
{0,oo} {1,3} {2,12} {4,5} {6,7} {8,9} {10,11}
{0,oo} {1,4} {2,6} {3,7} {5,8} {9,11} {10,12}
{0,oo} {1,3} {2,4} {5,8} {6,10} {7,11} {9,12}
{0,oo} {1,11} {2,12} {3,5} {4,8} {6,10} {7,9}
{0,oo} {1,5} {2,9} {3,8} {4,11} {6,10} {7,12}
{0,oo} {1,9} {2,7} {3,8} {4,12} {5,10} {6,11}
{0,oo} {1,7} {2,8} {3,9} {4,10} {5,11} {6,12}

Simple IOF(12,9)

{0,oo} {1,4} {2,10} {3,5} {6,8} {7,9}
{0,oo} {1,9} {2,4} {3,5} {6,8} {7,10}
{0,oo} {1,2} {3,6} {4,7} {5,8} {9,10}
{0,*=} {1,10} {2,4} {3,6} {5,8} {7,9}
{0,oo} {1,2} {3,4} {5,6} {7,8} {9,10}
{0,oo} {1,6} {2,3} {4,9} {5,10} {7,8}
{0,oo} {1,6} {2,7} {3,8} {4,9} {5,10}
{0,oo} {1,5} {2,9} {3,7} {4,8} {6,10}
{0,oo} {1,7} {2,6} {3,10} {4,8} {6,10}
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Simple IOFQ.4,9)
{0,oo} (1
{0,oo} (1
{0,oo} {1
{0,oo} (1,

,4}
.2}
,2}

11}

(2,3}
{3,6}
(3,4}
(2,4}

(5,7}
(4,5}
(5,8}
(3,6}

{6,8}
(7,9}
(6,7}
{5,8}

(9,
(8,
(9,
(7

10}
10}

11}
,9}

{11,12}
{11,12}
{10,12}
{10,12}

{0,oo} {1,9} {2,10} {3,6} {4,8} {5,12} {7,11}
{0,oo} {1,9} {2,11} {3,7} {4,10} {5,8} {6,12}
{0,oo} {1,7} {2,6} {3,8} {4,11} {5,10} {9,12}
{0,oo} {1,6} {2,10} {3,9} {4,8} {5,12} {7,11}
{0,oo} {1,8} {2,7} {3,11} {4,10} {5,9} {7,12}

Simple 70^(14,10)

{0,oo} {1,12} {2,3} {4,8} {5,7} {6,9} {10,11}
{0,oo} {1,12} {2,6} {3,5} {4,7} {8,9} {10,11}
{0,oo} {1,6} {2,5} {3,4} {7,9} {8,10} {11,12}
{0,oo} {1,2} {3,8} {4,7} {5,6} {9,11} {10,12}
{0,oo} {1,11} {2,4} {3,5} {6,12} {7,8} {9,10}
{0,oo} {1,11} {2,12} {3,10} {4,7} {5,8} {6,9}
{0,oo} {1,10} {2,6} {3,12} {4,8} {5,9} {7,11}
{0,oo} {1,9} {2,7} {3,8} {4,12} {5,10} {6,11}
{0,oo} {1,7} {2,8} {3,9} {4,10} {5,11} {6,12}
{0,oo} {1,8} {2,11} {3,7} {4,9} {5,10} {6,12}

Nonsimple /OF(16,12)
{0,oo} {1,14} {2,3} {4,5} {6,7} {8,9} {10,11} {12,13} twice

{0.°°} {1,4}
{1,6}
{1,10}
{1,7}
{1,11}
{1,9}

{2
{2,
{2

{2,
{2
{2,

,7}
14}

,5}
12}
,8}
10}

{3,14}
{3,7}
{3,14}
{3,14}
{3,14}
{3,7}

{5,13}
{4,10}
{4,9}
{4,9}
{4,10}
{4,14}

{6,12}
{5,13}
{6,13}
{5,10}
{5,12}
{5,13}

{8,10}
{8,11}
{7,11}
{6,13}
{6,9}
{6,12}

{9,11} five times
{9,12}
{8,12}
{8,11}
{7,13}
{8,11}
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