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On Complemented Subspaces of
Non-Archimedean Power
Series Spaces

Wiesław Śliwa and Agnieszka Ziemkowska

Abstract. The non-archimedean power series spaces, A1(a) and A∞(b), are the best known and most

important examples of non-archimedean nuclear Fréchet spaces. We prove that the range of every

continuous linear map from Ap(a) to Aq(b) has a Schauder basis if either p = 1 or p = ∞ and the set

Mb,a of all bounded limit points of the double sequence (bi/a j )i, j∈N is bounded. It follows that every

complemented subspace of a power series space Ap(a) has a Schauder basis if either p = 1 or p = ∞

and the set Ma,a is bounded.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field

K which is complete under the metric induced by the valuation | · | : K → [0,∞).

For fundamentals of locally convex Hausdorff spaces and normed spaces we refer to

[9–11].

Any infinite-dimensional Banach space of countable type is isomorphic, i.e., lin-

early homeomorphic, to the Banach space c0 of all sequences in K converging to zero

(with the sup-norm), so it has a Schauder basis [10, Theorem 3.16]. It is also known

that any infinite-dimensional Fréchet space of finite type is isomorphic to the Fréchet

space K
N of all sequences in K with the product topology [13, Theorem 7], so it has

a Schauder basis, too.

Hence every closed subspace of c0 and K
N has a Schauder basis. By [15, Propo-

sition 9], we have a similar fact for c0 × K
N. For cN

0 it is not true, since there exist

Fréchet spaces of countable type without a Schauder basis [14, Theorem 3] and every

Fréchet space of countable type is isomorphic to a closed subspace of cN

0 [4, Remark

3.6]. In fact, every infinite-dimensional Fréchet space which is not isomorphic to

any of the following spaces (c0, K
N, c0 × K

N) contains a closed subspace without a

Schauder basis [15, Theorem 7].

One of the most important problems for Fréchet spaces is the following one:

Let E be a Fréchet space with a Schauder basis. Does every complemented

subspace F of E have a Schauder basis?

For nuclear Fréchet spaces over the field of real or complex numbers, this problem

was posed by Pełczyński in 1970, and it is still open.
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In [17, Proposition 9], it was shown that every quotient of cN

0 has a Schauder basis.

Thus every complemented subspace of cN

0 has a Schauder basis [17, Corollary 10].

The power series spaces of finite type and infinite type, A1(a) and A∞(b), are the

best known and most important examples of nuclear Fréchet spaces with a Schauder

basis. In this paper we show that the range of every continuous linear operator from

Ap(a) to Aq(b) has a Schauder basis if either p = 1 or p = ∞ and the set Mb,a of all

finite limit points of the double sequence (bi/a j)i, j∈N is bounded (Corollary 3.11).

It follows that every complemented subspace of a power series space Ap(a) has a

Schauder basis, if either p = 1 or p = ∞ and the set Ma,a is bounded (Corol-

lary 3.13).

In this paper we use and develop some ideas of [8] (see also [6]).

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by [A].

Let E, F be locally convex spaces. A map T : E → F is called an isomorphism if it is

linear, bijective and the maps T, T−1 are continuous. If there exists an isomorphism

T : E → F, then we say that E is isomorphic to F and write E ≃ F. The family of all

continuous linear maps from E to F we denote by L(E, F). The range of T ∈ L(E, F)

is the subspace T(E) of F.

Sequences (xn) and (yn) in a locally convex space E are:

• equivalent if there exists an isomorphism P between the closed linear spans of (xn)

and (yn) in E, such that Pxn = yn for every n ∈ N;
• quasi-equivalent if there exist (αn) ⊂ (K \ {0}) and a permutation π of N such

that the sequences (αnxπ(n)) and (yn) are equivalent.

A finite sequence (x1, . . . , xn) in a finite-dimensional locally convex space E is a

Schauder basis in E if there exist f1, . . . , fn ∈ E ′ such that x =
∑n

i=1 fi(x)xi for every

x ∈ E, and fi(x j) = δi, j for all 1 ≤ i, j ≤ n; clearly, every Hamel basis in E is a

Schauder basis in E.

A sequence (xn) in an infinite-dimensional locally convex space E is a Schauder

basis in E if each x ∈ E can be written uniquely as x =
∑∞

n=1 αnxn with (αn) ⊂ K,

and the coefficient functionals fn : E → K, x → αn(n ∈ N) are continuous.

By a seminorm on a linear space E we mean a function p : E → [0,∞) such that

p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all

x, y ∈ E. A seminorm p on E is a norm if ker p := {x ∈ E : p(x) = 0} = {0}.

The set of all continuous seminorms on a locally convex space E is denoted by

P(E). A nondecreasing sequence (pn) of continuous seminorms on a metrizable lo-

cally convex space E is a base in P(E) if for every p ∈ P(E) there are C > 0 and k ∈ N

such that p(x) ≤ C pk(x) for all x ∈ E.

A complete metrizable locally convex space is called a Fréchet space. Let (xn) be a

sequence in a Fréchet space E. The series
∑∞

n=1 xn is convergent in E if and only if

lim xn = 0.

A normable Fréchet space is a Banach space.

A metrizable locally convex space E is of countable type if it contains a linearly

https://doi.org/10.4153/CJM-2011-018-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-018-0
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dense sequence (xn). A metrizable locally convex space E is of finite type if

dim(E/ ker p) < ∞

for every p ∈ P(E). Put BK = {α ∈ K : |α| ≤ 1}. Let A be a subset of a locally

convex space E. The set

co A =

{

n
∑

i=1

αiai : n ∈ N, α1, . . . , αn ∈ BK , a1, . . . , an ∈ A
}

is the absolutely convex hull of A; its closure in E is denoted by coEA. A subset A of a

locally convex space E is absolutely convex if co A = A.

A subset B of a locally convex space E is compactoid (or a compactoid) if for each

neighbourhood U of 0 in E there exists a finite subset A of E such that B ⊂ U + co A.

By a Fréchet-Montel space we mean a Fréchet space E such that every bounded

subset of E is compactoid.

Let E and F be locally convex spaces. An operator T ∈ L(E, F) is compact if for

some neighbourhood U of zero in E the set T(U ) is compactoid in F.

For any seminorm p on a locally convex space E the map p : E/ ker p → [0,∞) x+

ker p → p(x) is a norm on Ep = E/ ker p.

A locally convex space E is nuclear if for every p ∈ P(E) there exists q ∈ P(E) with

q ≥ p such that the map ϕq,p : (Eq, q) → (Ep, p) , x + ker q → x + ker p is compact.

Any nuclear Fréchet space is a Fréchet-Montel space.

Let U be an absolutely convex neighbourhood of zero in a locally convex space E.

The Minkowski functional of U , pU : E → [0,∞), pU (x) = inf{|α| : α ∈ K and x ∈
αU}, is a continuous seminorm on E.

Let E be a locally convex space. If A ⊂ E and B ⊂ E ′, then we put A◦
= { f ∈ E ′ :

| f (x)| ≤ 1 for every x ∈ A} and ◦B = {x ∈ E : | f (x)| ≤ 1 for every f ∈ B}. For

A ⊂ E we put Ae
=

⋂

{λA : λ ∈ K and |λ| > 1} if the set |K| = {|α| : α ∈ K} is

dense in [0,∞), and Ae
= A otherwise.

An infinite matrix A = (an,k) of real numbers is a Köthe matrix if 0 ≤ an,k ≤ an,k+1

for all n, k ∈ N, and supk an,k > 0 for every n ∈ N.

Let A be a Köthe matrix. The space

K(A) = {(αn) ⊂ K : lim
n→∞

|αn|an,k = 0 for every k ∈ N}

with the base (pk) of seminorms, where pk((αn)) = maxn |αn|an,k, k ∈ N, is a Fréchet

space. The sequence (e j), where e j = (δ j,n), is an unconditional Schauder basis in

K(A).

A Fréchet space E with a Schauder basis has the quasi-equivalence property if every

two Schauder bases in E are quasi-equivalent.

Any infinite-dimensional Fréchet space E with a Schauder basis is isomorphic to

K(A) for some Köthe matrix (see [1], Proposition 2.4 and its proof).

Let Γ be the family of all non-decreasing sequences a = (an) of positive real num-

bers with lim an = ∞. Let a = (an) ∈ Γ. Then the following Fréchet spaces are

nuclear (see [1, 18]:

https://doi.org/10.4153/CJM-2011-018-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-018-0


On Complemented Subspaces of Non-Archimedean Power Series Spaces 1191

• A1(a) = K(B) with B = (bn,k), bn,k = e−an/k;
• A∞(a) = K(B) with B = (bn,k), bn,k = ekan .

A1(a) and A∞(a) are the power series spaces (of finite type and infinite type, respec-

tively).

The power series spaces have the quasi-equivalence property [16, Corollary 6].

Let E be a locally convex space. A linearly dense sequence (xn) in E is an orthogonal

basis in E if (xn) ⊂ (E\{0}) and if there is a base (pk) in P(E) such that for all k, n ∈ N

and α1, . . . , αn ∈ K we have pk(
∑n

i=1 αixi) = max1≤i≤n pk(αixi).

Every orthogonal basis in a locally convex space E is a Schauder basis and every

Schauder basis in a Fréchet space is an orthogonal basis [4, Propositions 1.4 and 1.7].

Let (E, ‖ · ‖) be a normed space and let t ∈ (0, 1). A sequence (xn) ⊂ E is t-

orthogonal if for all m ∈ N, α1, . . . , αm ∈ K we have

∥

∥

∥

m
∑

i=1

αixi‖ ≥ t max
1≤i≤m

‖αixi

∥

∥

∥
.

If (xn) ⊂ (E\{0}) is t-orthogonal and linearly dense in E, then it is t-orthogonal basis

in E. Every t-orthogonal basis in E is a Schauder basis.

3 Results

We start with the following.

Theorem 3.1 Let E and F be Fréchet spaces and let T ∈ L(E, F). Assume that there

exists a linearly dense absolutely convex compactoid K in E and an absolutely convex

neighbourhood U of zero in F such that pU is a norm on F and the set

WT = {S ∈ L(E, F) : S(K) ⊂ T(K) and T−1(U ) ⊂ S−1(U )}

is equicontinuous. Then the range of T has a Schauder basis.

Proof Clearly, we can assume that the range of T is infinite-dimensional. The com-

pletion D of the normed space FU = (F, pU ) is a Banach space and the set V = T(K)

is an absolutely convex compactoid in D. The closed linear span G of V in D is

a Banach space of countable type. Let α ∈ K with |α| > 1 and let t ∈ R with

|α|−1 < t < 1. Using [10, Lemma 4.36, Theorem 4.37], we infer that there exists a

t-orthogonal sequence (gn) in G with (gn) ⊂ (αV ) \ {0} such that the closure A of

co{gn : n ∈ N} in G includes V and lim gn = 0 in G. Clearly, (gn) is linearly dense

in G, so it is a t-orthogonal basis in G. Let (g∗n ) ⊂ G∗ be the sequence of coefficient

functionals associated with the Schauder basis (gn) in G. Since T(E) ⊂ [V ]
F
⊂ G

we have T(x) =
∑∞

n=1 g∗n (T(x))gn in G for every x ∈ E. It is easy to check that

A = {
∑∞

n=1 αngn : (αn) ⊂ BK}. Thus |g∗n T(x)| ≤ 1 for all x ∈ K, n ∈ N.

The set W = αV
F

is an absolutely convex complete metrizable compactoid in F.

By [12, Theorem 3.2], we get τ |W = τU |W , where τ and τU are topologies of F and

FU , respectively. Hence lim gn = 0 in F. Thus the series
∑∞

n=1 g∗n T(x)gn is convergent
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in F for every x ∈ [K]. Since T(x) =
∑∞

n=1 g∗n T(x)gn in FU for every x ∈ [K] and

τU ⊂ τ we have T(x) =
∑∞

n=1 g∗n T(x)gn in F for every x ∈ [K].

Let m ∈ N. Put Tm : E → F, Tm(x) =
∑m

n=1 g∗n T(x)gn. Clearly Tm ∈ L(E, F).

For every n ∈ N there exists zn ∈ K such that gn = αT(zn). If x ∈ K, then

Tm(x) = αT(
∑m

n=1 g∗n T(x)zn) ∈ αT(K); so Tm(K) ⊂ αT(K). Let x ∈ T−1(U ). Then

pU (Tx) ≤ 1, so maxn |g
∗
n T(x)|pU (gn) ≤ t−1 pU (Tx) < |α|. Hence pU (Tm(x)) < |α|,

so Tm(x) ∈ αU . Thus T−1(U ) ⊂ αT−1
m (U ).

We have shown that (α−1Tm) ⊂ WT , so Tm, m ∈ N, are equicontinuous. Since

limm Tm(x) = T(x) in F for every x ∈ [K], we infer that limm Tm(x) = T(x) in F for

every x ∈ E. Hence T(x) =
∑∞

n=1 g∗n T(x)gn in F for all x ∈ E.

If
∑∞

n=1 αngn = 0 in F, then
∑∞

n=1 αngn = 0 in G, so αn = 0, n ∈ N. Thus (gn) is

a Schauder basis in T(E).

By the first part of the proof of Theorem 3.1 we get the following.

Proposition 3.2 Let F be a Fréchet space with a continuous norm. Then the linear

span of every compactoid in F has a Schauder basis.

Remark 3.3 Let F be a Fréchet space of countable type with a continuous norm

and without a Schauder basis (see [14]). Let (xn) be a linearly dense sequence in F.

For some (αn) ⊂ (K \ {0}) we have limn αnxn = 0 in F. Then the closure X of

co{αnxn : n ∈ N} in F is a closed absolutely convex compactoid in F and [X] has no

orthogonal basis. However, by Proposition 3.2, [X] has a Schauder basis.

Using Proposition 3.2 we get the following.

Corollary 3.4 Let E and F be Fréchet spaces. Assume that F has a continuous norm.

Then the range of every compact linear operator T from E to F has a Schauder basis.

Remark 3.5 We put x/y = 0, if x = y = 0; x/y = ∞, if x > 0 = y; and x·∞ = ∞,

if x > 0. If 0 ≤ a ≤ c and 0 ≤ d ≤ b, then a/b ≤ c/d. If a > 0, b > 0, c ≥ 0 and

d ≥ 0, then (ac)/(bd) = (a/b)/(c/d).

Let E and F be Fréchet spaces with non-decreasing bases (‖ · ‖s) and (‖ · ‖t ) in P(E)

and P(F), respectively. Let Us = {x ∈ E : ‖x‖s ≤ 1} and Vt = {x ∈ F : ‖x‖t ≤ 1}
for s, t ∈ N. For T ∈ L(E, F), D ⊂ E and s, t ∈ N we put ‖T‖D,t = supy∈D ‖Ty‖t and

‖T‖s,t = supy∈Us
‖Ty‖t .

Let E and F be Fréchet spaces. We shall write

— (E, F) ∈ R if the range of every continuous linear operator T from E to F has a

Schauder basis;

— (E, F) ∈ R1 if there exist non-decreasing bases (‖ · ‖s) and (‖ · ‖t ) in P(E) and

P(F), respectively, and an absolutely convex compactoid D in E such that

∃µ∀s∃t ∃C ∀T ∈ L(E, F) : ‖T‖t,s ≤ C max{‖T‖D,t , ‖T‖s,µ};

— (E, F) ∈ R2 if there exist Köthe matrices A and B with E ≃ K(A) and F ≃ K(B)
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such that

∃µ∀k ∃m∀n∃C ∀i, j : b j,k/ai,m ≤ C max{b j,m/ai,n, b j,µ/ai,k}.

Theorem 3.6 Let E and F be Fréchet spaces of countable type such that (E, F) ∈ R1.

Then (E, F) ∈ R.

Proof Let D be an absolutely convex compactoid in E such that

(3.1) ∃µ∀k ∃m∃C ∀T ∈ L(E, F) : ‖T‖m,k ≤ C max{‖T‖D,m, ‖T‖k,µ}.

Consider three cases.

Case 1: D is not linearly dense in E. Then F is normable. Indeed, the closure G

of the linear span of D in E is weakly closed in E [2, p. 257]. Thus there exists

f ∈ (E ′ \ {0}) with f (G) = {0}. Let k ≥ µ with f (Uk) ⊂ γBK for some γ ∈ K.

Then for some m and C we have

(3.2) ∀T ∈ L(E, F) : ‖T‖m,k ≤ C max{‖T‖D,m, ‖T‖k,µ}.

Let y ∈ Vµ. Put T : E → F, T(x) = f (x)y. Clearly, T ∈ L(E, F), ‖T‖D,m = 0 and

‖T‖k,µ ≤ |γ|. Thus ‖T‖m,k ≤ C|γ|. Let β ∈ ( f (Um) \ {0}). Then βy = Tz for some

z ∈ Um, so ‖βy‖k ≤ ‖T‖m,k ≤ C|γ|. Hence ‖y‖k ≤ C|γβ−1|, thus Vµ ⊂ λVk for

some λ ∈ K. It follows that for every k ≥ µ the seminorm ‖·‖k is equivalent to ‖ · ‖µ,

so F is normable. Thus (E, F) ∈ R, since every normed space of countable type has a

t-orthogonal basis for t ∈ (0, 1) [10, Theorem 3.16 and its proof].

Case 2: ‖ · ‖µ is not a norm. Then E is finite-dimensional. Indeed, let y ∈ (F \ {0})

with ‖y‖µ = 0. Let k ∈ N with y 6∈ λVk for some λ ∈ (K \ {0}). For some m and

C > 1 we have (3.2). Let β ∈ K with |β| > C such that y ∈ βVm. Let f ∈ D◦

and T : E → F, T(x) = f (x)y. Clearly, T ∈ L(E, F), ‖T‖k,µ = 0 and ‖T‖D,m ≤ |β|.
Thus ‖T‖m,k ≤ |β|2, so f (Um)y ⊂ β2Vk. Hence f ∈ (λβ−2Um)◦, since y 6∈ λVk.

Thus D◦ ⊂ (λβ−2Um)◦, so λβ−2Um ⊂ ◦(D◦) = (D)e ⊂ βD [11, Corollary 4.9,

Proposition 4.10]. It follows that E has a compactoid neigbourhood of zero. By

[3, Proposition 0.3], E is finite-dimensional; so (E, F) ∈ R.

Case 3: D is linearly dense in E and ‖·‖µ is a norm on F. Let β ∈ K with |β| > 1. Let

T ∈ L(E, F) and WT = {S ∈ L(E, F) : S(D) ⊂ T(D) and T−1(Vµ) ⊂ S−1(Vµ)}. For

all k, m ∈ N and S ∈ WT we have ‖S‖D,m ≤ ‖T‖D,m and ‖Sx‖µ ≤ |β|‖Tx‖µ, x ∈ E,

so ‖S‖k,µ ≤ |β|‖T‖k,µ. Clearly, ‖T‖D,m < ∞ for every m ∈ N and there exists k0 ∈ N

such that ‖T‖k,µ < ∞ for every k ≥ k0. Hence, using (3.1), we infer that

∃k0∀k ≥ k0 ∃m∃C ∀S ∈ WT : ‖S‖m,k ≤ C max{‖T‖D,m, |β|‖T‖k,µ}.

Thus the set WT is equicontinuous. By Theorem 3.1, the range of T has a Schauder

basis. It follows that (E, F) ∈ R.

Theorem 3.7 Let E be a Fréchet-Montel space and let F be a Fréchet space. Assume

that (E, F) ∈ R2. Then (E, F) ∈ R.
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Proof Let A and B be Köthe matrices with E ≃ K(A) and F ≃ K(B) such that

(3.3) ∃µ∀k ∃m∀n∃C ∀i, j : b j,k/ai,m ≤ C max{b j,m/ai,n, b j,µ/ai,k}

Without loss of generality we can assume that K(B) is non-normable (see the proof

of Theorem 3.6). and ak,n, bk,n ∈ |K| for all k, n ∈ N. Clearly, it is enough to show

that (K(A), K(B)) ∈ R.

Let k ∈ N. For some t > k we have sup j b j,t/b j,µ = ∞. By (3.3) there exists s > t

such that

∀n∃Cn > 0∀i, j :
b j,t

ai,s
≤ Cn max

{ b j,s

ai,n
,

b j,µ

ai,t

}

and there is m ≥ µ such that

∀n∃Ĉn > 0∀i, j :
b j,s

ai,m
≤ Ĉn max

{ b j,m

ai,n
,

b j,µ

ai,s

}

.

Let n ∈ N. For some j0 ∈ N we have b j0,t/b j0,µ > CnĈn; clearly b j0,t > 0. Let

i, j ∈ N. Then b j0,t/ai,s ≤ Cn max{b j0,s/ai,n, b j0,µ/ai,t}. Hence

b j,µ

ai,s
≤ Cn max

{ b j0,sb j,µ

b j0,t ai,n
,

b j0,µb j,µ

b j0,t ai,t

}

,

so

Ĉn

b j,µ

ai,s
≤ max

{

Dn

b j,µ

ai,n
,

b j,µ

ai,t

}

≤ max
{

Dn

b j,m

ai,n
,

b j,µ

ai,k

}

for Dn = ĈnCnb j0,s/b j0,t . It follows that

b j,k

ai,m
≤

b j,s

ai,m
≤ max

{

C ′
n

b j,m

ai,n
,

b j,µ

ai,k

}

,

where C ′
n = max{Ĉn, Dn}.

We have shown that

(3.4) ∃µ∀k ∃m∀n∃Ck,n > 1∀i, j :
b j,k

ai,m
≤ max

{

Ck,n
b j,m

ai,n
,

b j,µ

ai,k

}

.

Let β ∈ K with |β| > 1. Let Ct = max({Ck,n : k ≤ t, n ≤ t} ∪ {ai,k : i ≤ t, k ≤ t})

for all t ∈ N. Then Ck,n ≤ CkCn for all k, n ∈ N, and di = inft Ct/ai,t > 0 for every

i ∈ N. For i ∈ N let xi ∈ K with di < |xi | ≤ |β|di .

We shall prove that x = (xi) ∈ K(A). Let k ∈ N. Then |xi |ai,t ≤ Ct |β| for all

i, t ∈ N. Let W be an infinite subset of N. The space K(A) has no infinite-dimensional

normable closed subspace [5, Corollary 6.7]. Thus supi∈W ai,k/ai,k = ∞ for some

k > k. Hence infi∈W |xi |ai,k = infi∈W |xi |ai,k(ai,k/ai,k) ≤ Ck|β| infi∈W (ai,k/ai,k) = 0.

It follows that limi |xi |ai,k = 0 for every k ∈ N, so x ∈ K(A).
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The set D = {(yi) ∈ K(A) : |yi | ≤ |xi | for every i ∈ N} is compactoid i n K(A)

[7, Theorem 2.5]. Let k ∈ N. Then there exists m ∈ N such that

∀n∀i, j :
b j,k

ai,m
≤ max

{

Ck,n
b j,m

ai,n
,

b j,µ

ai,k

}

.

Let i, j ∈ N. For some n ∈ N we have Cn/ai,n < |xi |. Hence

Ck,n/ai,n = (Cn/ai,n)(Ck,n/Cn) < |xi |Ck;

thus

∀i, j :
b j,k

ai,m
≤ max

{

Ck|xi |b j,m,
b j,µ

ai,k

}

.

We have shown that

∀k ∃m∃C ∀i, j :
b j,k

ai,m
≤ C max

{

|xi |b j,m,
b j,µ

ai,k

}

.

Let T ∈ L(K(A), K(B)). Let (ei) and ( f j) be the coordinate Schauder bases in

K(A) and K(B), respectively. For every i ∈ N there exists (Ti, j)
∞
j=1 ⊂ K such that

Tei =
∑∞

j=1 Ti, j f j ; clearly, ‖Tei‖t = max j |Ti, j |b j,t for all i, t ∈ N. Let s, t ∈ N. Put

ds,t = supi, j |Ti, j |b j,t/ai,s.

Consider two cases:

Case 1: There exists i ∈ N with ai,s = 0 such that ‖Tei‖t > 0. Then for every α ∈ K

we have αei ∈ Us, so ‖T‖s,t = supy∈Us
‖Ty‖t = ∞ = ‖Tei‖t/ai,s ≤ ds,t . Hence

‖T‖s,t = ds,t .

Case 2: For every i ∈ N with ai,s = 0, we have ‖Tei‖t = 0. Put W = {i ∈ N : ai,s >
0}. Let y ∈ Us. Then ‖y‖s = maxi∈N |yi |ai,s ≤ 1 and

‖Ty‖t = ‖

∞
∑

i=1

yiTei‖t ≤ max
i∈N

|yi |‖Tei‖t = max
i∈W

|yi |‖Tei‖t ≤ sup
i∈W

‖Tei‖t

ai,s
.

For every i ∈ N there exists αi,s ∈ K with |αi,s| = ai,s. Hence for every i ∈ W we

have α−1
i,s ei ∈ Us and ‖T(α−1

i,s ei)‖t = ‖Tei‖t/ai,s. If follows that

‖T‖s,t = sup
y∈Us

‖Ty‖t = sup
i∈W

‖Tei‖t

ai,s
= sup

i∈N

‖Tei‖t

ai,s
= ds,t .

We have shown that ‖T‖s,t = supi, j |Ti, j |b j,t/ai,s for all s, t ∈ N.

Let t ∈ N. For y ∈ D we have

‖Ty‖t = ‖

∞
∑

i=1

yiTei‖t ≤ max
i∈N

|yi |‖Tei‖t ≤ max
i∈N

|xi |‖Tei‖t ≤ sup
i, j

|Ti, j ||xi |b j,t .
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Clearly, xiei ∈ D and ‖T(xiei)‖t = |xi |‖Tei‖t for every i ∈ N. It follows that ‖T‖D,t =

supy∈D ‖Ty‖t = supi, j |Ti, j ||xi |b j,t .

Let k ∈ N. Using (3.4) we get m ∈ N and C such that

‖T‖m,k = sup
i, j

|Ti, j |b j,k

ai,m
≤ C sup

i, j

max
{

|Ti, j ||xi |b j,m,
|Ti, j |b j,µ

ai,k

}

≤ C max
{

sup
i, j

|Ti, j ||xi |b j,m, sup
i, j

|Ti, j |b j,µ

ai,k

}

= C max{‖T‖D,m, ‖T‖k,µ}

for every T ∈ L(K(A), K(B)). Thus we have proved that (K(A), K(B)) ∈ R1. By

Theorem 3.6 we infer that (K(A), K(B)) ∈ R.

By the proof of Theorem 3.7 we get the following.

Corollary 3.8 Let E be a Fréchet-Montel space and F a non-normable Fréchet space.

If (E, F) ∈ R2, then (E, F) ∈ R1.

Now we shall prove the following result.

Proposition 3.9 Let A and B be Köthe matrices such that the Fréchet spaces E = K(A)

and F = K(B) have the quasi-equivalence property. Then (E, F) ∈ R2 if and only if

∃µ∀k ∃m∀n∃C ∀i, j :
b j,k

ai,m
≤ C max

{ b j,m

ai,n
,

b j,µ

ai,k

}

.

Proof Assume that (E, F) ∈ R2. Then there exist Köthe matrices A ′ and B ′ with

K(A ′) ≃ E and K(B ′) ≃ F such that

(3.5) ∃µ′ ∀k ∃m∀n∃C ∀i, j :
b ′

j,k

a ′
i,m

≤ C max
{ b ′

j,m

a ′
i,n

,
b ′

j,µ ′

a ′
i,k

}

.

Let T : K(A ′) → K(A) be an isomorphism. Let (ei) and (e ′i ) be the coordinate bases

in K(A) and K(A ′), respectively. Clearly, ( fi) = (T(e ′i )) is a Schauder basis in K(A),

so it is quasi-equivalent to (ei). Thus there exist (αi) ⊂ K \ {0} and a permutation

π of N such that (αi fπ(i)) and (ei) are equivalent. Therefore there is an isomorphism

P : K(A ′) → K(A) with P(αie
′
π(i)) = ei for i ∈ N. Hence

∀k ∃t ∃C ∀i : ai,k ≤ C|αi |a
′
π(i),t and |αi |a

′
π(i),k ≤ Cai,t .

Similarly there exist (β j) ⊂ (K \ {0}) and a permutation σ of N such that

∀k ∃t ∃C ∀ j : b j,k ≤ C|β j |b
′
σ( j),t and |β j |b

′
σ( j),k ≤ Cb j,t .

Hence ∃µ∃C1 ∀ j : |β j |b
′
σ( j),µ ′ ≤ C1b j,µ. Let k ∈ N. Then

∃k ′ ∃C2 ∀i, j : ai,k ≤ C2|αi |a
′
π(i),k ′ and b j,k ≤ C2|β j |b

′
σ( j),k ′ .
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By (3.5) we get m ′ ∈ N such that

∀n∃C3 ∀i, j :
b ′

j,k ′

a ′
i,m ′

≤ C3 max
{ b ′

j,m ′

a ′
i,n

,
b ′

j,µ ′

a ′
i,k ′

}

.

Moreover ∃v ∃C4 ∀i : |αi |a
′
π(i),m ′ ≤ C4ai,v and ∃m ≥ v ∃C5 ∀ j : |β j |b

′
σ( j),m ′ ≤

C5b j,m. Let n ∈ N. Then ∃n ′ ∃C6 ∀i : ai,n ≤ C6|αi |a
′
π(i),n ′ . Thus for all i, j ∈ N we

have

b j,k

ai,m
≤

b j,k

ai,v
≤

C2|β j |

C−1
4 |αi |

b ′
σ( j),k ′

a ′
π(i),m ′

≤ C2C3C4

|β j |

|αi |
max

{ b ′
σ( j),m ′

a ′
π(i),n ′

,
b ′

σ( j),µ ′

a ′
π(i),k ′

}

≤ C2C3C4 max
{ C5b j,m

C−1
6 ai,n

,
C1b j,µ

C−1
2 ai,k

}

.

Therefore

∃µ∀k ∃m∀n∃C ∀i, j :
b j,k

ai,m
≤ C max

{ b j,m

ai,n
,

b j,µ

ai,k

}

.

The converse implication is obvious.

For the power series spaces we get the following.

Theorem 3.10 Let a, b ∈ Γ and p, q ∈ {1,∞}. If p = 1, then (Ap(a), Aq(b)) ∈ R2.
If p = ∞, then (Ap(a), Aq(b)) ∈ R2 if and only if the set Mb,a of all finite limit points

of the double sequence (bi/a j)i, j∈N is bounded.

Proof Let A and B be the Köthe matrices that define Ap(a) and Aq(b), respectively.

Assume that p = 1 and q = 1. Let k ∈ N and m = 2k2. Let n, i, j ∈ N. If ai < kb j ,

then −(b j/k) + (ai/m) ≤ −(b j/m) + (ai/n); if ai ≥ kb j , then −(b j/k) + (ai/m) ≤
−b j + (ai/k). Thus for all n, i, j ∈ N we have

−(b j/k) + (ai/m) ≤ max{−(b j/m) + (ai/n),−b j + (ai/k)},

so e−b j/keai/m ≤ max{e−b j/meai/n, e−b j eai/k}. We have shown that

∀k ∃m∀n∀i, j :
b j,k

ai,m
≤ max

{ b j,m

ai,n
,

b j,1

ai,k

}

,

so (Ap(a), Aq(b)) ∈ R2.

Assume that p = 1 and q = ∞. Let k ∈ N and m = 2k. Let n, i, j ∈ N. If

ai < 2k2b j , then kb j +(ai/m) ≤ mb j +(ai/n); if ai ≥ 2k2b j , then kb j +(ai/m) ≤ b j +

(ai/k). Thus for all n, i, j ∈ N we get kb j + (ai/m) ≤ max{mb j + (ai/n), b j + (ai/k)},

hence ekb j eai/m ≤ max{emb j eai/n, eb j eai/k}. We have proved that

∀k ∃m∀n∀i, j :
b j,k

ai,m
≤ max

{ b j,m

ai,n
,

b j,1

ai,k

}

,
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so (Ap(a), Aq(b)) ∈ R2.

Assume that p = ∞ and Mb,a is bounded. Let L ∈ N with L > sup Mb,a and

b0 = 0. Then for every i ∈ N there exists ti ∈ N such that bti−1 ≤ Lai < bti
. By

the definition of L and Mb,a we get limi bti
/ai = ∞. If k, n ∈ N, then there exists

i(k, n) ∈ N such that bti
> 2knai for all i ≥ i(k, n). Put Ck,n = enai(k,n) .

Case 1: q = 1. Let k ∈ N and m = 2k + L. Let n ∈ N. Let i ∈ N. If i < i(k, n),

then −(b j/k) − mai ≤ nai(k,n) − (b j/m) − nai for all j ∈ N. Let i ≥ i(k, n); then

−(b j/k) − mai ≤ −(b j/m) − nai for all j ≥ ti and −(b j/k) − mai ≤ −b j − kai for

all j < ti . Hence for all i, j ∈ N we have

e−b j/ke−mai ≤ Ck,n max{e−b j/me−nai , e−b j e−kai}.

Thus

∀k ∃m∀n∃C ∀i, j :
b j,k

ai,m
≤ C max

{ b j,m

ai,n
,

b j,1

ai,k

}

,

so (Ap(a), Aq(b)) ∈ R2.

Case 2: q = ∞. Let k ∈ N and m = k(L + 1). Let n ∈ N. Let i ∈ N. If i < i(k, n),

then kb j −mai ≤ nai(k,n) + mb j − nai for all j ∈ N. Let i ≥ i(k, n); then kb j −mai ≤
mb j −nai for all j ≥ ti , and kb j −mai ≤ b j − kai for all j < ti . Hence for all i, j ∈ N

we have ekb j e−mai ≤ Ck,n max{emb j e−nai , eb j e−kai}. Thus

∀k ∃m∀n∃C ∀i, j :
b j,k

ai,m
≤ C max

{

b j,m

ai,n
,

b j,1

ai,k

}

,

so (Ap(a), Aq(b)) ∈ R2.

Assume that p = ∞ and (Ap(a), Aq(b)) ∈ R2. Let (sk) = (−1/k) if q = 1 and

(sk) = (k) if q = ∞. By Proposition 9 and [16], Corollary 6, we get

∃µ∀k ∃m∀n∃C ∀i, j :
b j,k

ai,m
≤ C max

{ b j,m

ai,n
,

b j,µ

ai,k

}

;

hence

∃µ∀k∃m∀n∃C1∀i, j : skb j − mai ≤ C1 + max{smb j − nai , sµb j − kai}.

Thus for k = µ + 1 we have

∃m∀n∃C1 ∀i, j : sµ+1

b j

ai

− m ≤
C1

ai

+ max
{

sm

b j

ai

− n, sµ
b j

ai

}

.

Hence for every x ∈ Mb,a we get sµ+1x − m ≤ max{smx − n, sµx} for all n ∈ N.
Taking enough large n we obtain sµ+1x − m ≤ sµx, so x ≤ m/(sµ+1 − sµ). Thus Mb,a

is bounded.

By Theorems 3.7 and 3.10 we get the following two corollaries.
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Corollary 3.11 Let a, b ∈ Γ and p, q ∈ {1,∞}. Then the range of every continuous

linear map from Ap(a) to Aq(b) has a Schauder basis, if either p = 1 or p = ∞ and the

set Mb,a is bounded.

Corollary 3.12 Let a, b ∈ Γ and p, q ∈ {1,∞}. Let F be a closed subspace of Aq(b).

Assume that F is isomorphic to a quotient of Ap(a). Then F has a Schauder basis, if

either p = 1 or p = ∞ and the set Mb,a is bounded.

Using Corollary 3.12 we obtain our next result.

Corollary 3.13 Let b ∈ Γ and p ∈ {1,∞}. Every complemented subspace of Ap(b)

has a Schauder basis, if either p = 1 or p = ∞ and the set Mb,b is bounded.

By Corollary 3.13 and the quasi-equivalence property of Ap(b) [16, Corollary 6]

we get the following.

Proposition 3.14 Let b ∈ Γ and p ∈ {1,∞}. Then every complemented subspace F

of Ap(b) is isomorphic to Ap(a) for some subsequence a of b, if either p = 1 or p = ∞
and the set Mb,b is bounded.

Proof Let G be a complement of F in Ap(b). By Corollary 3.13, F and G have

Schauder bases (xn) and (yn), respectively. Put z2n = xn and z2n−1 = yn for n ∈ N.

Clearly, (zn) is a Schauder basis in Ap(b). Thus there exist (αn) ⊂ (K \ {0}) and a

permutation π of N such that (zn) is equivalent to (αneπ(n)). Hence F is isomorphic

to the closed linear span H of (eπ(2n)); clearly, H is isomorphic to Ap(a), where a is

the non-decreasing rearrangement of (bπ(2n)).
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