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WATER-PRESSURE COUPLING OF SLIDING AND BED
DEFORMATION: I. WATER SYSTEM

By R.B. ALLEY·

(Geophysical and Polar Research Center, University of Wisconsin-Madison, Madison,

Wisconsin 53706-1692, U.S.A.)

ABSTRACT.Analysis of the likely behavior of a water
system developed between ice and an unconsolidated glacier
bed suggests that, in the absence of channelized sources of
melt water, the system will approximate a film of varying
thickness. The effective pressure in such a film will be
proportional to the basal shear stress but inversely
proportional to the fraction of the bed occupied by the
film. These hypotheses allow calculation of the sliding and
bed-deformation velocities of a glacier from the water
supply and basal shear stress, as discussed in the second and
third papers in this series.
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Fig. 1. Location map. Ice Stream B and the other Ross ice
streams (A-E) are indentified and shown stippled. The
Upstream B camp (UpB) is shown; the flow line in part
III runs through UpB and ends near the Downstream B
camp (DnB). Modified from Shabtaie and Bentley
(1987).
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PROLOGUE

During the 1983-84 Antarctic field season, Blankenship
and Bentley (1986) used seismic reflection techniques to
discover a meters-thick layer beneath Ice Stream B, West
Antarctica, near the Upstream B camp (UpB; Fig. I).
Analysis of data from that field season, and from three
subsequent seasons (e.g. Blankenship and others, 1986, 1987,
1989; Rooney and others, 1987a, b, 1988) has shown that
this layer is water-saturated and unconsolidated, with low
effective pressure (high pore-water pressure) and high
porosity. It is continuous, or nearly so, for at least 10 km
by 10 km near UpB, and seems to occur with similar
thickness near the Downstream B camp (DnB; Fig. I), about
200 km down-stream. The layer averages 6 m thick near
UpB, with variations from ~I m to about 12 m. It has a
relatively smooth top, but its base is carved into broad
flutes (~10 m deep by 300-1000 m across) parallel to ice
flow. The layer rests unconformably on a thick sedimentary
sequence consisting of poorly consolidated,· probably Neogene
glaciomarine sediments. Down-stream of DnB beneath the
ice plain (a lobate region of ice that would float as part of
the Ross Ice Shelf down-stream if it were a few meters
thinner, with a surface slope intermediate between that of
the ice stream and the ice shelf (Bentley and others, 1987»,
the layer appears to be underlain by a packet of sediments
tens of meters thick with internal beds dipping about 1%
down-stream.

Following the discovery of this layer, we began a
theoretical program to interpret the data collected and to
generate hypotheses to guide further field seasons (e.g. Alley
and others, 1986, 1987a, b, c, in press). We first considered
the question of whether this layer was "lubricating" the ice
stream by deforming in a manner similar to that observed
by Boulton (1979) beneath Breidamerkurj6kull in Iceland.
Three lines of evidence suggested that such subglacial de-
formation was occurring beneath UpB: the seismically
estimated porosity of the layer is consistent with ongoing
deformation but is too high for a lodged state, the basal
shear stress exceeds the estimated strength of the subglacial
layer, and there is insufficient water available at UpB to
explain the high ice-stream velocity through any previously
published, physically based sliding mechanism without bed
deformation. (However, both the shear-strength and the
water-balance arguments include the possibility of a rigid
bed within their error limits.)

Working from the hypothesis that the bed is deforming,
we generated further hypotheses that guided field programs
and data analysis. Among the hypotheses that have been
verified by geophysical data (insofar as the data have been
reduced) are the continuity of the layer, its relative
constancy of thickness, and the existence of ice plains
underlain by thick accumulations of sediment with the
observed internal structures.

Previously, we have concentrated on developing
hypotheses testable by surface geophysical techniques on Ice
Stream B. It now seems likely that a drilling program
during the 1988-89 and 1989-90 field seasons by Dr B.
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Controlling obstacle height; m (1,27a).
Fraction of bed occupied by interconnected

water (1,17).
Acceleration of gravity; 9.8 m S-2 (1,1I).
Ice thickness; m (III, fig. I).
Ploughing index for clasts in jth size class
(II,S).

Counter for number of clast-size classes
(I,AI).

Sediment-flux constant; S2m·2 (1,5).
Sediment flux in a channel; m3 S-l (1,5).
Hydraulic conductivity; m S-l (I,ll).
Sliding softness coefficient '" Ksdc/lO; m S-l

Pa-2 (I,27a).
Till-softness coefficient; S-l Pab-a (1,1).
Sliding-softness coefficient; S-l Pa-2 (I,27b).
Maximum value of Kb from x = 25-300 km

for fixed a, b but all 1; S-l Pab-a (III,
fig. 4).

Maximum value of Kb from x = 100-300 km
for fixed a, b, 1; S·l Pab.a (III, fig. 3).

Minimum value of Kp from x = 100-300 km
for fixed a, b, r; s- Pab-a (III, fig. 3).

Latent heat of fusion of ice; 3.1 x 108 J m-3
(1,13).

Basal melt rate; m S-l (1,12).
Inverse of Manning roughness coefficient;

pa-1/2 m5/6 s-l (1,6).
Effective pressure, Pi - Pw; Pa (1,1).
Effective pressure in Humphrey (1987) model;

Pa (1,23).
Effective pressure at which driving stress for

till-channel closure equals yield strength; Pa
(1,15).

Effective pressure for hydrostatic pore-fluid
pressure gradient, Pa (11,17).

Effective pressure for laminar channel flow,
Pa (1,13).

Local effective stress on a clast in jth size
class, Pbj - Pw; Pa (II,S).

Effective pressure for lith05tatic pore-fluid
pressure gradient, Pa (11,18).

Maximum value of effective pressure for
interconnected water film; Pa (1,16).

Effective pressure at ice-till interface, Pa
(11,16).

Effective pressure for turbulent channel flow,
Pa (1,13).

Vertical normal stress on a clast; Pa (1,18).
Vertical normal stress on a clast in jth size

class; Pa (I,A 1).
Magnitude of pressure gradient driving water

flow, Pa m·1 (1,6).
Average normal ice stress on bed; Pa (1,2).
Water pressure in interconnected regime; Pa

(1,2).
Water flux per unit width; m2 S'l (1,25).
Water flux per unit width at head of ice

stream, m2 S'l (III).
Water flux in channel; m3 S·l (1,8).
8Q18x; m2 S'l (1,9).
Channel radius; m (1,4).
Time-rate of change of channel radius; m S'l
(1,4).

Clast radius in jth class; m (11,2).
Fraction of base of ice in contact with clasts,
= 1 - / (1,18).
Value of s for clasts in jth size class,

r..sj = S (I,Al).
J

Velocity of till deformation; m s-l (II, fig. I).
Depth average of u; m S-l (II,29).
Ice velocity; m S-l (II, fig. 1).
Value of ui at UpB; m S·l (III, 11).
Velocity at top of deforming till; m S-l (11,13).
Sliding velocity between ice and top of till;

m S-l (1,27a).
Value of Us at UpB, m S-l (III, I I).
Mean velocity of water flow in a channel;
m S-l (1,5).

Mean velocity of laminar flow in a channel;

.m
L

K •
bmax

N
N*

M

Nmax

R·J
S

S'J

Power of shear stress in till-flow law (1,1).
Geometric factor in ploughing index (II,S).
Arbitrary area of bed; m2 (I).
Power of effective stress in till-flow law (1,1).
Accumulation rate of ice; m S-l (III).
Creep-closure softness for ice; Pa-3 S-l (1,13).
Constant equal to TblN at onset of specified

basal behaviour (1,16).
Cohesion; Pa (1,3).
Water-film thickness; m (1,24).

TERMINOLOGY

Kamb and co-workers of the California Institute of
Technology and collaborating institutions will reach the bed
of Ice Stream B directly, and that other drilling programs
may produce larger access holes further in the future.

In this series of papers, we attempt to use geophysical
data and glaciological reasoning to develop hypotheses for
conditions at a drill site on Ice Stream B. In part I, I
analyze the likely water-drainage system and water-pressure
distribution at the bed, and show how these are linked to
bed deformation. In part II (Alley, 1989), I calculate
possible velocity-depth profiles in the bed, and show how a
measured profile can be used to constrain the flow law for
till deformation. In part III (Alley and others, 1989), we
use available data and inferences to focus the results of
parts I and II on Ice Stream B. The major hypotheses
arising from these analyses are that most of the ice-stream
velocity arises from basal deformation, that most of the
subglacial water flows in a distributed system approximating
a thin film at the ice-till interface, that effective pressure
decreases down-glacier and is quite small, that the form of
the ice stream provides information about the flow law for
till, and that this flow law can be determined with better
accuracy if effective pressure, deformational velocity, and
grain-size are measured against depth in a deforming
subglacial till at one or more sites.

For these papers, we consider the glacier bed to be all
materials beneath glacier ice. The bed is ice-free for the
wet-based glaciers considered here; the definition of the bed
would be more problematic for a debris-carrying, cold-
based glacier advancing over permafrost, for example. The
thickness of the bed is not well defined and does not
matter in general, although the depth to which significant
glaciogenic deformation occurs is of concern.

The glacier bed includes both the bulk of subglacial
materials and their upper surface. The upper surface is
characterized by its roughness, the fractional area occupied
by water, and other areal properties. The bulk of the
subglacial materials is characterized by density, viscosity,
grain-size distribution, and other bulk properties. If any
ambiguity seems likely, we specify explicitly whether a
given property of the bed refers to the bulk or to the
upper surface. A glacier bed may be "hard" (rigid and non-
deforming under glaciogenic stresses even for water pressure
equal to overburden pressure), although subject to erosion,
or "soft" (likely to deform under glaciogenic stresses if
water pressure is sufficiently close to overburden pressure).

Basal motion of a glacier may occur through sliding,
bed deformation, or ploughing. Sliding is motion between
the base of a glacier and the top of the bed across a
discrete, generally water-lubricated shear surface. Bed
deformation refers to motion within the bulk of the bed,
and may occur between closely spaced clast-clast contacts
(pervasive deformation) or along discrete shear surfaces
more widely separated than the average clast diameter.
Ploughing is a transitional state between sliding and bed
deformation, in which the ice slides over some clasts that
are fixed in the rigid bed, whereas the basal velocity is
partitioned between sliding over other clasts and motion
("ploughing") of those clasts through the bed, which deforms
locally to allow this motion (Brown and others, 1987).

Units and first paper and equation or figure in which
symbol appears are indicated.

C
d

SYMBOLS USED AND VALUES OF CONSTANTS
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]NTRODUCT]ON

Basal motion of glaciers is perhaps the most interesting,
important, and difficult problem in dynamic glaciology.
The modern, physical treatment of ice sliding over a rigid
bed now has occupied a central position in glacio]ogy for
over 30 years (Weertman, ]9'57), and there is no sign that
interest in the problem has waned (e.g. Fowler, ]987;
Kamb, ]987). Many of the problems associated with the
physics of sliding over rigid beds have been solved,

Umt

x
Z

Zo

/3'

/!'p

E
t·}

~net
~t

Pb
Pi
Pw
T
T*
Tj

T·}

m S-l (1,6).
Mean velocity of turbulent flow in a channel;
m S-l (1,6).

Basal melt rate; mls (III, 3).
Volume fraction in till occupied by clasts in
jth size class (II,]).

Volume fraction in till occupied by pores
(II,] ).

Horizontal coordinate; m (1,7).
Vertical coordinate; m (II, fig. I).
Depth at which effective pressure in till is
twice the effective pressure at the ice-till
interface; m (II,25).
Thickness of pervasively deforming layer; m

(II,13).
Depth at which basal shear stress equals

strength of pervasively deforming till; m
(II,20).

Depth at which strain-rate falls to minimum
required to maintain dilation; m (II,30).

Slope of ice-bed interface (1,26).
Slope of ice-air interface (1,26).
Ratio of vertical deviatoric stress to shear

stress on a clast (1,17).
Geometric constant relating N* and Tb in bed

without low-pressure ice-rock contact (1,23).
Fraction of ice velocity at UpB from sliding,
= u&BluiB (III,] I).

Re]atIve variation in Kb for given a, b, 1 on
x = 100-300 km, = (Kbmax' - Kbmin' )/(Kbmax'
+ Kbmin') (III, fig. 3).

Difference between bulk density and pore-
fluid density; kg m -3 (II,] 6).

Strain-rate in till; S-l (I,]).
Fraction of total shear force supported on

clasts of jth size class, = T..J/Tb (II,9).
Viscosity of water; 1.8 x 10 Pa s (1,6).
Bingham viscosity of till; Pa s (II,]3).
Creep closure rate of a channel; s-l (1,4).
Erosion rate of a till channel; S-l (1,7).
Value of ~e for laminar flow; S-l (1,9).
Value of ~e for turbulent flow; S-l (1,9).
Closure rate of R channel in laminar flow; S-l

(1,]4).
Net closure rate for a channel; S-l (],]4).
Closure rate of R channel in turbulent flow;

S-l (1,]4).
Bulk density of till; kg m-3 (II,17).
Density of ice; kg m-3 (],26).
Density of water; kg m-3 (1,10).
Stress causing channel closure; Pa (I,]).
Till yield stress; Pa (I,]).
Yield stress for ploughing of clasts in jth size

class; Pa (11,15).
Basal shear stress; Pa (],]6).
Effective basal shear stress in Bingham mode];

Pa (11,13).
Value of Te for clasts in jth size class; Pa

(II, 15).
Shear force on bumps in jth size class and in

unit area of bed; ~Tj = Tb; Pa (1,20).
}

Ang]e of internal friction of till; deg (1,3).
Dimension]ess depth for water-pressure

doubling, == zolZ 1 (II, table I).
Dimension]ess depth, == zlzl (II, table I).
Fraction of potentia] deforming thickness

from yield stress actually deforming, == z/ z2
(II, table I).

although considerable uncertainty still exists about the
geometry of such beds.

G]acial geologists and glaciologists have long recognized
that bed deformation can occur beneath glaciers (e.g.
MacClintock and Dreimanis, 1964). Direct observational
evidence of bed deformation providing a large fraction of
the basal velocity was obtained first beneath Blue Glacier,
Washington, U.S.A. (Engelhardt and others, ]978) and
Breilfamerkurjokull, Iceland (Boulton, 1979). There now is
direct or indirect evidence for bed deformation contributing
to basal motion beneath a number of glaciers, including
(but not limited to) South Cascade Glacier, Washington,
U.S.A. (Hodge, ]979), Nordenskioldbreen, Spitsbergen
(Boulton and Paul, ]976), Variegated Glacier, Alaska, U.S.A.
(Harrison and others, 1985), Columbia Glacier, Alaska,
U.S.A. (Fahnestock and Humphrey, ]988; Meier, 1989),
Trapridge Glacier, Yukon Territory, Canada (Clarke and
others, 1984), and Ice Stream B, West Antarctica (Alley and
others, 1986).

The relative frequency of bedrock beds, non-deforming
till beds, and deforming till beds is unknown, although
some theoretical considerations have been advanced with
regard to till versus bedrock beds by Haeberli (1986).
Despite the signal papers by Clarke (1987) and Boulton and
Hindmarsh (1987), it can be argued that neither the physics
nor the geometry of deforming beds are well known. In
addition, the interactions of deforming beds and sliding are
poorly understood.

One general result of studies of basal conditions is that
the geometry and pressure of the basal water system are
critically important. Fast basal motion, whether by sliding or
bed deformation, is possible only if water pressure is
relatively close to overburden pressure (e.g. Boulton and
Hindmarsh, 1987; Clarke, 1987; Fowler, 1987; Kamb, ]987),
and water pressure depends on water supply and drainage
path.

In this paper, I consider the likely drainage paths and
water pressures on deforming beds. I attempt generality for
a variety of glacier settings, but concentrate on conditions
likely to apply to Ice Stream B. I attempt to include the
essential physics and an indication of likely geometry, but
the discussion is partly heuristic to maintain simplicity.
Nonetheless, I believe that the available evidence leads
directly to the hypothesis that, in the absence of input of
surficial melt water, the drainage system at the interface of
ice and a soft-sediment bed will be distributed (no channels
or linked cavities), and high pressure (within about ] bar
of overburden or less).

DRAINAGE PATH

Porous flow
Water may be supplied to a glacier bed by melting at

the bed (distributed source), downward transport of eng]acial
or suprag]acia] melt or precipitation (distributed or localized
source), stream transport from unglaciated regions (localized
source), or porous flow from subglacial aquifers (distributed
source). Under ordinary conditions, the water head is higher
beneath most ice sheets and some glaciers than in their
surroundings, so porous flow and stream flow will be away
from the ice mass. Distributed englacial transport of water
generated englacially or supraglacially occurs through very
small veins (Nye and Frank, 1973), is restricted to
temperate glaciers, and generally is small compared to basal
melt and channelized englacial transport on such glaciers
(summarized in Paterson (]981, p. 36-38». Channelized
englacial transport of water occurs on temperate glaciers,
and can occur and might reach the bed on cold glaciers
with abundant surface melt (e.g. Echelmeyer and Harrison,
]986). However, only basal melt supplies water to glacier
beds beneath dry-firn and percolation zones, which occupy
the majority of land ice on Earth. I will concentrate on
this case.

Ignoring exceptional events during which the bed
supplies water to an englacial or supraglacial water system
(e.g. Meier, 1989), water is removed from the glacier bed
by porous flow downward into subglacial aquifers and
outward beyond the margin, or by flow along the ice-bed
interface to the ice edge. The porous flow system has been
considered by a number of authors (e.g. Boulton and others,

]10
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1974; Boulton and Jones, 1979; Clarke and others, 1984;
Boulton and Hindmarsh, 1987; Clarke, 1987; Lingle and
Brown, 1987).

The porous flow system has a limited ability to
transport water. If this transport capacity is large compared
to the water supply, then basal water pressures will be low,
ice will maintain intimate contact with its bed, and basal
sliding and bed deformation will be slow or zero. Such a
situation is favored by thick, high-permeability subglacial
aquifers, slow basal melt rates, and short flow paths (small
glaciers). The physics of water flow under these conditions
is well known; the major complications are the effect of
any basal deformation that may occur on the permeability
and on advection of water during such deformation (Boulton
and others, 1974; Alley and others, 1987b), and the major
difficulty is in obtaining data on the thickness, extent, and
permeability of subglacial aquifers.

Most of the analyses cited above suggest that subglacial
aquifers are likely to prove inefficient for large, wet-based
ice sheets even in the absence of surficial melt water,
especially if basal ice velocities and thus basal melting are
rapid. As an example, drainage of the melt water from a
1000 km long ice sheet arising from the viscous dissipation
of an average sliding velocity of 25 mla under an average
shear stress of 105 Pa (I bar) with the head gradient for
water flow driven by an ice--air surface slope of 0.01 would
require a continuous aquifer of clean, unconsolidated sand
about 250 m thick (hydraulic conductivity 10-4 m/s; Freeze
and Cherry, 1979, p. 29). The aquifer would need to be
significantly thicker, or have higher permeability, to lower
the hydraulic head and head gradient and thus to be
efficient compared to the water supply.

If the basal drainage system is unable to evacuate all
of the water supplied to it, then water must accumulate at
the ice-bed interface and increase the water pressure until a
drainage system is established there. Unless a frozen region
of bed down-stream dams flow, a drainage system at the
ice-bed interface has an unlimited capacity; in the high-
flow limit, the ice will float on the water whereas the
water will "float" on the underlying, denser sediment. One
might expect that a slow increase in a distributed water
source above the capacity of subglacial aquifers would give
rise to a distributed flow system (i.e. a thin water film) at
the ice-bed interface. With increasing water supply,
instabilities might develop in that film (Walder, 1982) and
cause channelized flow unless blocked by some other
process.

Analogy can be drawn to subaerial drainage of
precipitation on hillslopes, as described in any good text on
that subject (e.g. Bloom, 1978, p. 198-200). If rainfall is
sufficiently slow, and the surficial materials are sufficiently
thick and permeable, all of the rainfall will infiltrate into
the soil and no free water will exist at the upper surface.
With increasing rainfall, the water supply will saturate the
aquifer and cause free water to accumulate at the surface.
This water then will flow down-hill in a sheet or film a
few millimeters thick and broken by grass stems, large
clasts, roots, and other irregularities. Only when the flow is
sufficiently thick and fast does it become concentrated into
rills, and this concentration can be avoided in most
instances if the flow is slowed and baffled sufficiently, as
by good agricultural practices.

For modeling purposes (of glacier beds or hills lopes) ,
an aquifer that is efficient compared to the water supply
lacks surficial drainage, which need not be modeled. This is
the situation treated by Boulton and others (1974), for
example. With increasing water supply, there is some
intermediate condition in which flow volumes through
aquifers and through a surficial system are similar, and both
must be modeled. Finally, there is a situation in which the
flow is dominated by the upper-surface system, and the
aquifers can be ignored to good approximation. The limiting
case of this is the impermeable bed used in many glacial-
hydrological models; however, this situation can exist over a
quite permeable bed if enough water is supplied. This is
the situation I will concentrate on here.

Geometry of interconnected basal regime
Water drainage at the glacier bed must occur through

an interconnected water system (Lliboutry, 1987a), which
may include channels incised upward into the ice (R

Alley: Sliding and bed deformation: I

channels; Rothlisberger, 1972) or downward into the bed (N
channels; Nye, 1973), linked cavities (Walder, 1986; Kamb,
1987), or a water film of variable thickness (Weertman,
1972). For free water to exist stably at the glacier bed
without being displaced by creeping ice, it is necessary that
the local melting rate equals the local creep-closure rate.
Creep closure increases with effective pressure (the
difference between the overburden pressure and the water
pressure), and local melting from viscous dissipation
increases with channelization of flow. Thus, in a steady
system, effective pressure increases as flow becomes
increasingly localized from films to linked cavities to
channels (Rothlisberger, 1972; Weertman, 1972; Walder, 1986;
Kamb, 1987), although this relation is largely independent
of geometric details.

Whether drainage at the ice-bed interface occurs in
channels, cavities, films, or some combination, and the size
and spacing of those drainage paths, are important and
difficult questions. It seems likely that all possibilities occur
in natural systems, so the difficulty becomes one of deter-
mining where and when any given system exists.

The relative stability of R channels and water films
illustrates the complexity of this question. Walder (1982)
showed that the enhanced viscous dissipation in the thicker
regions of a perturbed water film will cause the perturba-
tions to grow, but that heat flow within the film and ice
creep tend to retard perturbation growth, and incipient
channels may be destroyed by sliding over bedrock
obstacles. Walder (1982) concluded that a water film thicker
than a few millimeters probably would be unstable over a
rigid bed, especially under the influence of large pressure
gradients driving flow. This instability must be self -limiting
at some level on an impermeable bed, however, because the
stress distribution around an R channel prevents it from
collecting water at the ice-bed interface (Weertman and
Birchfield, 1983).

A water film on an impermeable bed fed by basal
melt thus may exhibit transverse thickness variations or may
cycle between a fairly uniform film and a channelized con-
figuration, but cannot collapse into a stable channel system
because such a system cannot collect the basal water needed
to sustain itself (Weertman and Birchfield, 1983). Notice,
however, that a channel supplied by surface melt water has
no need to collect basal water and can exist stably
(Weertman and Birchfield, 1983). A similar analysis for N
channels indicates that they are more stable than R
channels, but probably also require channelized surficial melt
water to maintain themselves for long periods of time
(Weertman, 1972).

This conclusion is strengthened if the glacier bed is
soft. Under appropriate conditions, sediment as well as ice
will creep into low-pressure channels, and sediment creep
must be balanced by erosion just as ice creep is balanced
by melting to maintain a steady configuration (Boulton and
Hindmarsh, 1987). Such sediment flow into low-pressure,
air-filled tunnels has been observed directly beneath
Breidamerkurjokull (Boulton, 1976). In the next section, I
extend the analysis of Boulton and Hindmarsh (1987) to
show that sediment erosion in channels fed by basal water
is an inefficient process, and that sediment creep will close
channels or cavities rapidly in the absence of surficial melt
water.

Channel instability on a deforming bed
A proper constitutive relation for a deforming sediment

is likely to be complicated (e.g. Iverson, 1985). For
relatively simple stress states, however, a reasonable relation
is (Boulton and Hindmarsh, 1987)

(I)

= 0, T ~ T*

where It is the strain-rate, T is the shear stress, T* is the
sediment strength, and a, b, and Kb are constants. The
effective stress, N, is the difference between the over-
burden normal stress and the water pressure, Pw' At the
base of the ice, where the overburden normal stress on the
bed is the ice normal stress, Pi' this gives

III
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(2) (7)

(10)

(II)

(12)

(8)

2300.

~eR
JoP~r2Qx

6411jL2 (9)

tet
3JoM2PgQx

411r2/3

where K is the hydraulic conductivity of the till and g is
the magnitude of the gravitational acceleration. This can
give very high water inflows at high N. For example,
equating Equations (4) and (9) in turbulent flow for
r = I m, using the constants given at the beginning of the
paper and in Table I and Qx from Equation (II), gives
N = 107 Pa and Qx equivalent to collection of all water
from a basal melt rate of 10 mm/a over a width of
2400 km.

A more reasonable approximation for water collection
may be

where Qx is the x derivative of Q, and thus the water
influx to the channel. Steady state occurs when the creep
closure equals the erosion rate, which is found by equating
Equations (4) and (9).

The laminar-turbulent transition occurs within a narrow
range of Reynolds numbers centered on (Weertman, 1972)

where subscripts Rand t refer to laminar and turbulent
flow, respectively, Pg is the magnitude of the volumetric
fluid-potential gradient along flow (the water-pressure
gradient in a horizontal channel), jL is the water viscosity,
and M is the inverse of the Manning roughness coefficient.
The erosion rate, ~e = f /r, is

I aJs
~ - ---- (7)
e - 211r2 ax

where x is distance measured along the channel.
To obtain a more convenient expression for ~e in

terms of the water influx to the channel, I first assume
that Jo' jL, M, and P are independent of x. I then
substitute for Urn in lJoquation (5) from Equation (6),
differentiate with respect to x, and substitute for the x
derivative of Js in Equation (7) to obtain an expression for
tc in terms of constants, r, and the x derivative of r.
Next, notice that r is related to the water flux, Q, by

Substituting for Urn in Equation (8) from Equation (6),
differentiating with respect to x, solving for the x
derivative of r, and substituting for that derivative in the
modified form of Equation (7) then yields

Here Pw is the density of water, with turbulent flow at
higher velocities and laminar flow at lower velocities.

The water influx, Qx' depends on the rate of water
supply at the bed and on the area from which a channel
can collect water (Shoemaker, 1986). I have chosen two
estimates for calculations here. The first is the maximum
possible collection by a tunnel in a porous half -space,
assuming that the water table is not drawn down by the
tunnel from a height N/pwg above the center of the tunnel
(Goodman and others, 1965; Freeze and Cherry, 1979,
p. 490),

(3)

(5)

T* = Ntan ~ + C

The yield strength, T*, usually is written as

tc = 0, N , T*

f
~c ;:-

r

~c

where tan ~ is the internal friction and C is the cohesion of
the sediment. Equation (I) includes as special cases linear-
viscous behavior (a = I, b = 0, r* = 0) and Bingham
behavior (a = I, b = 0, T* from Equation (3)); in these
cases, 1/Kb is the viscosity.

Boulton and Hindmarsh (1987) measured Nand t and
calculated T at several locations beneath Breidamerkurj5kull
in Iceland. They fitted their observations using Equation (I),
both with T* = 0 and r* given by Equation (3), and used
standard soils engineering tests to measure the material
parameters in Equation (3). They found that Equation (I)
described the data well and yielded b > a in both cases.

Following Boulton and Hindmarsh (1987; based on Nye,
1953), creep closure of a tunnel in till occurs in response
to N, which they take to be the difference between the
water pressure in a tunnel and the basal ice pressure. (If
the stress state around the tunnel is not hydrostatic, then
closure rates will vary with direction. I follow Boulton and
Hindmarsh (1987) in ignoring this complication, and I take
N to be the difference between the overburden stress and
the water pressure in the tunnel.) Assuming continuum
behavior given by Equation (I), with T = N for the driving
stress, a tunnel of radius r creeps closed at a rate f given
by

(4)

where the subscript c refers to creep closure. Boulton and
Hindmarsh (1987) set T* to zero in their analysis; notice
from Equation (3) that T* contains a dependence on N
here.

Equation (4) applies to a channel of circular cross-
section with N independent of position. In real tills, the
roof would cave in for a large channel, and N might vary
from top to bottom of a large channel. The physically
realistic case is of an N channel carved into till at the ice-
bed interface, with or without a corresponding R channel
above. I will call this special case of an N channel in
unconsolidated sediment a till channel. The equations above
should describe such a till channel reasonably well, and I
will assume that they do, although they ignore the effect of
coupling across the ice-till interface on the creep closure of
the ice. (Similarly, I will ignore such coupling in modeling
R channels over a deforming bed, below.)

For a till channel to exist in steady state, the creep
closure, ~c' must be balanced by erosion of equal
magnitude, ~e. Clean, channelized surficial melt water
supplied to the bed would cause rapid erosion until the
water became "saturated" with sediment (that is, until the
water carried its full capacity of sediment). Basally derived
water is always in contact with sediment and in steady state
will carry its sediment capacity. Erosion along some stretch
of channel will then be limited to the increased capacity
caused by collection of water along that channel.

Sediment flux in a channel, Js' can be approximated
by (Allen, 1985, p. 60)

where Urn is the mean flow velocity and J0 is a constant.
(In some formulations Js drops to zero below a threshold
value of Urn; I ignore this complication here.) The velocity,
Urn' is given by (e.g. Weertman, 1972)

(6) where m is the basal melt rate. This assumes that a channel
collects all water generated in a band 10· times as wide as
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Fig. 2. Effective pressure (N) plotted against channel radius
(r) for Rothlisberger (R) and till channels. Till channels
exhibit stability at high N and at low N. Four high-N
till-channel stability curves are shown. corresponding to
iikely (Equation (12)) and maximum (Equation (11))
water collection for both T* = 0 (zero till yield strength)
and T*max' the maximum till yield strength from Sladen
and Wrigley (1983; C = 25 kPa. tan ~ = 0.75). A till
channel plotting above its high-N stability line grows; one
plotting below shrinks. Low-N till-channel stability curves
are plotted for T*max and for a likely value of yield
strength (T*likelY; C = 4 kPa. tan ~ = 0.2); T* = 0 plots
off-scale at low N. The stippled band includes those
values of (N.r) for which the shrinkage rates of till and R
channels are equal. for the till-stability cases shown. The
laminar-turbulent transition occurs between the vertical
dashed lines.

(13)

= [P~r
2

] 1/3

16Bj.l.L

N = [M P g3/2r2
/
3
] 1/3

t 2LB

its radius. Under this assumption, a I m radius channel
would drain a 10 km wide glacier.

The constant 10· in Equation (12) is a crude estimate,
but it may be a good estimate for large channels and an
overestimate for small channels. Modern mountain glaciers
hundreds of meters to kilometers across typically are drained
by one or a few large streams on the order of I m in
radius (e.g. Humphrey and others, 1986), although surficial
melt water figures prominently in the drainage system.
Walder and Hallet (1979) found that subglacial channels
draining surficial melt from a small cirque glacier were
typically 0.1-0.3 m across and were spaced '5 m apart,
although no preferred spacing was observed. Subaerial water
flows on unconsolidated sediments develop their smallest
perturbations (rills) with a spacing on the order of lOr (e.g.
Emmett, 1978). In the absence of better data (which clearly
would be beneficial), I will use Equation (12) as a more
restrictive estimate than the upper limit given in Equation
(II). Notice, however, that the conclusions reached below
are valid for Equation (11) although strengthened for
Equation (12).

Estimates of N for steady-state till channels are plotted
in Figure 2, using the constants in Table I and calculating
Qx according to Equations (II) (maximum water) and (12)
(likely water); remember that "likely" water probably over-
estimates Qx and underestimates N at small r. The melt
rate and pressure gradient are taken to match Ice Stream B,
with flow driven by the ice-air surface slope. The constants
a, b, and Kb in Table I were calculated as best-fit values
for Ice Stream B (see part III); a and b fall within likely
error limits determined by Boulton and Hindmarsh (1987).
The till hydraulic conductivity is from Boulton and others
(1974), the inverse of the Manning roughness coefficient is
from Weertman (1972), and Jo was estimated using data on
sediment transport in a stream draining Variegated Glacier
in its pre-surge state (Humphrey and others, 1986).
Sensitivity to errors in constants is discussed below.

Curves in Figure 2 are shown for T* = 0 and for the
upper limit on T* in a basal till, from the data summarized
by Siaden and Wrigley (1983; C = 25 kPa, tan ~ = 0.75).
Likely intermediate values of T* would plot between these
limiting curves. The T* = 0 curve at low N plots off-scale,
so an intermediate value (C 4 kPa, tan, = 0.2) is plotted
there as T* likel .

For comp~rison, Figure 2 also contains the steady-state
values for R channels in laminar and turbulent flow,
calculated using the same constants (including inverse
roughness, M) following Weertman (1972)

where B is related to the creep hardness of ice, H is the
heat of fusion of ice, and ice is assumed to obey
power-law creep with exponent 3 (Weertman, 1972). The
difference between the creep-closure rate and the melt rate
of an R channel, (Onet' is (Weertman, 1972)
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TABLE I. VALUES OF CONSTANTS USED TO CALCULATE CURVES IN FIGURES 2 AND 3

I
2
1.8 x 10-25 Pa-3 S-l

0,4,25 kPa
9.8 m S-2
1.5 x 10-5 s2 m-2
10-6 m S-l

0.33 Pa S-l

3.1 x 108 J m-3
9.5 x 10-10 m S-l
0.58 pa-1/2 m5/6 S-l

20 Pa m-1
0,0.2,0.75
1.8 x 10-3 Pa s
103 kg m-3
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For Figure 3, Nc = 5 kPa. The low N equilibrium occurs
close to Nc because erosion by basal water is quite slow,
and is balanced by slow creep closure and thus small
driving stress (N - T*).

Figure 3 shows that steady-state R channels occur in a
zone of rapid creep closure of till channels. An R channel
at the ice-till interface thus would be closed rapidly by till
creep. This is true for all except the strongest tills; the
limiting till strength from Siaden and Wrigley (1983) (C =
25 kPa, tan f = 0.75) would allow co-existence of steady R
channels and till channels with 2 mm radii, but till would
creep into larger steady R channels. The largest steady R
channel that can exist over a till bed has N '" Nc for that
till bed, and a rigid bed relative to channelized drainage is
one for which Nc exceeds the value of N in the largest R
channel that the glacier could develop over a perfectly rigid
bed.

Figure 3 also shows that steady, low N till channels
exist in a region of R-channel growth. This essentially is
the instability explored by Walder (1982) for rigid beds; at
low N, perturbations in a distributed water system tend to
grow.

The discussion here has assumed continuum mechanics,
and thus that the grain -size of tills is small compared to
the channels under consideration. This probably is true for
most tills if channels are >0(10-2 m) (the symbol O(x) means
"of the order of magnitude of x"). However, channels of
'0(10-3 m) may be similar in size to common clasts and
may be protected from creep closure by bridging of clasts
(a rigid clast canno~ creep into a channel smaller than
itself). Millimeter-scale R channels thus might approach
their steady value of N more closely than is possible for
larger R channels on a till bed. However, the concept of a
channel becomes somewhat unclear at this scale.

Figures 2 and 3 were calculated assuming specific
values of till properties, water-pressure gradient, water
generation, and other factors; however, the general results
obtained are relatively robust. Use of the Boulton and
Hindmarsh (1987) constants rather than the Ice Stream B
constants in Equation (4) would have raised the already
high N values for steady, high-N till channels, but
otherwise would not have changed the results significantly.
If a > b in Equation (4), then the high-N stability of till
channels would disappear, but behavior at low N again
would be similar. If Kb were decreased by an order of
magnitude, all creep-closure rates of till channels in Figure
3 would be reduced by an order of magnitude; however,
this would leave all steady R channels smaller than about
I' = I m in a zone of rapid creep closure by till. Figure 3
was calculated using those values of tan' and C I believe
appropriate for dilated, deforming till, and thus for a
glacier on a pervasively deforming bed. Using values for a
strong, lodged till bed could raise the zero line for
creep-closure rate of till channels as high as 105 Pa (T· max

in Figure 2). However, initiation of creep deformation (all
regions above the zero line) would dilate the till, so the
spacing between the zero and 100/year lines would not
change significantly, and steady R channels with r > 10 mm
would fall in a region of rapid creep closure of till
channels. An order-of-magnitude error in Jo' Kb, or K
could move the stability field for high-N till channels with
maximum water collection and maximum till yield strength
quite close to the R-channel stability field for r ~ 10 mm.
However, errors of 3-4 orders of magnitude would be
required to allow co-existence of stable R channels and till
channels with likely water; the likely water case also is
independent of K.

I thus hypothesize that a water system between ice and
a soft-sediment bed without sources of channelized surficial
melt water will be distributed, approximating a film but
with local thickenings up to millimeters in radius. The
effective pressure will be above Nc but not above the
equilibrium value for R channels millimeters in radius, and
thus between 0 and perhaps 400 kPa. It is difficult to
constrain this estimate more closely, but considering the
rapid creep-closure rates of tills with N near but above Nc'
and likely values of Nc' N '" 0(10· Pa) may be a reasonable
estimate. The system probably will evolve rapidly, with local
thickenings growing but then being closed by till creep. In
the next section, I work from this hypothesis and attempt
to model the ice/water/bed system assuming that drainage
occurs through a film. (The important case of channelized
surficial melt water supplied to a soft glacier bed is beyond
the scope of the present papers.)

(15)
C

tan'
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10
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1000",
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Figure 2 also shows the range of values of N in which
(~) t is the same for R channels and for till channels.
(Onet for till channels is the difference between Equations
(4) n~nd (9).

Contours of (Onet are shown in Figure 3 for R
channels and for till channels; closure is positive and growth
is negative. For the till, I have assumed C = 4 kPa (Boulton
and Hindmarsh, 1987) and tan f = 0.2 (Alley and others,
1987b).

Fig. 3. Net shrinkage rates (1/1' in a-I) of R channels
(solid lines) and till channels (long-dashed lines) as a
function of channel radius (1') and effective pressure (N).
Negative numbers show channel growth. Calculations for
till channels assume the yield strength T"'likel (C = 4 kPa,
tanf = 0.2) and likely water collection (}fquation (12)).
At low N, colllours of till-channel closure are vertical.
Also for till channels, the 1 and 10 contours would fall
between the 0 and 100 contours near the bottom of the
figure, but are omitted because of space limitations. The
vertical short-dashed lines show the laminar-turbulent
transition zone.
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Examination of Figures 2 and 3 reveals several
interesting results. Till channels exhibit two steady
configurations: one at low N, where the driving stress is
low, and one at high N, where the till viscosity is high.
The high N values with likely water collection are
impossible for real glaciers, however, because they require
higher N than would occur in a channel at atmospheric
pressure beneath the thickest ice on Earth. The low N
values occur at N close to but above N c' the critical value
at which the driving stress for creep closure equals the till
yield strength, given by
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WATER PRESSURE IN A FILM or, remembering N Pi - Pw and [ = I - s,

The water supports no shear stress, so the bump
supports the horizontal shear stress Tb on its area s for a
local shear stress of Tb/s. This local shear stress causes an
excess vertical force on the bump, which causes ice flow
over the bump and which can be expressed as

(22)

(23)

N

Equation (22) is valid for a bed with a range of bump
sizes, as shown in the Appendix. This equation holds
provided Tb does not exceed the maximum value that can
be supported by the bed (Iken, 1981). The Tb-N relation of
Equation (22) has been known for some time (see Lliboutry,
1987a, b, and his earlier papers); the ratio [18 in Equation
(22) is equivalent to the bed separation index of
Bindschadler (1983). In deriving Equation (22), I have
assumed that N is not lowered by melting from viscous
dissipation and that the water system is interconnected. The
equation thus should apply to regions between channels fed
by moulins as well as to glacier beds without moulins, if all
quantities are defined over a relatively homogeneous region
without channels.

When all low ice-pressure regions of the bed are
occupied by water, further increases in water pressure do
not cause further ice-bed separation. Humphrey (1987)
showed that the effective pressure then becomes constant at
N* given by

where 8' can be related directly to the bed geometry in
simple cases. Humphrey (1987) also showed that this defines
the limiting basal shear stress that a bed can support, as
discussed by Iken (198 I).

Whether a glacier bed falls in a regime described by
Equation (22) or (23) depends strongly on the bed geometry.
A bed of smooth rock with a few large steps may exhibit a
relatively narrow range of local ice pressures less than the
average ice pressure, and all of these low-pressure regions
may accumulate water before an interconnected drainage
system develops. Such a linked cavity system then will be
decribed by Equation (23), as modeled by Humphrey
(1987).

In contrast, a till bed contaInIng a wide range of
grain-sizes will have a similarly wide range of local ice
pressures. Equation (22) then will be a better model, and
redistribution of local ice pressures during increasing
cavitation may allow this equation to apply until quite large
fractions of the bed are occupied by water.

It then seems likely that Equation (23) will apply to
many glaciers with relatively homogeneous beds, including
granitic bedrock and very clast-poor tills. Equation (22) is
likely to apply to glaciers with inhomogeneous beds,
including most tills and other poorly sorted sediments and
poorly sorted sedimentary rocks. The case of a till or other
unconsolidated sediment very poor in clasts larger than
0(1 mm) might be especially interesting. If a till does not
form roughness elements larger than its clasts (e.g. drumlins
or similar forms), and clasts of >0(1 mm) are rare or absent,
then a water film of >0(1 mm) thick will essentially float
the glacier, causing very low Nand Tb and very high
velocities through sliding or bed deformation.

The derivations in this section clearly oversimplify the
true glacier bed, and are partially heuristic as a
consequence. Nonetheless, I hypothesize that Equation (22)
provides a reasonable estimate of subglacial conditions on
most till beds and other rough surfaces, at least if used to
interpolate between measured values or to extrapolate near
measured values. Thus, if N, Tb' and [ are measured at a
site, Equation (22) can be used to estimate 8 and to
estimate N for relatively small changes in Tb or [. We
adopt this approach in part III.

(16)

(17)

(19)

(18)p.
I

N

where Tb is the basal shear stress and the constant, cl'
depends on bed roughness and varies from about 1/2 to
1/9. For Tb = 20 kPa (typical of Ice Stream B), an inter-
mediate roughness value gives N ~ 100 kPa for an inter-
connected water film.

As long as there are regions of the bed in which the
local ice pressure is less than the average ice pressure, an
increase in water pressure can cause the water film to
expand. This will increase the fraction of the bed, [,
occupied by the water film. The water-film fraction [ thus
can be expected to vary inversely with N in some fashion.
In addition, fluctuations in local ice pressure increase with
Tb (Nye, 1969; Kamb, 1970), so for given [ one would
expect N to increase with Tb' The simplest relation that
incorporates these ideas is

From the discussion above, viscous dissipation in a
distributed water system is slow, and water can accumulate
in a region only if the water pressure equals or exceeds the
local ice pressure. The basal shear stress from ice overlying
a wet bed causes sliding and variation in the ice normal
stress on the bed about its mean value, Pi, during upward
and downward motion of the ice over roughness elements
(Nye, 1969; Kamb, 1970). If water pressure becomes
sufficiently high, the thickened regions of water will
become sufficiently widespread to communicate along the
ice-bed interface and to maintain a relatively uniform water
pressure, Pw' over the communicating regions (the inter-
connected regime; Lliboutry, 1987a).

For a water film, Weertman (1972) estimated that
interconnection requires that the effective pressure,
N = Pi - Pw' be less than or equal to the root-mean-
square fluctuation in local ice normal stress on the bed
necessary to allow sliding without cavitation. From Kamb
(1970; p. 723), the maximum value of N for interconnection
in a film then is

where 8 is a geometric factor. This relation has acceptable
limiting behavior (as [ increases toward 1, both Tb and N
approach 0; as [ decreases toward 0, N ceases to be defined
because interconnection of the water film breaks down), and
I now argue that this may be a good first approximation of
the actual relation.

First consider unit area of a horizontal glacier bed
with average vertical ice stress Pi, with a single bump
occupying fractional area s and sustaining vertical stress Pb,
and with water occupying fractional area [= I - s at
pressure Pw' Vertical force balance on unit area then
requires

whence

(20)
s WATER DRAINAGE IN A FILM

where 8 is the ratio of the excess vertical stress to the
shear stress on the area s of the bump. From Equations
(19) and (20)

(21 )

Equation (22) is a powerful tool for modeling basal
behavior of a glacier with water-film drainage. This is
because Equation (22) provides a direct link between the
water system and the velocities from sliding and bed defor-
mation.

The fractional area covered by interconnected water, [,
must increase with the average thickness of the water film,
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d, in some manner that depends on bed geometry. Thus

1 = I(d) (24)

The basal velocity from sliding and bed deformation
can be estimated from these hypotheses, the water
supply, and the properties and geometry of the bed
and ice.

where the functional relation can be calculated from the bed
geometry (see part II).

Water flow in a film of thickness d has been described
by (Weertman, 1972; Weertman and Birchfield, 1982)

This last hypothesis is explored more fully in part II.
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HYPOTHESES

Analysis of the likely behavior of a water system
developed between ice and an unconsolidated glacier bed
leads to the following testable hypotheses:
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(27b)

Effective pressure can be approximated as N = aTb/ I,
where B is a geometric factor, Tb is the basal shear
stress, and 1 is the fractional area of the bed occupied
by the water film.

In the absence of channelized sources of melt water,
the water system will be distributed, approximating a
film of varying thickness.

Effective pressure, N, in such a distributed water
system over a soft bed will fall between
Nc = C/(1 - tan ~), where C is cohesion and tan ~ is
internal friction of the bed, and the steady value for R
channels millimeters in radius. N = 0(10 kPa) seems
most likely.

where Pi and Pw are the densities of ice and water,
respectively, and CXgand (Xbare the surface and bed slopes,
respectively. (I do not calculate Pg for drainage controlled
by conduits here because conduit cfrainage is unlikely under
Ice Stream B.)

Finally, from Weertman sliding theory (Weertman, 1957,
1964, 1969; Weertman and Birchfield, 1982), we can
estimate the sliding velocity, us' which is approximated by

where dc is the controlling obstacle size. (In Weertman
sliding theory (Weertman, 1964), the resistance offered by
obstacles to ice sliding exhibits a maximum value for some
obstacle size; obstacles of that size are called controlling
obstacles, and their size is dc' Typically, dc = 0(1-10 mm).)
Kl and Ks = 10K/dc are constants that depend on bed
roughness and other factors. The value of Ks can be
estimated from Weertman theory (Weertman, 1964) if the
bed geometry is known, or calculated from approximation
(27b) if all other terms are measured.

The water supply, bed geometry, and basal shear stress
thus allow calculation of the effective pressure and sliding
velocity for a glacier with a distributed water system. In
addition, the effective pressure, basal shear stress, and bed
properties allow calculation of the basal velocity from bed
deformation, using Equation (1). It thus becomes possible to
use the nature and geometry of the bed and ice plus the
water supply to calculate the total basal velocity of a
glacier.
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APPENDIX

Equation (22) relating effective pressure, N, shear
stress, Tb' and fraction of the bed occupied by a water

117

https://doi.org/10.3189/002214389793701527 Published online by Cambridge University Press

http://www.ingentaconnect.com/content/external-references?article=0002-9599()262:1L.133[aid=9398098]
http://www.ingentaconnect.com/content/external-references?article=0002-9599()262:1L.133[aid=9398098]
http://www.ingentaconnect.com/content/external-references?article=0002-9599()262:1L.133[aid=9398098]
http://www.ingentaconnect.com/content/external-references?article=0022-1376()93:2L.143[aid=9398099]
http://www.ingentaconnect.com/content/external-references?article=0022-1376()93:2L.143[aid=9398099]
http://www.ingentaconnect.com/content/external-references?article=0008-4077()21:2L.232[aid=5223554]
http://www.ingentaconnect.com/content/external-references?article=0008-4077()21:2L.232[aid=5223554]
http://www.ingentaconnect.com/content/external-references?article=0008-4077()21:2L.232[aid=5223554]
http://www.ingentaconnect.com/content/external-references?article=0022-1430()32L.20[aid=1195747]
http://www.ingentaconnect.com/content/external-references?article=0022-1430()32L.20[aid=1195747]
http://www.ingentaconnect.com/content/external-references?article=0022-1430()32L.20[aid=1195747]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.1311[aid=7013876]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.1311[aid=7013876]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.8913[aid=9398101]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9083[aid=7014999]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9083[aid=7014999]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9111[aid=7124131]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9111[aid=7124131]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9111[aid=7124131]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9023[aid=7089812]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9023[aid=7089812]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.8985[aid=8115422]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.8985[aid=8115422]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9059[aid=6482156]
http://www.ingentaconnect.com/content/external-references?article=0148-0227()92L.9059[aid=6482156]
http://www.ingentaconnect.com/content/external-references?article=0080-4630()311L.445[aid=7013887]
https://doi.org/10.3189/002214389793701527


Substituting for Pbj in Equation (A2) from Equation (A3)
yields

Journal of Glaciology

film, f, through a constant, B, was derived assuming all
bumps on the glacier bed are the same size. However, if t3
is independent of bump size, small bumps do not occur on
large bumps, and the effect of a bump is independent of
its neighbors (the usual assumptions in Weertman sliding
theory, e.g. Weertman, 1964, ]969) then Equation (22) is
true for a bed with a range of bump sizes. Consider a bed
with bumps divided into different size classes, with all
bumps in a single class having the same size. Bumps of the
jth size class support pressure Pbj on fractional area sj'
where I:sj = s, with the summation taken over the j size
classes. Then we can rewrite Equation (18) as

(A])

supported by the jth size class on area S jA is
reT jA) = TbA (and thus rT j = Tb)' The shear
clast in the jth class then is TjA/(s jA) = Tj/s j'
size class, Equation (20) becomes

TjA, where
sfress on a
For the jth

(A3)

(A4)

whence

(A2)

The total shear force on some arbitrary area of the bed, A,
is TbA. Define the quantities Tj such that the shear force

or, noting that Pi and t3 are independent of j, rSj s, and
f.Tj = T,

Algebraic manipulation then regains Equation (21) and hence
Equation (22).
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