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Abstract

Olson and Jenkins defined S(9H) to be the class of all rings each nonzero homomorphic image of
which contains either a nonzero 'SlWdeal or an essential ideal where 9H is any class of rings.©('DTT,) was
proven to be a radical class and various classes 9H were considered. Here the class £ ( % ) is
partitioned into two classes: % the class of all rings each nonzero homomorphic image of which has a
proper essential ideal and the class 3CCD1L) of all rings each nonzero homomorphic image of which
contains an ?>lkideal. It is shown that % is a radical class and under certain conditions % (9H) is also a
radical class. Various properties placed on ?)lt, yield several well-known radical classes and an infinite
number of supernilpotent nonspecial radical classes is constructed.
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In [10], Olson and Jenkins defined SC3H) to be the class of all rings each nonzero
homomorphic image of which contains either a nonzero 91trideal or an essential
ideal where 91L is any class of rings. S(9H) was proven to be a radical class and
various classes 9H were considered. In this article two subclasses of S(91t) are
considered; % the class of all rings each nonzero homomorphic image of which
has a proper essential ideal and the class %S9H of all rings each nonzero
homomorphic image of which contains an 'iJltrideal. It is shown that % is a radical
class and under certain conditions %S<D1t is also a radical class. Various proper-
ties placed on 91L yield several known radical classes and an infinite number of
supernilpotent nonspecial radical classes is constructed. All rings considered will
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[2] Essential ideals and their radicals 357

be associative and simple rings will be prime. The major knowledge of radical
theory required for our purposes can be found in [3] and [13].

Currently there are two ways of interpreting essential ideals; one where the ring
is an essential ideal of itself and another where only proper ideals may be
essential. For our purposes, if $ is an essential ideal in 'St then § meets all nonzero
ideals of "51 and thus 61 is essential in itself. When i must be a proper essential
ideal it will be stated. In Section 1, we consider only proper essential ideals,
whereas in Section 2 we consider essential ideals.

1. The % radical class

Let <Dltbe any class of rings. In [10], Olson and Jenkins showed that

S(91t) = {R\ every nonzero homomorphic image has either a nonzero

91trideal or an essential ideal}

is a radical class. We now consider the subset % of

DEFINITION 1. Let

% = {R | every nonzero homomorphic image of which has an essential ideal}.

From the definition it is clear that simple rings, as well as rings with maximal
ideals, cannot belong to %. Let S = {R \ R is either simple or a prime order zero
ring} and S"= (all direct sums of members of S}. From [10], we need the
following result:

THEOREM 1. The following are equivalent for any ring R.
(1) R has no essential ideals.
(2) Each ideal of R is a direct summand of R.
(3) R is a member of 9".

With S as defined above, let %S be the upper radical determined by S. We
now show that % is an upper radical class.

THEOREM 2. % is a radical class and % = % S .

PROOF. From Theorem 1 and the definition of % it follows that % - %$ so
since 5" is a hereditary class % = %5"is a radical class. Also S C 9" so %5" C % S .
Conversely, if R £ %S then R, having no image in S, cannot have an image in 5\
Thus R G <Mr and so % = %5" = % S .
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EXAMPLE. Consider the sequence X 0, N,, N 2, Then Xu = U X„ > N„ for all
positive integers n. Suppose F i s a vector space over a division ring and that the
dimension of Fis Sw. Let R be the ring of all linear transformations of Fof rank
< SM. Then R is an ideal of the ring L of all linear transformations of V. Now if
an ideal of R contains a linear transformation of a certain rank, then it also
contains all linear transformations of smaller rank [6]. Therefore, it follows that
the only ideals of R are of the type:

/„ = {all linear transformations of rank < Kn, n a nonnegative integer}.

This implies that R has no maximal ideals and hence R G %. Furthermore, R
contains as an ideal the simple ring Io G &% so % is not hereditary.

If Ps denotes the upper radical class determined by the class of simple rings it is
clear that %£ y3s. A partial solution as to the position of % in the diagram of
well-known radical classes is given in the following proposition and discussion.

PROPOSITION 1. % £ fis and % n 9 ¥= 0 for any supemilpotent radical class 9.

PROOF. The ring W = [2x/(2y + 1) | (2x, 2y + 1) = 1, x, y G Z} [3, Example
10] belongs to ft. All the ideals of W are of the form W = (2) D (I)2 D •••.
Since W can be mapped onto a nonzero simple ring, it follows that W £ %.
Furthermore, the ring/?00 [3, Example 1] is a zero ring and, therefore, belongs to
every supemilpotent radical class 9. Since p°° has no maximal ideals we have
p00 G %. Hence % n <3> # 0.

In [8] van Leeuwen gave the following diagram relating the radical classes. We
have only extended it to include the Behrens radical JB. We follow the standard
notation where the first row is the lower Baer, Levitzki, nil, Jacobson, Behrens
and Brown-McCoy radicals respectively. The second row consists of the upper
radicals determined by subdirectly irreducible rings with idempotent hearts,
Levitzki semisimple hearts, nil semisimple hearts, Jacobson semisimple hearts,
idempotent hearts with idempotent elements and G respectively. The last row
gives the upper radicals determined by all simple prime, simple prime iV-semisim-
ple, simple primitive and simple JB-semisimple rings.

P C L C N C J C JB C G

n n n n || ||
R = L, C N. (Z J C (JB)+ C GQ

n n n n n ||
HCfis = Ls C Ns C Js C (JB)s C Gs

The strictness of the inclusions was shown in [8]. The example following Theorem
2 is (Vfl ̂ -semisimple yet (/B)J-radical. In Example 3 [4] all the proper one-sided
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ideals of the ring X are ,/j-semisimple, but (7g)J-radical. The radical % is
independent with all the radicals of the first two rows of the diagram except for
G. In order to see this, any simple zero ring is /^-radical but !Krsemisimple. The
ring T in the example following Theorem 2 is %-radical, but Tg-semisimple.

We note that if 9H is a class of rings having no member of S then

PROPOSITION 2. / / 911 is any class of rings containing no member of S, then

PROOF. From Definition 1 and Theorem 2 we have %S = % C S(91t). Now
let A G 6(911) and suppose A £ % — % S . This implies that A has a nonzero
image, say A/I, where A/I G S. Since A/I has no essential ideals and no
91trideals, we have A/I £ S(9H). This contradicts A G S(9It) and S(91l) is a
radical class. Thus % = S(91t).

2. The class <3lS9H

DEFINITION 2. Let 911 be any class of rings. Then %S91t = {R | each nonzero
homomorphic image of which contains an 91L îdeal.}

THEOREM 3. / / 91L is any hereditary class of rings containing no or all nilpotent
rings then S9IL is a hereditary class and so %S91L is radical.

PROOF. Suppose it were possible (orO¥=J<H<iRG S91L with / G 911. If / '
is the ideal generated by J in R then / ' ¥= J for R G S91L and so has no 911-ideals
and since (J')3 C J it follows from the hereditary property of 91L that R G §>91t is
contradicted unless ( / ' ) 3 = 0. Now / C / ' so 911 could not be a class with no
nilpotent rings. But if 9H contains all nilpotent rings then / ' G 91L again con-
tradicting R G S91L. Hence S91L is hereditary and it follows that %S91L is
radical.

In order to show that the radical class of Theorem 3 is hereditary we need the
following lemma. It is for this reason that in this section we allow a ring to be
essential in itself.

LEMMA 2 [5]. Let I be any nonzero ideal of a ring R. Then there exists a
homomorphic image of R containing an isomorphic copy I' of I such that I' is
essential in this image.
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LEMMA 3. Let 911 be a hereditary class of rings and 0 =£ K <3 / < R with
I/K G §911. IfK<iR then R £ %S91t.

PROOF. Since K < R we have / / # < /?/#. By Lemma 2 there exists a nonzero
homomorphic image of R/K, say /?//*, containing an isomorphic copy I'/P of
I/K as an essential ideal. If R G %S9lt then /?//» has a nonzero 91trideal, say
A/T, by definition. But then since I'/P is essential in R/P and / ' / P is
isomorphic to I/K G S91t we have 0 =£ /'//> n A/T is an ideal of I'/P G S91t
and is an ideal of K/P £ 91L a contradiction. Hence, i? £ %S91t.

Recall, a radical class R is called supernilpotent if i? is hereditary and contains
all nilpotent rings [3] and is called subidempotent if R is hereditary and all rings
are idempotent [1].

THEOREM 4. let fyllbe a hereditary class of rings. If 'STL contains all nilpotent rings
then %S91l is a supernilpotent radical and if 9ft contains no nilpotent rings ^lS91t
is a subidempotent radical.

PROOF. Let 91L be hereditary and contain all nilpotent rings. Let /? G %S91t
and suppose 0 ¥= I < R and / £ %S91l . Then there exists a nonzero homomor-
phic image I/K of / with no nonzero 9Hrideals. Since 911 contains all nilpotent
rings we have that I/K is a semiprime ring. This implies that K is an ideal of R.
But then by Lemma 3, R <2 % S 9 t , a contradiction. Thus / G ' & S g H a n d q L S ' D H
is supernilpotent.

Now suppose 911 contains no nilpotent rings. First we show that % S 9 H in this
case is a class of hereditarily idempotent rings. Suppose R G % S 9 H has a
nonzero ideal / with / ¥= I2. According to [1], R can be mapped onto a nonzero
subdirectly irreducible ring R/J with nilpotent heart H/J. Since R/J G %S91t,
R/J has a nonzero 91trideal T/J. But 0 ^ i / / 7 < T/J G 911, a contradiction to
911 being hereditary and containing no nilpotent rings. Therefore, R G %S9IL
implies that R is hereditarily idempotent. Now let R G %S91t and suppose
0 =£ K R and / £ %S91L Then there exists a nonzero homomorphic image I/K
of / with no 91lrideals. Since, in this case, R is hereditarily idempotent we have
0 ¥= K < R. Again by Lemma 3, R $ %S91L, a contradiction so / G %S91L and

is subidempotent.

If 91L is any homomorphically closed class of rings and the lower radical class
determined by 911 is £911 = {R\ every nonzero homomorphic image of which has
a accessible subring in 911} we have as corollary to Theorem 4
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COROLLARY, (a) 7/911 is homomorphically closed, 91tC%S9Itc:£cDlt .
(b) / / 9H is hereditary and homomorphically closed and in addition contains no or

all nonzero nilpotent rings then %S91t = £911.

PROOF, (a) Clear.

(b) From Theorem 4 we have that %S91t is a radical class. Since £911 is the
smallest radical class containing 911 we conclude from (a) that %S9It = £911.

Recall that /? is the lower Baer radical, that is the lower radical determined by
the class of all nilpotent rings. This can also be thought of as the class of all rings
each nonzero homomorphic image of which has a nonzero nilpotent idea. We also
let F denote the Blair radical [2] which is the class of all hereditarily idempotent
rings.

THEOREM 5. (a) //'DTI is the class of all nilpotent rings, then %S9lt = /?.
(b) 7/911 w the class of all semiprime rings, then %S91t = %.
(c) If 91L is any hereditary class of rings containing no nilpotent rings, then

PROOF, (a) Clear.

(c) Follows from Theorem 4.
(b) If 9H is the class of all semiprime rings, we have that %S9H C *§ from (c).

Since 'Jis a hereditary radical class of semiprime rings we have that every nonzero
image of a ring from <3 has a nonzero ideal, considered as a ring, which is
semiprime. Hence f C tylS91l.

Now let ty denote the upper radical class determined by all fields. We know of
many supemilpotent nonspecial radical classes. Those in [11] and [12] contain ^
properly. Those of [9] are contained in ^ properly whereas those of [7] are
independent of %. We propose to construct an infinite number of supemilpotent
nonspecial radical classes of the latter type. For this purpose consider the ring A
constructed in [9]. Three of the properties of the ring A are:

(1) Every ideal of A contains zero divisors.
(ii) The only prime image of A is Z2.
(ii) A is Boolean ring.
Let "JP be any hereditary class of prime rings containing Z2. Consider & — {all

nilpotent rings, 9). Then

THEOREM 6. %SC is a supemilpotent nonspecial radical class.
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PROOF. From Theorem 4 it follows that % S S is a supernilpotent radical class.
Let % be the class of all prime %S(B semisimple rings. %% is then the smallest
special radical class containing % S S . The only prime image of the ring A is Z2

and hence A G sll%. A has no nilpotent ideals since it is Boolean. Since every
ideal of A has zero divisiors, we conclude that A cannot have prime rings as ideals
and hence A & % S S . So % S S is nonspecial.

In order to construct supernilpotent radical classes independent of ty consider
the following: let E be any prime ring that cannot be mapped onto a field, for
example any simple ring which is not a field will do such as the quaternions, and
© any hereditary class of prime rings containing Z2 but not E nor any ideals of E.
Consider now % = (all nilpotent rings, <S>}. Then

COROLLARY 2. 6llc>% is a supernilpotent nonspecial radical class independent of

PROOF. From Theorem 6 we conclude that %S5Cis supernilpotent and nonspe-
cial. Furthermore Z2 G %$>% but Z2 £ <%. The ring E above is in ^ but
E <2 %$%.
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