INVARIANTS OF FINITE REFLEGTION GROUPS

ROBERT STEINBERG

Let us define a reflection to be a unitary transformation, other than the identity, which leaves fixed, pointwise, a (reflecting) hyperplane, that is, a subspace of deficiency 1, and a reflection group to be a group generated by reflections. Chevalley (1) (and also Coxeter (2) together with Shephard and Todd (4)) has shown that a reflection group G, acting on a space of n dimensions, possesses a set of n algebraically independent (polynomial) invariants which form a polynomial basis for the set of all invariants of G. Our aim here is to prove:

Theorem. Let G be a finite reflection group, acting on a space V of finite dimension. Let J be the Jacobian (matrix) of a basic set of invariants of G, computed relative to any basis of V. Let p be any point of V. Then the following numbers are equal:
(a) the maximum number of linearly independent reflecting hyperplanes containing p;
(b) the maximum rank of $1-x$ for all x in G for which $x p=p$;
(c) the nullity of J at p.

The equality of the numbers defined in (b) and (c) is the essence of a conjecture of Shephard (3).

Throughout the paper, G is a reflection group, of finite order g, acting on a space V of n dimensions. The symbols L_{1}, \ldots, L_{v} denote the hyperplanes in which reflections of G take place, as well as non-zero linear forms which vanish on the corresponding hyperplanes, and for each i, a_{i} is a corresponding nonzero normal vector, r_{i} is the order of the (cyclic) subgroup of G which leaves L_{i} fixed pointwise, and R_{i} is a generator of this subgroup. Finally, I_{1}, \ldots, I_{n} are basic invariants of $G ; d_{1}, \ldots, d_{n}$ are their degrees; and J genericallydenotes their Jacobian, relative to whatever basis is at hand.

Lemma. For some non-zero scalar c,

$$
\operatorname{det} J=c \prod_{i=1}^{v} L_{i}^{\tau_{i}-1}
$$

A proof of this well-known result will be included because it and the corollary below play a key role in the proof of the theorem. Choose an orthonormal basis of V so that the first co-ordinate x_{1} is a multiple of L_{1}. If I is any invariant of G, the equation $R_{1} I=I$ implies that I is a polynomial in $x_{1}{ }^{\tau_{1}}$, whence

$$
x_{1}^{r_{1}-1} \text { divides } \partial I / \partial x_{1} .
$$

Received July 15, 1959.

Thus the first row of J, and hence also $\operatorname{det} J$, is divisible by

$$
x_{1}^{r_{1}-1} \text {, and hence also by } L_{1}^{r_{1}-1}
$$

Similarly, det J is divisible by each $L_{i}^{r_{i}-1}$. Using the formula

$$
\sum_{j=1}^{n}\left(d_{j}-1\right)=\sum_{i=1}^{v}\left(r_{i}-1\right),
$$

proved in (4, p. 290, 1. 12), a comparison of degrees shows that the factor c in the statement of the lemma is a scalar, non-zero because the I_{j} are algebraically independent.

From the first part of the proof we have:
Corollary. The determinant of the Jacobian of any n invariants of G is divisible by $\prod L_{i}^{r_{i}-1}$.

Proof of the theorem. If k, l, and m denote the respective numbers defined by (a), (b), and (c), we prove in turn that $m \leqslant k, k \leqslant l$, and $l \leqslant m$.

First label the L 's so that L_{1}, \ldots, L_{u} are those which contain p, and then choose an orthonormal basis p_{1}, \ldots, p_{n} of V so that p_{1}, \ldots, p_{k} span the same subspace as a_{1}, \ldots, a_{u}, the normals to the L 's. Let G^{\prime} be the (reflection) group generated by R_{1}, \ldots, R_{u}. The co-ordinates $x_{k+1}=I_{k+1}{ }^{\prime}, \ldots, x_{n}=I_{n}{ }^{\prime}$ are invariants of G^{\prime}. If $I_{1}{ }^{\prime}, \ldots, I_{k}{ }^{\prime}$ are any invariants of G, they are also invariants of G^{\prime}, and the corollary above shows that

$$
\prod_{1}^{u} L_{i}^{r i-1}
$$

divides

$$
\partial\left(I_{1}^{\prime}, \ldots, I_{n}^{\prime}\right) / \partial\left(x_{1}, \ldots, x_{n}\right)
$$

that is, divides

$$
\partial\left(I_{1}^{\prime}, \ldots, I_{k}^{\prime}\right) / \partial\left(x_{1}, \ldots, x_{k}\right)
$$

Consider now the expansion of $\operatorname{det} J$ across the first k rows:

$$
\operatorname{det} J=\sum \pm J^{\prime}\left(i_{1}, \ldots, i_{k}\right) J^{\prime \prime}\left(i_{k+1}, \ldots, i_{n}\right)
$$

with $J^{\prime}\left(i_{1}, \ldots, i_{k}\right)$ denoting the minor corresponding to the rows $1, \ldots, k$ and columns i_{1}, \ldots, i_{k} of $J, J^{\prime \prime}\left(i_{k+1}, \ldots, i_{n}\right)$ denoting the minor corresponding to the rows $k+1, \ldots, n$ and columns i_{k+1}, \ldots, i_{n}, and the sum being over all permutations i_{1}, \ldots, i_{n} of $1, \ldots, n$ for which $i_{1}<\ldots<i_{k}$ and $i_{k+1}<\ldots$ $<i_{n}$. By what has just been shown, each J^{\prime} is divisible by

$$
\prod_{1}^{u} L_{i}^{r_{i}-1}
$$

so that, by the lemma, there are polynomials $M\left(i_{1}, \ldots, i_{k}\right)$ such that

$$
\prod_{u+1}^{v} L_{i}^{r_{i-1}}=\sum M\left(i_{1}, \ldots, i_{k}\right) J^{\prime \prime}\left(i_{k+1}, \ldots, i_{n}\right)
$$

Since the left side of this equation is not 0 at p, we conclude that some $J^{\prime \prime}$ is not 0 at p, whence J has rank $n-k$ at least and nullity k at most at p. Thus $m \leqslant k$.

Next, assume that the labelling is such that L_{1}, \ldots, L_{k} contain p and are linearly independent. Set $x=R_{1} R_{2} \ldots R_{k}$. Suppose $x q=q$, with $q \in V$. Then $R_{1}{ }^{-1} q=R_{2} \ldots R_{k} q$ implies that

$$
q+c_{1} a_{1}=q+c_{2} a_{2}+\ldots+c_{k} a_{k}
$$

for suitable scalars c_{j}, whence, because of the linear independence of the a_{j}, we conclude that $c_{1}=0$ and $R_{1} q=q$. Similarly $R_{2} q=q, \ldots, R_{k} q=q$, hence q lies in each of L_{1}, \ldots, L_{k}, and the solution space of the equation $x q=q$ has dimension $n-k$. Thus $1-x$ has rank k, and the inequality $k \leqslant l$ has been established.

Finally choose $x \in G$ so that $1-x$ has rank l and $x p=p$, and then an orthonormal basis p_{1}, \ldots, p_{n} of V so that $x p_{j}=c_{j} p_{j}$ with $c_{j} \neq 1$ for $1 \leqslant j \leqslant l$ and $c_{i}=1$ for $l+1 \leqslant j \leqslant n$. If I is an invariant of G, the equation $x I=I$ implies that each term of I has a total exponent in the co-ordinates x_{1}, \ldots, x_{l} which is either 0 or at least 2 . Thus for each j such that $1 \leqslant j \leqslant l, \partial I / \partial x_{j}$ is 0 at any point at which x_{1}, \ldots, x_{l} are all 0 , in particular, at p. This implies that the first l rows of J vanish at p, whence $l \leqslant m$.

Thus the theorem is completely proved.

References

1. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., $\tilde{7}$ (1955), 778.
2. H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 765.
3. G. C. Shephard, Some problems of finite reflection groups, Enseignement Math., $I I$ (1956), 42.
4. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274.

University of California, Los Angeles

