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Introduction. Let G be a finite group, H a copy of its p-Sylow subgroup, and N the
normalizer of H in G. A theorem by Nishida [10] states the p-homotopy equivalence of
suitable suspensions of BN and BG when H is abelian. Recently, in [3] the authors proved
a stronger result: let ft*// be the subgroup of H generated by elements of order p* or less;
if

[//,Q*+1//]<ft*// for all k>0,

then BN and BG are stably p-homotopy equivalent. The hypothesis above is obviously
verified when H is abelian. In the same paper the authors recall that H does not verify
such condition when p = 2 and G = SL2(Fq) for a suitable odd prime power q; in this case
BG and BN are not stably 2-homotopy equivalent.

For any p, there is another relevant family of groups whose p-Sylow subgroups do
not satisfy the condition above: the symmetric groups with non-abelian p-Sylow
subgroups. When H is in fact isomorphic to an iterated wreath product, not all of its
elements or order p lie in the center Z(H), and it is natural to ask if BG and BN are
however stably p-homotopy equivalent.

It is well known that for G = 2p2, the symmetric group on p2 elements, the answer is
negative when p = 2 (see [8]).

To prove that the answer is also negative for any odd prime p, we use Morava
AT-theories K(n)*(-), and the group-theoretical significance of the rank of K(n)*(BN). In
fact we prove that

is not an isomorphism, since the rank of the latter space is bigger.
To obtain a complete stable splitting of BN, and estimate the role played by 5SP2 as

a stable summand of BN, one has to use one prime at a time the tools described in [1] and
in [7]. However our results tests how this role "decreases" when p grows. Notice also that
we solve a purely algebraic problem (finding a suitable lower bound to the number %\,P °f
conjugacy classes in N containing elements of order a power of p) by using topology; an
alternative approach could be the method described in [4] to calculate X\j> f°r a n v grouP-
In such an outlook one should study the lattice of abelian subgroups of N (which is huge
even for relatively small prime numbers), and evaluate a Moebius function defined on it
on every subgroup having a non-trivial intersection with the center Z(N). Our line of
attack avoids such ugly calculations.

1. Preliminaries on wreath products. We recall in this section various facts
concerning wreath products. In the old but comprehensive [9] the reader will find a
detailed account on their basic properties.
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The minimum integer m such that the group 2m has a non-abelian p-Sylow subgroup
H is p2. In this case H is isomorphic to the wreath product Cp I Cp which is the central
term of a splitting extension

Let a denote a fixed generator for Cp. Identifying the elements of H with the
(p + l)-tuples

(ai\a\...,ai>;ah),

the group law in H becomes

( a \ a'2,..., a'>; a"). (a'1, a'\..., a'-; ak) = (o'I+*-**\... , a'»
+A-*; a"+*)

where indices of exponents have to be read "modp". For our purposes it would be
enough to show that (Cpy is characteristic in H. When p is odd we have actually a
stronger result:

LEMMA 1.1. Let p be an odd prime. The group H has only one subgroup isomorphic to

(cPy.
Proof. It is an amusing exercise in group theory. Let M be the subgroup of H formed

by elements
(a\a'V..>;l),

and suppose there exists a subgroup L isomorphic but not equal to M. Since

the set 5 = L C\M\Z{H) is not empty. An element

/i = (a\a 'V. .>; l)eS
centralizes

k = (aJ\ah,...,aip\aJ)sL\M

and all its powers, since L is abelian. But this is possible only if

j \ = i2 =... = ip,

since; > 0; therefore h belongs to Z(H), against our hypothesis. •
Let g be an element in N, the normalizer of H in 2pJ, and let cg denote the

conjugation in H through g. Related to the short exact sequence above there is a fibration
of CW-complexes

COROLLARY 1.2. The homeomorphism Bcg\BH^>BH is a fiber preserving map.

Proof. When p is odd the thesis is an immediate consequence of Lemma 1.1. When
p = 2 use the fact that in each copy of CZIC2 in 24 there are only two 2-cycles. •

The structure of K(n)*(BH) is detected by studying the spectral sequence

E2 = H\BCP; K(n)*((BCpy)) => K(n)*(BH).
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The group n^BCp) = Cp acts on

K(n)*((BCpf) = K(n)*[uu u2,... , up]/(uf,..., < )

permuting generators. As a module over Cp

K(n)*((BCpY) = F®T

where F is a free Cp-module and 7 has trivial Cp-action. We have (see [5]):

K(n)*(BH) = H°(BCP; F) © (T ® K(n)*(BCp))

We call the elements belonging to the first summand "elements of type I", and "elements
of type II" those which belong to the second one. Elements of type I have a basis formed
by elements

/=0

with ih ¥^ ik for some h and k. Elements of type II, which are in

T®K(n)*(BCp) = T® Kin^lx)/^"")

have instead the form u*... uh
p®xk.

2. A lower bound for the rank of K(n)*(BN). It was proved in [6] that the rank of
K(1)*(BG) as K(l)*-module is given by the number XiA^) of conjugacy classes in G
represented by elements of order a power of p. It is easily seen that %\ A^-p2) is p + 2: the
r-th conjugacy class contains those elements that can be written as a product of r — 1
disjoint p-cycles; the last class contains all the p2-cycles.

PROPOSITION 2.1. Let N be the normalizer of a p-Sylow subgroup H of 2p2. The
K(l)*-rank of K(1)*(BN) is strictly bigger than p + 2.

Proof. Let S(p, G) be the set of conjugacy classes in G of elements of p-power
order. If H is a p-Sylow subgroup of C, then the inclusions of H in N, and of N in G
induce the following maps:

0H^N:S(p,H)-+S(p,N) and dN^c:S(p,N)^S(p,G).

Notice that the composition of the two maps is surjective by one of Sylow's thoerems,
therefore the second of them is surjective. Let G = 2P2. It will be enough to show that in
the case at hand the map fyv-zp2 is not injective. Following notations introduced in the
previous section, consider the following elements of H £ N

(a,a,...,a;l) and ( 1 ,1 , . . . , l ; a ) .

They are represented in 2P2 by two products of p disjoint p-cycles, therefore they are
conjugate through an element a G 2^2. A direct analysis shows that the subgroup of H
isomorphic to (Cpf is not mapped onto itself by conjugation through a. By Lemma 1.1,
this is sufficient to prove that a does not belong to N. D

As a consequence of Proposition 2.1 the map
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has to be a strict monomorphism, hence flSp2 and BN are not even stably homotopy
equivalent. As before, let H denote the wreath product CplCp, and W the group N/H.
The group N is the semi-direct product of H and W, since these two groups have coprime
order. This time the group W = 7r,(£W) acts on BH and then on K(n)*(BH).

PROPOSITION 2.2. K(n)*(BN) can be identified with the subring of K(n)*(BH) of the
invariants under the action of W.

Proof. We look at the E2 term of the spectral sequence

E? = HS(BW; K(n)'(BH)) >̂ K(n)s+'(BN).

We have

E,J=mnY(BH))w if 5 = 0
lO otherwise,

since the order of W is prime to p. •

To proceed in the description of K(n)*(BN), we have to understand how an element
w sW acts on K(n)*(BH). Lemma 1.1 states that conjugation by w has to map the
subgroup {CPY onto itself. If we denote by ay the generator of the ;-th copy of Cp in the
cartesian product, and simply by a the generator of H/(Cpy, the action of cw on the a/s
and on a determines cw(g) for any other g e N. Since a p-cycle in 2p2 goes to another
p-cycle under conjugation, the restriction of cw on {CPY can be seen as an element of
Aut(Cp)(2p, and for any /,

where a is an element in 2P and kt ^ 0(modp).

PROPOSITION 2.3. Let w be an element in W. Suppose that

cw(aj) = akj(j) and cw(a) = ak,

then (Bcw)* acts on the two types of elements in K{n)*(BH) as follows

5 a'{u'j... u^-J't a%klUaWf ... (kpuaWy>)
1=0 (=0

and

u{u{ ...up®xh-*(k1... kpykh(u{ui... up ®xh).

Proof. The key-point is that an element of Aut(Cp)

f:aeCp^akeCp

induces in Morava /^-theories the following automorphism

(Bf)*:x e K(n)*[x]/(xpn)~[k]Fx e K(n)*[x]/(x""),
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and it is shown in [2] that [k]Fx = b e K(n)*(BCp) whenever k & O(modp). D

COROLLARY 2.4. In K(n)*(BN) there is a subalgebra An generated by elements

2, a'. (u',1... u£) and u™u2 ...u"®xh

i=0

where

lj,m,h=0(mod(p-l))

for every j .
The reader could ask if the subalgebra An spans K(n)*(BN). The answer is in general

negative: take p = 3, the element

? | ulu2u
2

3 E K(n)*(B(C31C3))

is invariant under the action of W, but is not in An. The rank of K(n)*(BN) grows
exponentially with n, and we can state the following.

COROLLARY 2.5. For every n, the rank of K(n)*(BN) is greater than

Therefore N has at least (2P - 2)1 p + 4 conjugacy classes represented by elements having
order a power of p.

Proof. The maximal number of independent elements of type I in Ai is

and we find also four independent elements of type II:

1, x"-\ \®u1-\..u"p-
x, and x"'1 (giw?"1 • • • up'\ D

As a final remark we notice that C2\C2 is isomorphic to its normalizer in 24 and
Xi.2(C2lC2) = 5, therefore the number (2P - 2)/p + 3 is the best possible lower bound for
X\j,(N) which holds for any p.
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