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We present the results of numerical simulation by two-dimensional hybrid particle-in-cell
code of high-beta plasma with hot ions in an axisymmetric mirror machine. Two particular
effects are discussed: the self-rotating of plasma with Maxwellian ions in regime of
diamagnetic confinement and the excitation of axisymmetric magnetosonic waves in a
high-beta plasma with sloshing ions.
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1. Introduction

One of the advantages of axisymmetric mirror machines is the possibility to confine
the plasma with high ratio of plasma pressure to magnetic field pressure. This allows
thermonuclear systems with high plasma pressure and high density of thermonuclear
power to be constructed. In the limiting case, when the plasma pressure is equal to the
pressure of the magnetic field, a qualitative change of regime of the plasma confinement
occurs, in particular, the transition to the regime of diamagnetic confinement takes place
(Beklemishev 2016). In this regime the magnetic field is displaced from the region
occupied by the plasma and the so-called diamagnetic bubble is formed. Analytical
estimates based on magnetohydrodynamic (MHD) (Beklemishev 2016; Beklemishev &
Khristo 2019) and kinetic approaches (Chernoshtanov 2022; Khristo & Beklemishev 2022)
have shown that the transition to the regime of diamagnetic confinement allows us to
increase the lifetime of particles in the trap by at least one order of magnitude.

The potential benefits of this regime have led to efforts to validate it experimentally.
In particular, similar regimes are being investigated on a C2-W device of the Tri Alpha
Energy company (Gota et al. 2019) and a high-beta plasma experiment is planned on a
CAT device of the Budker Institute of Nuclear Physics (BINP) (Bagryansky et al. 2016).
Moreover, the experiment with high-beta plasma on a 2XIIB device (Turner et al. 1989)
and experiments in cusps (Haines 1977) should also be mentioned.

The non-trivial structure of the magnetic field and of the distribution function of plasma
particles results in numerous difficulties in analytical consideration of the diamagnetic
regime. The numerical simulation in turn can be useful to study in detail the different
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2 I.S. Chernoshtanov and others

effects arising in this regime. In this article we discuss the plasma rotation and the
excitation of axisymmetric oscillations observed in simulations with hybrid particle-in-cell
(PIC) numerical code MTRAP (Boronina et al. 2019).

The article is organized as follows. In § 2 we briefly discuss the equations on which the
numerical model is based. Special attention is paid on the treatment of ion–ion Coulomb
collisions. In § 3 the simulation results, in particular, the plasma rotation and the associated
effects are presented. In § 4 the axisymmetric oscillations observed in the simulation of a
diamagnetic bubble in a mirror machine with skew neutral beam injection are discussed.
A brief conclusion is given in § 5.

2. Description of the model

In this section, we describe the basic equations of our model, while the details of
numerical realization can be found in Boronina et al. (2019). We consider a plasma which
consists of electrons and one type of singly charged ions (in this paper the ions are protons).
We treat all plasma ions kinetically and use the PIC method (see e.g. Hockney & Eastwood
2021) to solve the equation for the ion distribution function using the macroions of the
same charge-to-mass ratio as the real ions in the plasma. Plasma electrons are instead
treated as a charge-neutralizing massless fluid.1

2.1. Basic equations
The equations of motion for the macroions read

dri

dt
= vi, mi

dvi

dt
= eE(r, t)+ e

c
vi × B(r, t)+ me

V e(r, t)− V i(r, t)
τie

, (2.1a,b)

here mi,me are the ion and electron mass, E and B are the electric and magnetic fields, τie is
the electron-ion collision time (time of the electron drag), ri, vi are position and velocity of
each individual macroion and V i(r, t) is the mean velocity of macroions, obtained (along
with the ion charge density ni) from their spatial distribution. We assume the plasma to be
quasineutral, ne = ni, and write the equation of motion for the massless electron fluid as

eE(r, t)+ e
c

V e(r, t)× B(r, t)+ ∇pe

ne
+ me

V e(r, t)− V i(r, t)
τie

= 0, (2.2)

here pe = neTe is the scalar electron pressure. In the hybrid algorithm this equation is used
to obtain the electric field E(r, t). The heat equation for the electron fluid reads

ne

(
∂Te

∂t
+ (V e(r, t) · ∇)Te

)
+ (γ − 1) (∇ · V e(r, t)) pe = (γ − 1)

(
Qe − ∇ · qe

)
.

(2.3)
Here γ = 5

3 is the adiabatic index of an atomic gas, Qe = J2/σ is the heat generated
in electrons, with the electric conductivity σ = e2neτie/me and the total current density
J = ene(V i − V e). The electronic heat flux reads qe = κ∇Te with κ being the thermal
conductivity. In our hybrid model we consider low-frequency processes and do not take
into account the displacement current. Therefore, the total current density J can be
obtained from Ampere’s law leading to the following equation for the electron fluid

1Note, that our approach is different from the MHD-PIC method, presented for example in Bai et al. (2015), where
only a minor component of the plasma distribution (i.e. energetic cosmic rays) is treated kinetically.
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Effects observed in simulation of high-beta plasma in an mirror machine 3

velocity:

V e(r, t) = V i(r, t)− c
4π

1
ene(r, t)

∇ × B(r, t). (2.4)

Finally, the magnetic field evolves according to Faraday’s law

∂B(r, t)
∂t

= −c∇ × E(r, t). (2.5)

2.2. Initial set-up
At t = 0 the cold uniform background plasma with density n0 is located inside a cylindrical
chamber of radius R0 and length L. A beam of neutral hydrogen plasma is injected into the
chamber. The particular initial distributions of the beam ions are specified in §§ 3.1 and 4.1.
As for the initial configuration of the magnetic field, for the simulations presented in § 4
the vacuum field is homogeneous, while in § 3 it is generated by a pair of identical current
coils, located at both ends of the chamber. We assume that the current flows through
the coils strictly in the azimuthal direction ϕ, and that its amplitude does not depend
on the azimuthal angle. In this case at t = 0 the whole system has an axial symmetry.
The amplitude of the magnetic field in the centre of the trap at the point r = 0, z = 0
is equal to B0. The amplitude of the field at the points r = 0, z = ±L/2 is defined
by the given mirror ratio Rv. In this paper we consider the reduced two-dimensional
cylindrical problem, with z-axis directed along the symmetry axis of the trap, i.e. we
assume that the field configuration and the evolution of the plasma do not depend on the
azimuthal angle through the whole process. In cylindrical geometry the simulation box is
a rectangle [−L/2,L/2] × [0,R0]. In order to find the initial distribution of the magnetic
field inside the trap for the simulations, discussed in § 3, we introduce the vector potential
A = (0,Aϕ, 0) such that ∇ × A = B = (Br, 0,Bz). The components of the magnetic field
then read

Br = −∂Aϕ
∂z
, Bz = 1

r
∂(rAϕ)
∂r

. (2.6a,b)

The initial distribution of the magnetic field is found from the numerical solution of the
elliptic equation for Aϕ, which reads

∂

∂r

[
1
r
∂(rAϕ)
∂r

]
+ ∂2Aϕ

∂z2
= −4π

c
jϕ, (2.7)

with jϕ being the current density in the coils. The details of the numerical algorithm can
be found in Liseykina, Vshivkov & Kholiyarov (2024).

2.3. Simulation procedure and boundary conditions
The simulation procedure is as follows. (i) Setting the initial homogeneous distribution of
the cold background plasma and the trap magnetic field (homogeneous in § 4 or produced
by a pair of current coils in § 3): ni = n0; V i = 0; V e = 0; Te = 0; pe = 0,B = (Br, 0,Bz).
The electric field at t = 0 is obviously set to zero. (ii) Injection of beam ions. (iii) Update
of the ion positions and velocities, (2.1a,b) and calculation of ni and V i from the spatial
distribution of ions. (iv) Calculation of the electron fluid velocity V e using (2.4). (v)
Update of the electric field E, (2.2). (vi) Update of the magnetic field B, (2.5). (vii) Update
of the electron temperature Te, (2.3). (viii) Repeat steps (ii)–(vii) until necessary. Note that
although the density is calculated with second-order accuracy in space and the velocity
with second-order accuracy in time, the overall numerical scheme is first order in time
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4 I.S. Chernoshtanov and others

and space. The boundary conditions on the axis r = 0 for vector functions F = E,B,V
are Fr = Fϕ = 0, ∂Fz/∂r = 0, while for scalar functions they read ∂n/∂r = ∂Te/∂r = 0.
Particles can leave the computational region through lateral boundaries at z = ±L/2.
Radial component of the electric field Er and the derivative ∂Eϕ/∂z are zero at z = ±L/2.

2.4. Normalization and typical simulation parameters
In the simulations all quantities are normalized to the ion cyclotron frequency Ω0 =
eB0/(mic), the Alfvén velocity vA = B0/(4πmin0)

1/2 and the ion inertial length c/ωpi =
(mic2/(4πn0e2))1/2. We choose the following normalization parameters: B0 = 2 kG and
n0 = 1013 cm−3, so thatΩ0 = 1.9 × 107 s−1, vA = 1.38 × 108 cm s−1 and c/ωpi = 7.19 cm.

The numerical parameters are the following: time step 10−4Ω−1
0 ; grid size [102 × 42].

In the quasistationary regime the number of macroparticles in calculation area is 2 × 104

for hot ions and 1.5 × 104 for background ions. Typical simulation until t � 200Ω−1
0 on

one processor Intel Xeon Platinum 8268 (2.9 GHz) takes four hours.

2.5. Simulation of ion–ion collisions
The accurate treatment of the ion–ion collisions with the conservation of the full
momentum and energy of ions is important, for example, for the simulation of the
outflow of Maxwellian plasma. When applying the frequently used Takizuka–Abe method
(Takizuka & Abe 1977) to model pair collisions, the amount of computation grows
quadratically with increasing number of macroparticles. Therefore, we applied the
null-collision Monte Carlo algorithm (Vshivkov et al. 2021). The idea of this method
is following. We calculate the density of ions ni, their mean velocity V i and the root mean
square velocity spread 
vi = (

∑
(vi − V i)

2)1/2 in each numerical cell. Then each ion is
scattered in the same way as in case of scattering on plasma with Maxwellian ions with
density ni, mean velocity V i and temperature Ti = mi(
v

2
i /2). To ensure the conservation

of the full energy and momentum of ions the procedure of renormalization is applied.
Details of the particular realization can be found in Vshivkov et al. (2021).

3. Simulation of the outflow of Maxwellian plasma

There exist semianalytical MHD (Beklemishev 2016) and kinetic (Chernoshtanov
2022) models describing gas-dynamic confinement of Maxwellian plasma in a long
quasicylindrical diamagnetic bubble. The MHD models are applied when the mean free
path of the ions is smaller than the width of the transition layer, while the kinetic model
is applicable when the ion free path is shorter than the distance between magnetic mirrors
L. Both models predict that the confinement time τ depends linearly on the width of the
transition layer λ. In particular,

τ = τgdt
a
λ
, τgdt = RvL

vt
, (3.1a,b)

where τgdt is the time of gas-dynamic outflow from the vacuum magnetic field with the
mirror ratio Rv, vt is the thermal velocity of ions and a is the bubble radius. The width of
the transition layer of the diamagnetic bubble λ depends either on the plasma resistivity in
the MHD model or on Larmor radius of ions vt/Ω0 and the electrostatic potential in the
transition layer in the kinetic model.

It should be noted that the plasma is assumed to be non-rotating in both models. On
the other hand, there are different factors resulting in plasma rotation, such as the neutral
beam injection, the radial electric field induced by the sectioned plasma plates (Ivanov &
Prikhodko 2017) and limiters, the ambipolar plasma potential, as well as different kinetic

https://doi.org/10.1017/S0022377824000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000333


Effects observed in simulation of high-beta plasma in an mirror machine 5

effects. Moreover, in the diamagnetic trap and in the field reversal configurations (FRCs)
the important effect is plasma spin-up (Steinhauer 2011). This effect arises because of
the differences in the confinement of particles with different azimuthal momentum pϕ.
Namely, particles in axisymmetric systems with high-beta plasma can move chaotically
due to the non-conservation of magnetic momentum μ. Chaotically moving particles with
Ω0pϕ > 0 predominantly leave the trap, while the particles withΩ0pϕ < 0 can be confined
in the trap due to the so-called absolute confinement (Steinhauer 2011). Therefore, in the
diamagnetic confinement regime plasma can spin-up in a direction which coincides with
the direction of the cyclotron rotation of ions. This rotation can sufficiently influence the
plasma confinement.

3.1. Formulation of the problem
We consider an axisymmetric mirror machine, the magnitude of the magnetic field in the
minimum is B0, the mirror ratio is Rv and distance between the mirrors is L. Ions with a
Maxwell velocity distribution fi = exp(−v2/v2

t )/(π
3/2v3

t ) arise in the region bounded by
the fixed field line, namely in the region with Ψ < B0ψ0, where Ψ = ∫ r

0 r′Bz(r′) dr′ is the
magnetic flux. For a short time (20 cyclotron periods), Maxwell ions are injected into the
trap, resulting in the formation of a diamagnetic bubble. Subsequently the injection rate is
decreased by several times and the transition to a quasistationary state, when all variables
are almost time-independent, is investigated. We choose the following basic simulation
parameters: the distance between mirrors L = 10c/ωpi; the thermal velocity of ions is vt =
0.2vA; the mirror ratio of the vacuum field is Rv = 2, 1/τie = 0.03Ω0. The injection rate
corresponds to q = 2.6 × 1023 real protons injected per second for t < 20/Ω0 and it is
reduced down to q = 3.6 × 1022 for t > 20/Ω0.

To simplify the interpretation of the simulation results, we exclude most of sources
of plasma rotation, such as off-axis neutral beam injection and the radial electric field
generated by external plasma plates. The main source of plasma rotation in our case is the
predominant loss of ions with Ω0pϕ > 0.

The parameters were chosen so that the characteristic values of plasma density and
thermal ion velocity were of the order of (see below) 1013 cm and 107 cm s−1 (ion
temperature of the order of 100 eV). These values correspond to the mean free path
of ions with respect to the ion-to-ion Coulomb collisions of the order of 10 cm. It is
smaller than the distance between the mirrors (71.9 cm), so the plasma is gas-dynamically
confined. Increasing the frequency of Coulomb collisions slightly broadens the plasma
radial distribution due to the growth of radial diffusion.

3.2. Simulation results
Let us discuss the time-dependence of the plasma parameters. The dependence of the
full number N of the injected ions in the trap, the transverse W⊥ = ∑

imi(v
2
r + v2

ϕ)/2 and
the longitudinal W‖ = ∑

imiv
2
z /2 parts of the kinetic energy of ions over time are shown

in figure 1. After decreasing the injection rate the kinetic energy of ions transits to a
quasistationary state within the time period which is of the order of time of flight from
one mirror to another L/vt = 50Ω−1

0 . Due to Coulomb collisions the transverse and the
longitudinal pressures are approximately equal,2 W⊥/2 ≈ W‖.

The decrease of the magnetic field inside the diamagnetic bubble is due to the
diamagnetic current flowing in the transition layer of the bubble. This means that the
average azimuthal velocities of electrons and ions are different and that electron drag slows

2Strictly speaking the longitudinal pressure is slightly lower than the transverse one because of the longitudinal
losses of ions.
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(a) (b)

FIGURE 1. Dependence of full number of ions N (a) and full transverse W⊥ (solid line)
and longitudinal W‖ (dashed line) kinetic energy of ions (b) in time. Parameters: Rv = 2;
ψ0 = 0.08(c/ωpi)

2; 1/τie = 0.03Ω0; injection rate is q = 2.6 × 1023 particles s−1 at Ω0t < 20
and q = 3.6 × 1022 particles s−1 at Ω0t > 20. The energy is measured in units of miv

2
A, the

injection rate and the number of ions both refer to the number and injection rate of real protons.

(a)

(b)

FIGURE 2. The distribution of the amplitude of the magnetic field |B(z, r)| inside the trap
(colours) and the field lines of the magnetic field at t = 0 (a) and t = 20Ω−1

0 (b). The field
lines are labelled by the values of rAϕ. The parameters of the simulations are the same as in
figure 1.

down the ions in the transition layer. This friction force causes ions to drift in the radial
direction outwards of the bubble. This drift, combined with Coulomb scattering, leads to
broadening of the transition layer and diffusion of ions outwards of the bubble. A part of
these ions is cooled by the electron drag, so they leave the trap slowly. The existence of
this population of cold ions at the periphery of the plasma explains the slow growth of the
total number of ions in the trap N, see figure 1.

Snapshots of the magnetic field amplitude and magnetic field lines at different time
moments are shown in figure 2. These pictures demonstrate a typical structure of a
diamagnetic bubble with a zero magnetic field in the central region and a vacuum magnetic
field in the periphery.
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(a) (b)

FIGURE 3. The time dependence of the root mean square velocity of all ions v̄ (a) and mean
azimuthal momentum P̄ϕ (b). The parameters are the same as in figure 1. The velocity is
measured in units of vA, the azimuthal momentum in units of mivAc/ωpi.

When a particle moves in an axisymmetric electromagnetic field its azimuthal
momentum mrvϕ + eΨ (r)/c is conserved. Hence, to study plasma rotation it is convenient
to plot the time-dependence of full azimuthal momentum

∑
j=e,i(mjrvϕ + ejΨ (r)/c). Here

summation is made for both species of plasma particles (ions and electrons). Note, that∑
j(ej/c)Ψ (r) ≈ 0 because of the plasma quasineutrality and the contribution of electrons

to the sum
∑

j=e,imjrvϕ is small compared with the contribution of ions due to me/mi � 1.
In the following the reduced azimuthal momentum Pϕ = ∑

j=imjrvϕ is investigated.
The time-dependencies of the root mean square velocity spread v̄ = √

(W⊥ + W‖)/(3N)
and the mean azimuthal momentum of ions P̄ϕ = N−1∑

imirvϕ are shown in figure 3.
Initially the mean velocity of ions decreases due to the electron drag and the longitudinal
losses of most energetic ions. Besides, at Ω0t < 20, a part of the kinetic energy of ions is
spent on the displacement of the magnetic field. The mean azimuthal momentum increases
(in absolute value) initially because of the longitudinal losses of ions with Ω0pϕ > 0.
Such spin-up is stopped later because of the electron drag in the transition layer. The
mean azimuthal velocity of ions can be estimated as the ratio of P̄ϕ to the bubble radius
a ≈ 0.5c/ωpi. The mean azimuthal velocity is approximately 0.03vA, which is two times
smaller than the mean root square velocity spread of ions in a stationary state v̄ ≈ 0.07vA.

In the following we estimate the maximum of the total azimuthal momentum. The
distribution function of the injected ions is approximately equal to

f ≈ H(m2v2a2 − p2
ϕ) exp(−v2/v2

t )/(π
3/2v3

t ), (3.2)

with H(x) being the Heaviside function and a being the radius of the diamagnetic bubble.
If all ions with Ω0pϕ > 0 leave the trap, the mean azimuthal momentum will be P̄ϕ/mi ∼
−vta ≈ 0.08vAc/ωpi. This value is several times bigger that the observed mean azimuthal
momentum.

To verify the plausible assumption that plasma rotation is restricted by the electron
drag in the transition layer, we performed a set of simulations with different electron–ion
collision times, τie ∈ [25, 100]Ω−1

0 . The temporal evolution of W⊥ plotted in figure 4 for
three different values of τie indicates that the full kinetic energy of ions in a quasistationary
state depends on τie as W ∝ τ

1/2
ie . Such dependence agrees with the predictions of the MHD
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FIGURE 4. Dependence of full transverse kinetic energy W⊥ of ions in time for 1/τie = 0.02Ω0
(cyan line, divided by

√
3/2), 1/τie = 0.03Ω0 (black line) and 1/τie = 0.04Ω0 (blue line,

multiplied to
√

4/3). The parameters are the same as in figure 1. The energy is measured in
units of miv

2
A.

model (Beklemishev 2016), where ion losses are also caused by the electron drag in the
transition layer.3

4. Axisymmetric waves in a plasma with the population of sloshing ions

Skew neutral beam injection is used in linear systems for the plasma confinement, for
example in a Gas Dynamic Trap (GDT) device (Ivanov & Prikhodko 2017), a C2-W device
(Gota et al. 2019) and a GOL-NB device (Postupaev et al. 2017), and was used in a TMX-U
device (Simonen et al. 1983), as a method of heating and maintaining the plasma in the
trap. Such injection results in the formation of a population of fast sloshing ions oscillating
in the longitudinal direction between the magnetic mirrors. In the case of small angular
spread of neutral beams, the density of the fast ions is peaked near the turning points.
These effects can be used to construct the compact source of thermonuclear neutrons with
peaked density of neutron flow (Ivanov & Prikhodko 2017).

Preliminary numerical simulations of a mirror machine with neutral beam injection
show that axisymmetric oscillations with the frequency close to the bounce-frequency of
sloshing ions between the magnetic mirrors are excited. These oscillations are similar to
the global sound modes observed in a GDT device (Skovorodin, Zaytsev & Beklemishev
2013). To study the spatial structure of these oscillations, a set of simulations of plasma
with sloshing ions was performed. To simplify the study of the wave structure and to
accelerate the attainment of the quasistationary state, we model the plasma dynamics in a
homogeneous magnetic field.

4.1. Formulation of the problem
A region with a uniform magnetic field with amplitude B0 (mirror ratio Rv = 1) and cold
background plasma of density n0 is filled by fast ions. The distribution function of fast ions
of the source is

S(r, z, vr, vϕ, vz, t) = F(v) · H(
r2 − (r − a)2)

· [
H((z − z±)sign(vz))+ δ(z − z±)vzt

]/
(L/|vz| + t) , (4.1)

where L is length of the simulation region and z± = 0 if vz > 0 and z± = L if vz < 0. This
source allows us to generate a population of fast ions with density which does not depend

3Simulations with the lower frequency of electron–ion collisions are needed to firmly confirm this, but they would
require the modification of the numerical scheme.
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(a) (b)

FIGURE 5. The time-dependence of the full number of ions (a) and z-component of the
magnetic field at z = 0, r = 0. The parameters are: injection rate is q = 1.2 × 1021 particles s−1;
a = 1.0 × c/ωpi, v‖0 = 1.0 × vA; w = 0.5 × vA (solid line) and w = 1.0 × vA (dashed line). The
magnetic field is measured in units of B0, the injection rate and the number of particles are both
given (recalculated) for the number and injection rate of the real protons.

on the longitudinal coordinate. This results in a population of fast ions, localized near the
surface of a cylinder with radius a. We choose F(v) in the following form:

F(v) = δ(vr)δ(vϕ − v0)(exp(−(vz − v‖0)
2/w2)+ exp(−(vz + v‖0)

2/w2) (4.2)

with v0 ≈ −Ω0a. Such velocity distribution models the distributions of fast ions in a
mirror machine with skew off-axis neutral beam injection.

We choose the following parameters: injection rate, corresponding to the injection rate
of real protons, q = 1.2 × 1021 particles s−1, Larmor radius of fast ions a = 1.0 × c/ωpi
(so that v0 = 1.0 × vA), radial spread
r = 0.1 × a, the mean longitudinal velocity of fast
ions v‖0 = 1.0 × vA and the longitudinal velocity spread w = 0.5 × vA or w = 1.0 × vA.

4.2. Numerical results
The typical time-dependence of the plasma parameters is shown in figure 5. Oscillations of
the magnetic field amplitude are clearly visible. The period of oscillations is approximately
10/Ω0 which is close to the time of an overflow of fast ions L/v‖0. The amplitude of
oscillations decreases with increasing of the spread of the longitudinal velocity w.

The typical time dependence of the azimuthal component of the electric field is shown in
figure 6. The mean value of the field is not zero because of the monotonically decreasing
magnetic field Bz, which is displaced due to the growing diamagnetism of the plasma.
The amplitude of the electric field oscillates with a frequency equal to the frequency of
magnetic field oscillations.

The dependence of the magnetic field on the longitudinal coordinate (figure 7a)
demonstrates the standing wave with wavelength equal to length of the simulation box.
The standing wave is formed due to boundary conditions (Er = 0 and ∂zEϕ = 0) on the
left and right boundaries of the computation region. It is convenient to show the radial
structure of the wave through the azimuthal component of the electric field Eϕ, which
is equal to zero if the wave is absent. The electric field is peaked at r ≈ a, where the
density of fast ions reaches a maximum. The phase velocity of the wave is close to the
mean longitudinal velocity of fast ions v‖0. The azimuthal electric field does not depend
on time for a population of ions with the longitudinal velocity v‖ = ω/k‖, where ω is
wave frequency and k‖ is the longitudinal wavenumber. These ions can effectively transfer
energy to the wave through the Landau mechanism. The increase of the longitudinal
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FIGURE 6. The time-dependence of the azimuthal component of the electric field at z = 0 and
r = 1.0 × c/ωpi. The parameters are the same as in figure 5.

(a) (b)

FIGURE 7. The dependence of z-component of the magnetic field on longitudinal coordinate z
(a) at r = 0 and of the azimuthal component of electric field on radial coordinate r (b) at z = 0
at Ω0t = 80. The parameters are the same as in figure 5, w = 1.0 × vA.

velocity spread w reduces the fraction of ions which can interact resonantly with the wave,
so that the amplitude of the wave decreases.

5. Conclusion

In this paper we present the results of numerical simulation by a two-dimensional hybrid
PIC MTRAP code of high-beta plasma with hot ions in an axisymmetric mirror machine.
The injection of a plasma beam results in the displacement of the magnetic field from
the region occupied by plasma and in the formation of the so-called diamagnetic bubble.
The difference in confinement of ions with opposite sign of the azimuthal component of
angular momentum in the diamagnetic bubble leads to plasma spin-up. Such a plasma
spin-up was observed when modelling the outflow of a plasma with Maxwell ions from
a diamagnetic bubble. The simulations show that the average azimuthal ion velocity is
limited due to electron drag in the transition layer at the bubble boundary. A population
of fast sloshing ions can efficiently transfer energy to axisymmetric magnetosonic waves
via the Landau mechanism if the phase velocity of the oscillations is close to the mean
longitudinal velocity of the ions. Such waves were observed in numerical simulations
of the flow of plasma with sloshing ions in a homogeneous magnetic field. The most
unstable are the oscillations with the maximum wavelength, which is limited by the length
of the simulation box. The radial distribution of the azimuthal component of the oscillation
electric field has a peak in the region where the density of fast ions reaches a maximum.
Such oscillations are similar to the global sound modes which were observed earlier in the
GDT device (Skovorodin et al. 2013).
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