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Abstract

In this paper, we characterize hypersurfaces of type A2 in a complex projective space in terms of their
geodesics.
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1. Introduction

When we study Riemannian submanifolds, we can get information on their shapes
by investigating their geodesics. It is known that a hypersurface Mn isometrically
immersed into a space form M̃n+1(c) of constant sectional curvature c is totally
umbilic if and only if every geodesic on Mn is mapped to a circle in M̃n+1. On
the contrary, in a complex n-dimensional complex projective space CPn of constant
holomorphic sectional curvature 4, there exist no real hypersurfaces all of whose
geodesics are mapped to circles in CPn .

Among real hypersurfaces in CPn the following hypersurfaces are quite important:

(A1) a geodesic sphere of radius r (0< r < π/2) in CPn;
(A2) a tube of radius r (0< r < π/2) around a totally geodesic Kähler submanifold

CPk in CPn with 1 5 k 5 n − 2.

In this paper, we say these real hypersurfaces are of type A1 and of type A2,
respectively. Hypersurfaces of type A1 have two distinct constant principal curvatures
in CPn . It is well known that CPn does not admit totally umbilic real hypersurfaces
and that a real hypersurface M2n−1 in CPn (n = 3) is of type A1 if and only if M
has at most two distinct principal curvatures at each point of M . These tell us that
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hypersurfaces of type A1 are the simplest examples of real hypersurfaces in CPn .
Hypersurfaces of type A2 have three distinct constant principal curvatures in CPn .
However, both hypersurfaces of type A1 and of type A2 have many common nice
properties, which enrich the theory of real hypersurfaces (see [5]). Moreover, it is
known that they are typical examples of naturally reductive Riemannian homogeneous
manifolds. Hence they are nice examples from both the viewpoints of extrinsic
geometry (that is, submanifold theory) and of intrinsic geometry.

The aim of this paper is to distinguish between hypersurfaces of type A2 and
hypersurfaces of type A1 in CPn . We characterize only hypersurfaces of type A2
by studying shapes of their geodesics in CPn (Theorems 3.1 and 4.3).

2. Real hypersurfaces of type A1 and A2

Let M2n−1 be an orientable real hypersurface of CPn and N a unit normal vector
field on M in CPn . The Riemannian connections ∇̃ of CPn and ∇ of M are related
by the following formulas which are the so-called Gauss formula and the Weingarten
formula, respectively:

∇̃X Y = ∇X Y + 〈AX, Y 〉N and ∇̃XN = −AX (2.1)

for vector fields X, Y on M , where 〈, 〉 denotes the Riemannian metric on M induced
from the Fubini–Study metric on CPn and A is the shape operator of M in CPn . It is
known that M admits an almost contact metric structure (φ, ξ, η, 〈, 〉) induced from
the Kähler structure J of CPn . The vector field ξ defined by ξ = −JN is called the
characteristic vector field. The tensor field φ of type (1, 1) and the 1-form η on M are
given by

〈φX, Y 〉 = 〈J X, Y 〉 and η(X)= 〈ξ, X〉 = 〈J X,N 〉,

and satisfy φ2 X = −X + η(X)ξ and φξ = 0. By use of the Weingarten formula we
find

∇Xξ = φAX. (2.2)

Eigenvalues and eigenvectors of the shape operator A are called principal
curvatures and principal curvature vectors, respectively. We now recall some
properties of hypersurfaces of type A1 and A2. We denote by Vλ the eigenspace of
A associated with eigenvalue λ. When M is a hypersurface of type A1, the tangent
bundle T M is decomposed as T M = Rξ ⊕ Vcot r and Aξ = (2 cot 2r)ξ . When M is a
hypersurface of type A2, its tangent bundle is decomposed as

T M = Rξ ⊕ Vcot r ⊕ V−tan r

with dim Vcot r = 2n − 2k − 2, dim V−tan r = 2k and Aξ = (2 cot 2r)ξ . These real
hypersurfaces of type A1 and A2 are characterized by the property of their shape
operators in the following manner [5].
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LEMMA 2.1. Let M be a real hypersurface of CPn . Then the following four
conditions are equivalent:

(1) M is locally congruent to a hypersurface of either type A1 or type A2;
(2) the shape operator A of M in CPn satisfies 〈(∇X A)X, X〉 = 0 for each vector

X on M;
(3) φA = Aφ holds everywhere on M;
(4) ‖∇ A‖

2
= 4(n − 1) holds everywhere on M.

3. Extrinsic geodesics on hypersurfaces

In this section we study real hypersurfaces of type A2 by paying attention to the
existence of extrinsic geodesics. A geodesic on a submanifold M in M̃ is said to be an
extrinsic geodesic if it is also a geodesic on M̃ .

For a geodesic γ on a real hypersurface M in CPn , we define its structure torsion
ργ by ργ = 〈γ̇ , ξγ 〉. By use of (2.2) we have

ρ′
γ = 〈γ̇ , ∇γ̇ ξ〉 = 〈γ̇ , φAγ̇ 〉 = −〈Aφγ̇ , γ̇ 〉,

hence we obtain

ρ′
γ =

1
2 〈γ̇ , (φA − Aφ)γ̇ 〉. (3.1)

Therefore, when M is a hypersurface of type A1 or of type A2, we see by Lemma 2.1
that ργ is constant along γ .

THEOREM 3.1. A connected real hypersurface M of CPn is of type A2 with radius
r (0< r < π/2) if and only if it satisfies the following two conditions.

(1) At each point x ∈ M there exists an orthonormal basis v1, v2, . . . , v2n−1
of Tx M such that every geodesic γi j of M through x in the direction
vi + v j (1 5 i 5 j 5 2n − 1) has constant structure torsion ργi j .

(2) At some point x ∈ M there exists an extrinsic geodesic γ of M through x
orthogonal to ξx .

PROOF. Suppose that M satisfies the condition (1). By (3.1) we see that

0 = ρ′
γi i
(0)=

1
2

〈
γ̇i i , (φA − Aφ)γ̇i i

〉
(0)=

1
2

〈
vi , (φA − Aφ)vi

〉
,

0 = ρ′
γ jk
(0)=

1
2

〈
γ̇ jk, (φA − Aφ)γ̇ jk

〉
(0)=

1
4

〈
v j + vk, (φA − Aφ)(v j + vk)

〉
for 1 5 i 5 2n − 2 and 1 5 j < k 5 2n − 2. These, together with the fact that
φA − Aφ is symmetric, imply that 〈vi , (φA − Aφ)v j 〉 = 0 for 1 5 i 5 j 5 2n − 2.
We hence find that φA = Aφ and M is a hypersurface of type either A1 or A2 by
Lemma 2.1. Thus the condition (1) characterizes hypersurfaces of types A1 and A2.

What we have to do is to check the condition (2) for hypersurfaces of types A1
and A2. We take an arbitrary geodesic γ on a hypersurface M whose initial vector is
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orthogonal to the characteristic vector. When M is a hypersurface of type A1, as we
have 〈Aγ̇ (0), γ̇ (0)〉 = cot r > 0, we find by the Gauss formula that γ is not a geodesic
in CPn . When M is a hypersurface of type A2, we denote γ̇ (0)= (sin θ)v + (cos θ)w
with unit vectors v ∈ Vcot r and w ∈ V−tan r . We then have〈

Aγ̇ (0), γ̇ (0)
〉
= sin2 θ cot r − cos2 θ tan r.

By use of Lemma 2.1, we see that 〈Aγ̇ , γ̇ 〉 is constant along γ . Thus by the Gauss
formula we find that γ is an extrinsic geodesic if and only if its initial vector is given as
γ̇ (0)= (sin r)v + (cos r)w (that is, θ = r ). We hence obtain the desired conclusion. 2

REMARK. The constancy condition on structure torsions in the condition (1) in
Theorem 3.1 can be weakened to a condition ρ′

γi j
(0)= 0 at an initial point.

We should point out that the orthogonality to the characteristic vector field in the
condition (2) in Theorem 3.1 is important.

THEOREM 3.2. A connected real hypersurface M of CPn is either a hypersurface
of type A1 with radius r (π/4 5 r < π/2) or a hypersurface of type A2 with radius r
(0< r < π/2) if and only if it satisfies the following two conditions.

(1) At each point x ∈ M there exists an orthonormal basis v1, v2, . . . , v2n−1
of Tx M such that every geodesic γi j of M through x in the direction
vi + v j (1 5 i 5 j 5 2n − 1) has constant structure torsion ργi j .

(2) There exists an extrinsic geodesic on M.

PROOF. By virtue of the discussion in the proof of Theorem 3.1, we have only to
check the condition (2) for hypersurfaces of type A1. We take an arbitrary geodesic γ
on a hypersurface M of type A1 and denote its initial vector as

γ̇ (0)= (cos ψ)v + (sin ψ)ξγ (0)

with 0 5 |ψ | 5 π/2 and v ∈ Vcot r . We then have

〈Aγ̇ (0), γ (0)〉 = cos2 ψ cot r + 2 sin2 ψ cot 2r = 1 − sin2 ψ tan2 r,

which is null when π/4 5 r < π/2 and sin ψ = cot r . Since 〈Aγ̇ , γ̇ 〉 is constant along
γ by Lemma 2.1, we obtain the conclusion. 2

4. Extrinsic shapes of geodesics

In the previous section we studied extrinsic geodesics on real hypersurfaces. We
are hence interested in extrinsic shapes of other geodesics. For a smooth curve γ on a
submanifold M in M̃ , regarding it as a curve on M̃ , we call it the extrinsic shape of γ .

We give here some terminology. A smooth curve γ on a Riemannian manifold
M parameterized by its arc length is called a helix of proper order d if there exist
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a field of orthonormal frames {V1 = γ̇ , V2, . . . , Vd} along γ and positive constants
k1, . . . , kd−1 satisfying the following system of ordinary differential equations:

∇γ̇ Vi = −ki−1Vi−1 + ki Vi+1, i = 1, . . . , d,

where V0, Vd+1 are null vector fields, k∅ = kd = ∅ and ∇γ̇ denotes the covariant
differentiation along γ . The constants ki (1 5 i 5 d − 1) and a field of orthonormal
frames {V1, . . . , Vd} are called the curvatures and the Frenet frame of γ , respectively.
A curve is called a helix of order d if it is a helix of proper order h (5d). A helix of
order 1 is nothing but a geodesic and a helix of order 2 is called a circle. Needless to
say, a geodesic is regarded as a circle of null curvature.

Extrinsic shapes of geodesics were studied in the preceding papers [1, 2].

LEMMA 4.1 (Adachi et al. [2]). Let γ be a geodesic with structure torsion ργ on
a hypersurface M of type A1 with radius r (0< r < π/2) in CPn . Then the extrinsic
shape of γ is as follows.

(1) When the radius r satisfies π/4 5 r < π/2, if ργ = ± cot r , then it is an extrinsic
geodesic.

(2) When r 6= π/4, if ργ = ±1, then the extrinsic shape is a circle of positive
curvature 2|cot 2r | which lies on a totally geodesic complex curve CP1 in CPn .

(3) If ργ = 0, then the extrinsic shape is a circle of positive curvature cot r which lies
on a totally real totally geodesic real projective plane RP2 of constant sectional
curvature 1 in CPn .

(4) Generally, if ργ = sin ψ (0< |ψ |< π/2, sin ψ 6= cot r), then the extrinsic
shape is a helix of proper order 4 whose curvatures are described as

k1 = |cot r − tan r sin2 ψ |, k2 = tan r |sin ψ |cos ψ, k3 = cot r.

This helix lies on a totally geodesic Kähler surface CP2 in CPn .

LEMMA 4.2 (Adachi [1]). Let γ be a geodesic with null structure torsion on a
hypersurface of type A2 with radius r (0< r < π/2) in CPn . If the initial vector
γ̇ (0) is of the form (cos θ)v + (sin θ)w (0 5 θ 5 π/2) with unit vectors v ∈ Vcot r and
w ∈ V−tan r , then its extrinsic shape is as follows.

(1) When cos θ = sin r , it is an extrinsic geodesic.
(2) When θ = 0 (respectively, θ = π/2), the extrinsic shape is a circle of positive

curvature cot r (respectively, tan r). This circle lies on a totally real totally
geodesic RP2 in CPn .

(3) When cos θ 6= sin r , the extrinsic shape is a helix of proper order 3 whose
curvatures are described as

k1 = 2|cos2 θ − sin2 r |/ sin 2r, k2 = 2 sin θ cos θ/ sin 2r.

This helix lies on a totally real totally geodesic (real) three-dimensional real
projective space RP3 of constant sectional curvature 1 in CPn .
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These lemmas show that extrinsic shapes of geodesics with null structure torsion on
a hypersurface of type A1 are helices of proper order 2 and that those on a hypersurface
of type A2 are helices of proper order of either 1, 2 or 3. One can also characterize
hypersurfaces of type A2 by such a property.

THEOREM 4.3. A connected real hypersurface M2n−1 of CPn is of type A2 if and
only if M satisfies the following two conditions.

(1) At each point x ∈ M there exists an orthonormal basis v1, v2, . . . , v2n−1 of
Tx M such that every geodesic γi j of M through x in the direction vi + v j
(1 5 i 5 j 5 2n − 1) has constant structure torsion ργi j .

(2) There exists a geodesic (on M) whose extrinsic shape is a helix of proper order 3.

We should note that a characterization much like Theorem 4.3 also holds for tubes
around totally geodesic CH k (1 5 k 5 n − 2) in a complex hyperbolic space CHn .
However, we cannot characterize such tubes by the property of the existence of
extrinsic geodesics, because there exist no extrinsic geodesics on such tubes in CHn .

5. Ruled real hypersurfaces

It is an interesting problem to weaken the condition on the constancy of structure
torsions. Is it possible to reduce the number of geodesics with constant structure
torsion in the condition (1) of Theorems 3.1, 3.2 and 4.3?

A real hypersurface M is said to be a ruled real hypersurface in CPn if the
holomorphic distribution T 0 M defined by T 0

x M = {v ∈ Tx M | v ⊥ ξx } for x ∈ M is
integrable and each of its maximal integral submanifolds is a totally geodesic complex
hypersurface CPn−1 in CPn .

PROPOSITION 5.1. If the initial vector of a geodesic γ on a ruled real hypersurface
M in CPn is orthogonal to the characteristic vector, then it has constant structure
torsion and is an extrinsic geodesic.

PROOF. Let Mx be the maximal integral submanifold through a point x ∈ M for
the holomorphic distribution T 0 M . We take a geodesic σ on Mx with σ(0)= x and
σ̇ (0)⊥ ξx . Since Mx is totally geodesic in CPn , the curve σ is also a geodesic in the
ambient space CPn . Hence σ , considered as a curve on our real hypersurface M , is a
geodesic on M . Therefore the uniqueness theorem for geodesics guarantees that γ is
an extrinsic geodesic with null structure torsion. 2

By using this property for geodesics on ruled real hypersurfaces, we can provide a
characterization of such hypersurfaces (for details, see [3]).

PROPOSITION 5.2. A real hypersurface M in CPn is ruled if and only if at each
point x ∈ M there exist orthonormal vectors v1, v2, . . . , v2n−2 orthogonal to ξx such
that every geodesic γi j of M through x in the direction vi + v j (1 5 i 5 j 5 2n − 2)
is also a geodesic in the ambient space CPn .
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These propositions show that we cannot reduce the number of geodesics with
constant structure torsion to characterize hypersurfaces of type A2.

At the end of this paper we summarize some fundamental results on ruled real
hypersurfaces. Each ruled real hypersurface in CPn is constructed in the following
manner. We take an arbitrary regular (real) curve γ , and attach a totally geodesic
complex hypersurface Mγ (s) at each point γ (s) which is holomorphically isometric
to CPn−1 and whose tangent space is orthogonal to the complex one-dimensional
subspace Cγ̇ (s) in Tγ (s)CPn . We then get a ruled real hypersurface M =

⋃
s Mγ (s).

We treat a ruled real hypersurface locally, because generally this hypersurface
has self-intersections and singularities. We set differentiable functions µ, ν on a
ruled real hypersurface M associated with its shape operator A by µ= 〈Aξ, ξ 〉 and
ν = ‖Aξ − µξ‖. Then on an open dense subset M1 = {x ∈ M | ν(x) 6= 0} of M the
shape operator A of M satisfies the following equalities with a unit vector field U
orthogonal to ξ :

Aξ = µξ + νU, AU = νξ, AX = 0

for an arbitrary tangent vector X orthogonal to ξ and U . When we study ruled real
hypersurfaces, we usually omit points where ξ is principal and suppose that ν does
not vanish everywhere, namely a ruled hypersurface M is usually supposed to satisfy
M1 = M . Here we consider the vector field φU (see [4, (18) and (19)]). By direct
computation we find that on each integral curve of the vector field φU the function
ν satisfies the ordinary differential equation φUν = ν2

+ 1, so that ν(s)= tan s. On
the other hand, we see that ∇φUφU = 0. These imply that every geodesic γ with
γ̇ (0)= φU is defined only in the open interval (−π/2, π/2). Therefore, we conclude
that every ruled real hypersurface of CPn is not complete, so that in particular they are
not homogeneous real hypersurfaces. That is, every ruled real hypersurface of CPn

is not an orbit of some subgroup of the projective unitary group PU (n + 1). On the
contrary, both hypersurfaces of type A1 and of type A2 are compact homogeneous real
hypersurfaces of CPn . We should note that at an arbitrary point of each homogeneous
real hypersurface in CPn there exists an orthonormal frame {v1, . . . , v2n−1} such that
the geodesic γi with initial vector vi has constant structure torsion for 1 5 i 5 2n − 1.
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