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GROUPS 2-TRANSITIVE ON A SET OP THEIR
SYLOW SUBGROUPS

BEN BREWSTER AND MICHAEL B. WARD

We classify, modulo the kernel of the action, finite groups G that act 2-transitively
on Sylr(G) for some prime r dividing \G\. We furthermore prove that any finite
group that acts 2-transitively on Sylr{G) for each prime r is solvable and of nilpo-
tent length at most 3.

INTRODUCTION

By Sylow's Theorem, a finite group is always transitive when considered acting on
Sylp(G), the set of Sylow p-subgroups of G, via conjugation. Here we consider the
natural question of when that action is 2-transitive.

In Section 1 we clarify the notation and specify much of the background we need
in the article. We then classify the finite groups G which are 2-transitive and faithful
on Sylp(G) for some prime p; Section 2 deals with solvable groups, while non-solvable
groups are dealt with in Section 3. For Section 2, Huppert's classification of solvable
2-transitive permutation groups is fundamental. The classification of finite nonsolvable
2-transitive permutation groups is a consequence of the classification of finite simple
groups and the work of Hering [9,10] and Curtis, Kantor and Seitz [7]. In Section 3, we
give a classification tailored to fit our needs and, in so doing, apply Hering's techniques
to handle certain sporadic possibilites that do not seem to be covered elsewhere in the
literature.

In perusing the resulting classification, we observe in Section 3 that any finite group
G that is 2-transitive (not necessarily faithful) on Sylr(G) for every prime r dividing
|G?| is solvable. We further examine the structure of such groups in Section 4, showing,
for example, that any such group has nilpotent length at most 3.

To stimulate thought, one might consider the following examples. The group
L2(p

n) is 2-transitive on its Sylow p-subgroups. The symmetric group 54 is 2-transitive
on each of its sets of Sylow subgroups as is the semidirect product B of 5Z>2(3) with its
natural 2-dimensional module over GF(S). Moreover, if C is the semidirect product
of a Sylow 7-subgroup of 5X3(2) with its natural 3-dimensional module over GF(2),
then C is 2-transitive on Syh{C) and B x C is 2-transitive on each of its sets of Sylow
subgroups.
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118 B. Brewster and M.B. Ward [2]

1. NOTATION AND PRELIMINARIES

All groups G considered here are finite.

DEFINITION 1.1: Suppose G acts on Q. G is transitive on $7 provided whenever
a , j 9 e ( ] there is g G G such that a9 — (3. G is 2-transitive on fi provided whenever
o i , t t 2 e f i with ai ^ <X2 and /?i,/32 G fi with 0i ^ /32, there exists g £ G such that
for ie {1,2}, «?=#

These are only slight perturbations of the standard definitions ([12, II] [23]). Usu-

ally they are applied to permutation groups (that is, faithful action) when |fi| > 1.

If G acts on fi and w E fi, we denote Gw = {g 6 G | w9 = ty}, the stabiliser

of it; in G. Note that one convenient equivalence of 2- transitivity is valid; namely, G

is 2-transitive on fi if and only if G is transitive on fi and for some w G fi, G-u, is

transitive on fi\{to}.

The following results are so central to the remainder of this article that we state

them clearly here even though they are most likely to be well-known to the reader (see

[23]).

PROPOSITION 1 . 2 . Let G act faithfully and 2-transitively on fi with N<G, N

Ah eh'an.

(i) N is a minimal normal subgroup of G and CG(N) = N.

(ii) N is regular on fi, and for w G fi, G = NGW with N D Gw = 1.
(iii) For w E fi, Gw acting on N\{1} via conjugation is similar to Gw acting

on fi\{u;}.

Also, our definition that G acting on fi is similar to G acting on fi is that there

exist a group isomorphism $ : G —* G and a bijection $ : fi —> fi such that for every

w e fi and g G G, {w°f = (w*)s* .

Remembering Huppert's classification of 2-transitive solvable groups [11], naturally
the group of semilinear transformations over a field plays a prominent role. We now
establish our notation and mention some crucial properties of these groups.

For the prime q and the positive integer n, let K denote the field of order qn. Let
V — {x i-^ x + b \ b E K}, S = {x i-^ ax \ a e K, a ^ 0} and A = {x t-> xa | a G
Aut(K)}. Note that V is isomorphic to the additive group of K, S is isomorphic to
the multiplicative group K\{0} and A is isomorphic the automorphism group of K.
Thus if a is the Galois automorphism a" = aq for any a G K, (a) = Aut(K) and if
I T : J : H xa, (a) = A. We shall fix this meaning of er and use {a) instead of A. We use
F(<?n) f°r the group of all semilinear transformations over K, T(qn) = { J H axa + b \
a, 6 G K, a ^ O , a G Aut(K)}. The subgroups V and VS are normalised by S and
(a),VnS=l = VSn (<r), T(qn) = VS{cr), \V\ - g», \S\ = g» - 1, \{a)\ = n, and
S(<r) is supersolvable.
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As permutations of K, V is a regular normal subgroup of T(qn) and r ( g n ) 0 =
S(a). Note that if S < U ^ T(qn), VU is 2-transitive on K. The article [17] specifies
exactly which subgroups of r ( g n ) are 2-transitive on K, but on the Sylow subgroups
there are alternative approaches that we choose.

The action of (<r) on 5 and V via conjugation may be identified with the action
of (<?} on K\{0} and K respectively. We shall make use of this identification. In
particular, we shall think of Cs(vx) and Cv(<rl) as subsets of the fixed field of (<?*)•

Using this notation we establish the following lemma.

LEMMA 1 .3 . Let G < T(qn) and let p : T(qn) -> {a) denote the natural mapping
with kernel VS. Suppose that p(G) = D ^ (or) with D ^ 1. Suppose that U ^ S
such that U is not contained in any proper subfield of K which contains the fixed field
ofD.

Then C-^U) <, S.

PROOF: Let x € C-^JJ), X = vsd where v £ V, s e S and d € D. For any

u 6 U, u = u°'d and so (w**"1) = «"• But d G # G ( S ) and 5 is cyclic, and so

Thus for any u 6 U, ud~X = uv. Hence u~1ud l = u'1^, and so [u,v] £ SO V =

1. By hypothesis U ^ 1, since otherwise U is contained in the prime subfield of K.
Then v is fixed by U and so in G, v = 1.

It then follows that each element of U is fixed by d. However, U is not contained
in any proper subfield containing the fixed field of D and so cannot be fixed by (d), if
d ^ 1. Thus d = 1 and x £ S. D

The following important result by Huppert [11] completely determines solvable
2-transitive permutation groups.

PROPOSITION 1 . 4 . Suppose G is a solvable group which acts faithfully and

2-transitively on the set £2. Then, with 13 exceptions, there is a subgroup G ^ r ( q n )
such that G acting on Cl is similar to G acting o n K = GF(qn).

The 13 exceptions are explicitly represented in [11] and we shall use these rep-
resentations to complete our classification of groups which are 2-transitive on Sylow
subgroups.

We shall consistently use the bar notation for images of subgroups of G in F(gn) .

A little number theory comes into play. An often used result dating back to Zsig-

mondy helps us. We give reference to Huppert-Blackburn [13, IX, Theorem 8.3, p.508].

PROPOSITION 1 . 5 . (Zsigmondy). Suppose q is prime and n > 1 is an integer.

Then there is a prime r such that r \ pn — 1 but r \ p* — 1 for 0 < i < n, and r \ n,
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unless q is a Mersenne prime and n = 2, or q = 2 and n — 6.

The prime r will be called a Zsigmondy prime for the prime q and integer n.

Finally, we shall be considering a group G acting on its set of Sylow p-subgroups,
Sylp(G), via conjugation. For P £ Sylp(G), its stabiliser in this action is NQ(P) and
we let Kp = f] NG(PX) — core NQ(P) denote the kernel of the action. Hopefully

xeG
any other notation will be standard, see [12] and [8].

2. SOLVABLE GROUPS G 2-TRANSITIVE ON Sylp(G)

In this section we shall classify those solvable groups which are faithful and 2-

transitive on Sylp(G) for some prime p.

PROPOSITION 2 . 1 . Suppose G acts faithfully and 2-transitively on Sylp(G)

and suppose that this action is similar to a subgroup G of T(qn) acting on K = GF(qn).

If P £ Sylp(G) and P j£ VS, then p — 2, q is a Mersenne prime and n = 2.

PROOF: Since VS < T(gn), we are then supposing that no Sylow p-subgroup of G
is contained in VS. Let P G Sylp(G).

Suppose there is a Zsigmondy prime r for q and n. Since |r(gn)| = qn{qn — l)n

and because G is 2-transitive on K, a Sylow r-subgroup of G is a Sylow r-subgroup
of T(g

n) . Also, since \G : NQ(F)\ = \Sylp(G)\ = |K| = qn, N^(P) contains a Sylow
r-subgroup of G. Consequently, by choosing an appropriate conjugate of P, we may
suppose N-Q^P) contains R where R 6 Sylr(S). Note V is characteristic in VS and
since S is cyclic, VR~ is characteristic in VS<T(qn). Hence VR~<r(qn).

Then fR,P] < Vf l f lP = l since p ^ r and p ^ q. Hence P ^ Cr(,»)(l?).
However, R is contained in no proper subfield of K. Also, that P j£ VS implies that
if p : r(gn) —> {a) is the natural homomorphism with kerp = VS, then p(G) ^ 1.
Consequently by Lemma 1.3, C-Q(R) < 5. This gives the contradiction that P < VS.

Hence, there is no Zsigmondy prime for q and n.

Suppose next that q — 2 and n = 6. Then \S\ = 26 - 1 = 9 • 7 and p = 2 or p = 3.

From Proposition 1.2, it is straightforward to deduce that V ^ G. Since V is a 2-group

and V < G, p ^ 2. If p = 3, then, with /> as above, p(G) = (a2). The fixed field

of (a2) is CF(22) and so if R 6 Syl?(G), R is contained in no proper subfield of K

which contains GF(22) and so C^(R) < 5 by Lemma 1.3. But, as above, [P,5] = 1

and so P ^ VS, a contradiction. Thus it is impossible that q — 2 and n = 6.

From Proposition 1.5, it only remains that p = 2 = n and q is a Mersenne prime. U

We note the converse and a bit of structure.

PROPOSITION 2 . 2 . Let q be a prime and n a positive integer.

(i) UP e Sylp(T(qn)) and P < 5 , then T{qn) is 2-transitive on Sylp{T(qn))
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and VS/V is nilpotent.
(ii) If p = 2, q is a Mersenne prime and n = 2, then if U ^ T(g2) such that

[r(«2) : 17] | 2, 17 is 2- transitive on Syh(U) and r(?2) /V is nilpotent.

The proof will be omitted since the comments in Section 1.1, Proposition 1.2 and
the ideas from the proof of Proposition 2.1 lead to the proof. Moreover, in our article
[3] most details are explicit.

Next we check the exceptions mentioned in Huppert's Theorem.

PROPOSITION 2 . 3 . If G is faithful and 2-transitive on Sylp(G) but G on
Sylp(G) is not similar to a subgroup of T(qn) on K, then G = VGo where one of the
following holds:

(i) \V\ = 32, G0S5i(2,3), p = 2
(ii) \V\ = 52, G0 = SL{2,3), p = 2
(iii) |F | = 52, Go = 52,(2,3) *C4, p = 2 (where • denotes central product)
(iv) |K| = 112, Go S 51(2,3) x C s , p = 2
(v) |V| = I I 2 , Go S 5i(2,3) x C8> p = 5

(vi) |V| = 232, G 0 S G I ( 2 , 3 ) x C i 1 , p = 11
(vii) \V\ = 3\ G0^(Ds*QB)Cs, p = 2.

PROOF: The proof follows by calculating with the exceptions listed by Huppert [11]
to check if point stabilisers contain a Sylow subgroup of G as a normal subgroup. u

3. NONSOLVABLE GROUPS G 2-TRANSITIVE ON Sylp(G)

The classification of finite nonsolvable 2-transitive permutation groups is a conse-
quence of the classification of finite simple groups. Interesting discussions are found in
[14, 5, 1]. We include a sketch of the argument.

Suppose G is a nonsolvable 2-transitive permutation group and let M be a minimal
normal subgroup of G. Either M is regular or it is primitive and isomorphic to a
nonabelian simple group.

If M is primitive and simple, then CQ(M) — 1 and so G embeds in Aut(M). We
therefore assume in this case that M ^ G ^ Aut(M). Invoking the classification of
finite simple groups, we must consider the cases where M is alternating, of Lie type or
sporadic.

When M is alternating, the classical reference is Maillet [15]. When M is of Lie
type, Curtis, Kantor and Seitz [7] give a complete list of possibilities. Finally, when M
is sporadic, W. Kantor said in 1982 that the possibilities are "folklore" [14]. Nowadays,
one may utilise the ATLAS [6]. For assume M has a 2-transitive permutation represen-
tation. Then each point stabiliser is a maximal subgroup of M and the corresponding
permutation character is 1 + x where x i8 a n irreducible character of M. For all but
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the largest sporadic groups, one can locate explicitly when that situation occurs in the
ATLAS. The possibilities are given in Proposition 3.1 below. For the largest sporadic
groups, where information on maximal subgroups is incomplete, note that the values of
1 + X a r e the numbers of fixed points of elements of M and, hence, must be nonnegative
integers. It only takes a few minutes of looking at the character tables in the ATLAS
to find there is no such \ f°r the large sporadics.

The ATLAS may also be used to check for the prospect that G is 2- transitive,
but M isn't. That could only happen, of course, if M < Aut(M), which is true
for only 12 of the sporadic groups and, in each case, [Aut(M) : M] = 2 [6, p.viii].
Thus, a G of the sort we seek would have to equal Aut(M). Let n be the degree of
the 2- transitive representation of G. The analysis as above could be used, but we'll
give another simple-minded way to show that M must be 2-transitive. If M is not
2-transitive, then a point stabiliser Ma is not transitive on the points different from a.
In other words, MaGap ^ Ga, a ^ /3. Since [Ga : Ma] = [G : M] = 2, we must have
Gap < Ma, a ^ (3. That gives n - 1 = [Ga : Ga0] = [Ga : Ma][Ma : Gap] = 2[Ma :
Gap\- Hence, n is odd and (n — l) /2 divides \Ma\. By the primitivity of M, we know
Ma is a maximal subgroup of index n in M. For all but the Fischer group Fi'2i, the
ATLAS shows that there is no maximal subgroup satisfying our arithmetic conditions.
The character table for Aut(Fi'2i) shows there is no irreducible character x with 1 + x
having nonnegative integer values. As before, that means Aut(Fi'2i) has no 2-transitive
representation. Therefore, in the sporadic case, M itself must be 2-transitive whenever
G is 2-transitive.

The proposition below summarises the situation. When convenient, a hint is given
on the source of the permutation representation for the information of the reader. In the
cases of isomorphism between simple groups, the groups may be listed more than once
for the sake of completeness. Geometric phrases like "on points" refer to the projective
space naturally corresponding to the group. We use ATLAS-like notation for groups
and the structure of a point stabiliser.

PROPOSITION 3 . 1 . Suppose G has a 2-transitive permutation representation
and M ^ G ^ Aut(M) where M is a nonabelian simple group. Then we have one of
the cases given in Table 1.

PROOF: [15, 7] and the above discussion for the sporadic finite simple groups, u

If M is regular then it is elementary Abelian, and our Proposition 1.2 holds. We
may think of G as acting on a vector space V of dimension n over GF(p) with M
the group of translations and Go a group of linear transformations acting transitively
on the nonzero vectors. Hering [9, p. 443-444] gives examples for Go and in [9, 10]
shows those are the only possibilities when there is a simple nonabelian composition
factor that is alternating or of Lie type.
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TABLE 1.

123

Case

ALT1

ALT2

ALT3

ALT4

ALT5

LT1

LT2

LT3

LT4

LT5

LT6

LT7

LT8

LT9

LT10

LT11

SP1

SP2

SP3

SP4

M

An,n>5

A5

A6

AB

A7

Lm(q),m > 3

L2(q),q > 3

U3(q),q>2

2B2{q),q>2

2G2(q),q>3

£2(5)

L2(9)

£4(2)

£2(8)

Cm(2)

G2(2)'

Mn
n= 11,12,22,23,24

MCL

HS

Co3

degree

n

6

10

15

15

g"*-i
9-1

9 + 1

93 + l

92 + l

93 + l

5

6

8

28

(2"1"1).
2 m ± l )

28

n

12

176

276

Ma ,

An-!

NM(P),P e Syls(M)

NM{P),PeSyl3{M)

23 : L3[3)

L3{2)

r-'-.rf^ryPGL^iq)
NM(P),PeSylp(M),

q = pm

NM(P),PeSylp(M),
q = pm

NM(P),P&Syl2(M),
q = 2 2 m + 1

Nu{P),PeSyh[M),
q = 3 2 m +

A*

As

Ar

Ga = NG(P),
P e Syl3(G)

GOUV

NU(P)
P 6 Syk{M)

Mn_x

£2(11)

U3(5) : 2

MCL2

representation

natural, extra one
when n = 6

A5 = £2(5) on points

Ae = £2(9) on points

A8 = £4(2) on points
or hyperplanes

A7 < Aa = £4(2) on
points or hyperplanes

on points or hyperplanes

on points

on isotropic points

£2(5) = ^5

£2(9) = As

£4(2) = Aa

PrL(2,8) = 2G2(3)
M is not 2-transitive

Cm(2) S 5p(2m,2)
= O2m+1(2)

on i hyperplanes

G2(2)' s C/3(3)

natural
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Hering also shows that Janko's first group J% cannot occur as a composition factor
of Go . His general ideas may be used to show that no sporadic simple group can occur
as a composition factor. As the authors know of no published proof, we include a proof
here.

PROPOSITION 3 . 2 . With notation and hypotheses as above, Go has no com-

position factor isomorphic to a sporadic simple group.

PROOF: Assume Go has a sporadic simple group D as a composition factor. We
have already observed that Go may be regarded as a subgroup of GL(n,p). From
Dickson's Theorem [12, II, Satz 8.27] or [21, Section 3.6], we conclude GL{2,p) involves
no sporadic simple group. Thus, n > 2.

Defining $Ji(p) as in [9], if $£(p) = 1, then by Proposition 1.4 (also [9, Theorem
3.9]), pn = 26. So Go ^ G£(6,2). That is impossible because |Gi(6,2)| is not divisible
by the order of any sporadic simple group. Thus, $Ji(p) ^ 1.

By hypothesis, Go is transitive on the nonzero vectors for V, so pn — 1 divides
|G0|. Since $;(p) | (p" - 1), 1 ^ $;(p) = ($;(p), |Go|). Thus, the hypotheses of
Section 4 of [9] are satisfied.

Set S = G0°c), F = F(G0) and I the centraliser of S in hom(F,F). (Hering
defines S differently, but our definition is equivalent by [9, Theorem B(g)].) As in
Hering, £ is a field of order p m and V is a vector space over L of dimension k = n/m.

(Our k is Hering's n*.) Furthermore, elements of Go are semilinear transformations
over L, so we can think of Go as a subgroup of TL{k,pm). As with n above, we deduce
that k > 2 .

It follows now from [9, Theorem B(d) and (a)] that $;(p) = ($*(p), |G0|) divides
\SF/F\ and SF/F 5* D. If F is not a subgroup of CGo{S), then by [9, Theorem
A(a) and (c)], $*(p) =r = n + l=2a + l where r is a prime and D = SF/F is
faithfully represented on a vector space of dimension 2a over GF(2). As r divides
\D\, we examine the prime divisors of the sporadic simple groups and conclude that
r = 3,5,17 with a = 1,2,4 respectively. However, |X>| doesn't divide |GL(2a,2)| in
any of the relevant cases. (Note that a can be 4 only for D = J3,He,Fi2s,Fi'2i,B or
M.) That contradiction implies F ^ CGO(S). We are now in a position to bound the
values for p and n, from which the final contradiction will follow by examining a fairly
large, but tractable number of cases.

First bound n. Let r be any prime divisior of $£(p). We've already shown that r

divides |U|. Furthermore, n divides r - 1 [9, Theorem 3.5(ii)]. As an aside, we know
n > 2 , so r ^ 5 .

To bound p, we look at the structure of Go. From [9, Theorem B(c) and (g)], F is
a subgroup of the multiplicative group of L while Go/SF is isomorphic to a subgroup
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of the outer automorphism group of D. In particular, |G0| = |-F| [SF : F][G0 : SF]
divides (pm-l)\D\\Out{D)\ = (pm - l)\Aut{D)\. RecaU from the transitivity of
Go that ( p n - l ) divides |G0|- Thus, (pn - l ) / ( p m - 1) divides \Aut{D)\. Because
(pn — l ) / ( p m — 1) is an increasing function of p for a given n and m, we have a
bound on p as well as a divisibility criterion. However, for small values of n and large
sporadic groups, the bound is not good enough to make checking cases feasible. We
need additional conditions on n and p .

By definition, S = S' and we showed earlier that F ^ CG{S).

Thus, Sf)F ^ S'f)Z(S), so S is a perfect central extension of D and its character
table is available in the ATLAS. Now 5 ^ C?o ^ GL(n,p), hence, S has an n dimen-
sional representation over GF(p). If p does not divide | 5 | , then by a familiar result
of Speiser [19, Satz 206], n is the degree of an ordinary complex representation of 5 .
From above, we also know that n ^ rm a x — 1 where rm a x is the largest prime divisor
of \D\. We consult the character tables for the various possibilities for S and find only
eight cases (listed below) compatible with both conditions on n. In each case, n is
large enough that only a few primes need to be tried before (pn — l ) / ( p m — 1) exceeds
\Aut(D)\.

To summarise, we have the following restrictions:

1. For every prime r dividing $£(p), n | (r — 1), r | |D| and r > 5.
2. (pn - l)/(pm - 1) divides |i4«t(£>)| where m — n/k < n/2 divides n.
3. Either p divides \S\ (equivalently, p divides \D\) or we have n = 10, S =

Mn, 2.M12, 2.M22; n = 22, S ^ M23; n = 6, S ^ 2.J2; n = 18, 5 £
3.J3 or n = 28, 5=*2.iiu.

4. |£>| divides |Gi(n,p)| (obviously).

A very modest amount of Mathematica [16] code promptly shows that the above
conditions are satisfied only when n = 3, p = 11 and D = J\\ n = 4, p = 7 and
D = J2 or n = 12, p — 2 and D = 5uz. We restrict our attention, henceforth, to
those three cases.

Since 5 < GL(n,p), S acts on the d = (pn — l)/(p — 1) points of the correspond-
ing projective space. 5 cannot stabilise a point, for if S were contained in a point
stabiliser, then a homomorphic image of 5 is involved in PGL(n — l,p) (see case LT1
from Proposition 3.1). Since 5 is a perfect central extension of D, we conclude D is
involved in jLn_i(p). That's a contradiction because in each of our three cases \D\ does
not divide |£n_i(p)|.

Let Sa be the point stabiliser of a in S, then 1 < [S : Sa] ^ d. Let X be a
maximal subgroup of 5 containing Sa. It is easy to see F C\ S = Z(S) ^ X. Thus,
[5 : X) = [S/F n 5 : X/F D 5] = [FS/F : XF/F], which is the index in D of a
maximal subgroup isomorphic to X/F D S. Furthermore, [S : X] < [5 : Sa] ^ d.
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For the three cases in question, d = 133,400,4095, respectively. Now turning to the
ATLAS again, J\ has no maximal subgroup with index less than or equal to 133, so
the first case is out. In the second case, [S : X] could be 100, 280 or 315. Thus,
[X : Sa] = [S : Sa]/[S : X] < 400/[5 : X] < 4 and X has a homomorphic image in S4.
From the structure of X/F n S in the ATLAS, that can only happen if [X : Sa] - 1.
Thus, Sa is a maximal subgroup of S of index 100, 280 or 315 for every a. Since
the orbit lengths must add up to 400, the only possibility is that all orbit lengths are
100. However, J2, hence 5 , has only one class of maximal subgroups of index 100.
Therefore, Sa = Sp for some a and /3 in different orbits. In particular, Sa equals
the 2-point stabiliser Sap • A 2-point stabiliser in GL(A, 7) has a homomorphic image
involved in GZ(2,7). (Look at the matrices or think about the stabiliser as a parabolic
subgroup.) Hence, J2 is involved in GL(2,7), which is impossible. The third case is
disposed of in a similar way. One argues that every point stabiliser of S is a maximal
subgroup of index 1782 which is impossible since 4095 is not a multiple of 1782. That
final contradiction shows that no sporadic simple group is a composition factor of Go. u

The proposition below gives the possibilities for Go in the nonsolvable case. It and
Proposition 3.1, give a classification of nonsolvable 2-transitive permutation groups. In
describing the groups, one passes to the extension field L of dimension k over GF(p)
described in the proof of Proposition 3.2. Over that extension, the elements of Go are
regarded as elements of VL(k, q), qk = pn. For ease of reference, Hering's numbering is
used.

PROPOSITION 3 . 3 . Suppose G is a nonsolvable 2-transitive permutation group
having a regular normal subgroup M. With the notation and conventions introduced
earlier, G is the semidirect product of M with Go and Go may be identified with one
of the following:

I. SL(n,q) < TL(k,q) where qk = pn, excluding the solvable cases (k, q) =
(l,g), (2,2), (2,3).

II. Sp(k, q) < TL{k, q) where qk = pn.
III. G2(2m) < Go < TL(6,2) where 26m = pn.
IV. E < rX(4,3) where E is an extra special group of order 25 and

Go/EZ(Go) is isomorphic to a nonsolvable subgroup of S5 [2]. (The
other groups in Hering's category TV are solvable.)

El. SL(2,5) S G^ < Go < TL{2,q),q2 = pn where q = 9,11,19,29,59.
E2. Go S A6,2

4 = pn.
E3. Go =^7 ,2 4 = p n .
E4. Go =*SL(2,13),36 = p" .
E5. Go = U3(3),26 = p " .
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PROOF: [9, 10] and Proposition 3.2. D

We are now positioned to state and prove our main theorem.

THEOREM 3 . 4 . G is a nonsolvable group acting faithfully and 2-transitively on

Sylr(G) if and only if G and r are one of the following:

a. G £ A5 = £2(4); r = 2.

b. L2(5) ^A5<G<SS^ PGL{2,5); r = 5.
c. L2{9) =A6<G< Aut{A6) S PTL(2,9); r = 3 .
d- M < G < Aut{M) where M £ L2(r

m) ( rm > 3), U3(r
m) (rm > 2),

2B2(2
2m+1) (m > 0) or 2 G 2 (3 2 m + 1 ) (m > 0); r is the characteristic of

the underlying field and r does not divide [G : M].

e. £2(7) = Lz{2) <G< Aut(L3(2)) £ PGL(2,7); r = 7.

f. G2(2)' £ ff,(3) < G < Airf(CT»(3)) £ G2(2); r = 3 .
g. G £ 2G2(3) £ PI\L(2,8); r = 3 or r = 2.
h. G S MGo where M is the group of translations of a vector space of

dimension 2 over GF(q), M is a normal subgroup of G, Go ^ GL(2,q)

with Go = G^C where G^*0 £ 5i(2,5), G ^ 2(G£(2,9)), T- divides
\C\ and q = 29 or 59, r - 7 or 29 respectively.

PROOF: AS before, we may regard G as a 2-transitive permutation group of
Sylr(G) with point stabiliser NQ(P), P € Sylr{G). Armed with Propositions 3.1 and
3.3, we carry out the proof by checking for representations having Sylow r-normalisers
as point stabilisers.

First suppose M ^ G ^ Aut(G) where M is a nonabelian simple group. By
Proposition 3.1, M itself is 2-transitive in all cases except LT9. In that case, G =
2G2(3), the degree of the representation is 28 and a point stabiliser is a Borel subgroup,
that is, the normaliser of a Sylow 3-subgroup. That gives part of (g) with r = 3. (The
r = 2 part will come when we consider LT2 below.) Henceforth, we may assume M is
2-transitive on Sylr(G).

For P e Sylr(G), NG(P) ^ NG{Pf\M) and the 2-transitivity of G implies
NQ(P) is a maximal subgroup of G. Therefore, either Na(P) = Na(P n M) or
P D M < G. The latter can happen only if P D M = 1, but that's impossible because
the 2-transitivity of M on Sylr{G) implies the index in M of a 2-point stabiliser is
[G : NG(P)]([G : Na(P)] - 1), which is divisible by r according to the Sylow Theorems.
Thus, Na(P) = Na(PnM) and NM{P) = NM(PnM). In particular, we seek
situations where a point stabiliser in M is the normaliser of a Sylow r-subgroup of M.

The structure of point stabilisers given in Proposition 3.1 rules out all remaining
cases except ALT1 with n = 5, ALT2-3, LT1-6 and LT11 which require closer inspec-
tion.
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For ALT1 with n = 5, the point stabiliser in M is isomorphic to A* and is a
Sylow 2-normaliser. In ALT2 and ALT3, the point stabiliser is a Sylow r-normaliser
for r = 5 and 3 respectively. All three cases yield examples with G = M. Now we
need to see if there are examples with M < G. In ALT1, M < G implies G = S$
and the point stabiliser is isomorphic to 54, not a Sylow 2-normaliser. In ALT2 and
ALT3, [Aut(M) : M] = 2,4 respectively, so M contains all the Sylow r-subgroups of
G, r = 3,5 for any G between M and Aut(M). Thus, the 2-transitivity of M on
SylT(M) = Sylr(G) guarantees the 2-transitivity of G. Thus, we get (a)-(c).

In case LT1, as long as m > 3 or g > 3, PGL(m — l,q) has no normal Sylow
subgroup, so if a point stabiliser of M were a Sylow normaliser, the Sylow subgroup
would have to lie in the normal subgroup of order qm~1(q — l)/(m,q — 1). However,
all the primes dividing that order also divide the order of PGL(m — l,q) and so that
subgroup cannot contain a Sylow subgroup of Lm(q). When m — 3 and q = 2 or 3,
one may use the structure of point stabilisers from Proposition 3.1 or else the ATLAS,
to deduce that the stabilisers are not Sylow normalisers. Thus, LT1 gives no examples.
However, because .£3(2) = X2(7), we'll consider that group again in the representation
of LT2.

Cases LT2-5, the Lie rank one cases, all yield possibilities with G = M since point
stabilisers are Borel subgroups, that is, Sylow r-normalisers where r is the characteristic
of the underlying field. It remains to see which other subgroups of Aut(M) are also
examples, so assume M < G < Aut(M).

If r does not divide [G : M] then Sylr(G) = Sylr(M) and G inherits 2-transitivity
on Sylr(G) from M. Now assume r divides [G : M] and G is 2-transitive on SylT(G).
We'll show that assumption leads to a contradiction.

Since Aut(M)/M is the semidirect product of a cyclic group of order d with the
group of field automorphisms of GF(q) where d — (2,q — 1),(3,q + 1),1,1 in cases
LT2-5, respectively [20, 22, Theorem 11] and [18, Theorem 9.1], and r does not divide
d, it must be that r divides the order of the group of field automorphisms. We may,
therefore, assume G contains a nontrivial field automorphism 7 of order a power of r,
by replacing G with a conjugate if necessary. As a consequence of the general theory
of finite groups of Lie type, there is U £ Sylr(M) with NM(U) = UH where U
and H are both invariant under the field automorphisms of GF(q) and U f) H = 1
[4]. (Carter uses the notation U1 and H1 in the twisted case.) Thus, U(j) is an
r-group. Let P be a Sylow r-subgroup of G containing U{y). As shown earlier,
NM(P) = NM{PnM), but P n M = U. Therefore, H ^ NM(U) = NM{P) and
[H, (7)] 4:EnP = HnMnP = HnU=l. That's impossible as we shall show next.

Cases LT2-4 have familiar representations as quotients of matrix groups over their
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centres where the respective natural choices for H are images in the quotient of

: fc £ GF{qY

where, in the latter case, 6 is a certain field automorphism [12, II, 7.1 and II, 10.12] and
[22, p. 133]. The field automorphism acts on the matrices by acting on the individual
entries. Thus, in the unitary case LT3, for example, we have

modulo the centre. In particular, taking fc to be a generator for GF(q) , we deduce
from the last entry that fc7 = ak where a3 = 1. Thus, fc7 — a3fc = fc so 7 has order
3. Moreover, (fc3)7 = o3fc3 = fc3 so (fc3) is a subgroup of the multiplicative group of
the fixed field of 7. By the Fundamental Theorem of Galois Theory, that fixed field has
order g1/3. Thus, (g2 - l ) /3 divides g1/3 - 1, an impossibility. Case LT2 is handled
similarly and LT4 is even easier because the centre is trivial.

For the Ree groups of LT5, a matrix representation is not very convenient so we
utilise the Lie theory. Following Carter's notation [4] for generators of the group,
we have ha(k

0)hb(k) G H for every fc G GF(32m+1)* where a and b are fun-
damental roots and 6 is a certain field automorphism with 362 = 1 [4, p.248-
249]. Thus, ha(k

e)hb(k) = (ha(k
0)hb(k)y = ha(k

01l)hb{k''), or, in other words,
ha{k~0"<k0) = hb{k~'k~i). Applying these to the element ea of the Chevalley basis [4,

p.92], we find (k-^ke)ea = (k^k-1)(2ib'a))/{b>b)ea and so we conclude that (k'^k9) =
(kU-x)Wb'amb'b) = (fc^fc-1)"3 [4, p.45], or, equivalents (fc~e+3)7 = fc~*+3 for ev-
ery k G GF(32m+1) . Thus, the image of the multiplicative endomorphism — 0 + 3
is contained in the fixed field of 7. Let (fc) = ker{—6 + 3), then k9 = fc3. Hence,
Jfc3*2 = k" = fc27. However, 302 = 1, and \Im{-9 + e)| ^ (32 m + 1 - l ) / t . Thus, the
multiplicative group of the fixed field of 7 has order at least (32m+1 _ \)/t. By the
Fundamental Theorem of Galois Theory, the fixed field of 7 has order 3(2Tn+1)/(l<T>l) ^

3(2m+i)//3. Therefore, we have the inequality (3(2m+1> - l)/f ^ 3(2m+i)/s _ 1. By
simple arithmetic, we conclude t — 26 and m = 1. In that case, ker(—6 + 3) is the
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entire multiplicative group of the underlying field, which means 7 fixes everything, a
contradiction. The proof of (d), (e) and (g) with r — 2 is complete.

Case LT6 and the just completed analysis shows that all possibilities are covered
in (b). Similarly, LT11 yields (f).

We turn our attention to the situation where G has a regular normal subgroup. In
cases E2-E5 of Proposition 3.3, the point stabiliser is visibly not a Sylow r-nonnaliser
for any r dividing \G\.

For cases I, II, III and El, suppose Go = Na{P), P E Sylr{G). In each case, Go

has a quasisimple normal subgroup 5 where 5 = SL(k,q),Sp(k,q),G2{2m),SL(2,5)>

respectively. In no case does S have a nontrivial normal Sylow subgroup. Thus, SflP =

1, r does not divide |S| and P ^ CGO[S).

In cases I and II, S itself is transitive on the nonzero vectors. It follows by a very
easy argument [23, Section 4], that P is semiregular and \P\ divides pd — 1 = qk — 1.
Since qk — 1 divides \S\ we contradict the results of the previous paragraph. In III, we
may only get that 5 is transitive on the (gfc — l)/(<7 — 1) points of the corresponding
projective space [9, p. 444] and so we pass to homomorphic images in the group
PFL(6,2m). An analogous argument still gives the contradiction that r divides |S | .

In El, if r = p, then 5 < CGo(P) s$ Nao(P) which is impossible since NGo{P) ^
NrL(2,q)(P) is a solvable group. We know from above that r does not divide | 5 | =
23 - 3 - 5 . When q — 9,11 or 19, there are no primes left for r and so those cases are
eliminated. For q — 29 or 59, the only possibilities are r = 7 or 29, respectively. In
those cases, let a be an element of order r in the multiplicative group of GF(q). By
conjugating if necessary, we may assume

since the latter is a Sylow r-subgroup of YL{2, q) = GL{2, q). If P ^ / r j Y

take d = ( ** j j £ P with i^j. Then

= { ( 0 1) ••

contradicting the nonsolvability of S. Thus, P = / f ° j \ ^ Z(GL{2,q)) D G.

Taking homomorphic images in PGL{2,q), As £ SZ/Z s$ G0Z/Z < PGL(2,q) where

Z = Z(GL(2,q)). In PGL(2,q), q = 29,59, all subgroups isomorphic to A5 are

maximal, so SZ = G0Z. By the Dedekind identity, Go = S(Z D Go) = G{^o){Z n Go).
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We have already shown r divides \Z D Go\- Moreover, any such subgroup of GL(2,q)
contains a conjugate of one of Zassenhaus's examples [24, p. 217] because there is only
one conjugacy class of subgroups isomorphic to SL{2,5) in GL(2,q). Hence, any such
subgroup is indeed 2-transitive on nonzero vectors. Thus, we get (h) and finish the
proof of the theorem. U

Two corollaries follow by inspection.

COROLLARY 3 . 5 . Suppose G is a nonsolvable finite group acting faithfully and

2-transitively on SylT{G) for each prime r E 7r where IT is a set of prime divisors of \G\

and H > 1, then |ir| = 2 and either G =* As, w = {2,5} or G 2* PTL{2,8), n = {2,3}.

COROLLARY 3 . 6 . Suppose G is a finite group acting faithfully and 2-transitively

on Sylr(G) for each prime r G ir where n is a set of prime divisors of \G\ and \ir\ > 2,
then G is solvable.

COROLLARY 3 . 7 . Suppose G is a finite group acting 2-transitively (not neces-

sarily faithfully) on SylT(G) for each prime r dividing \G\, then G is solvable.

PROOF: Let r be any prime dividing |G|. Let R G Sylr(G) and recall Kr =

f)Na{R)' where the intersection is taken over all x G G. KT is the kernel of the
permutation representation of G on SylT(G), as in Section 1.

Clearly, KT has a normal Sylow r-subgroup. Thus, f) KT, where the intersection
is taken over all primes r dividing \G\, is nilpotent. Moreover, G/f)Kr embeds in
f] {G/Kr) where the intersection and the direct product are both taken over all primes
r dividing \G\. Consequently, to prove G is solvable, it suffices to show that each G/Kr

is solvable.

G/KT acts faithfully and 2-transitively on Sylr(G) and it acts 2-transitively on
Sylp(G) for all other primes p dividing \G\. Assume G/KT is not solvable, then
it is one of the groups listed in Theorem 3.4. In all but the last case, G/Kr has
no nontrivial proper normal subgroups except possibly a simple one, so G/Kr acts
faithfully and 2-transitively on all its sets of Sylow subgroups. Corollary 3.6 contradicts
the nonsolvabilitiy of G/Kr. Therefore, G/Kr has the structure given in the last case
of Theorem 3.4. However, in that case, G/Kr has a homomorphic image isomorphic
to As = £2(5) and so As would act 2-transitively on all of its sets of Sylow subgroups,
but As is not 2-transitive on its Sylow 3-subgroups. Thus, G/Kr must be solvable as
claimed. D

4. GROUPS G 2-TRANSITIVE ON Sylr(G) FOR EACH r

From Corollary 3.7, one sees the groups mentioned in the title of this section are
solvable. We remind the reader that in Section 1, we have established notation for
groups similar to a subgroup of T(qn).
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Some additional notation is helpful here. Let Af — Af1 denote the class of nilpotent
groups and, inductively, for i ^ l,Afl+1 = {G | There is N < G such that N E Af and
G/N G .A/"*}. Before moving to the groups mentioned in the title of this section, we
make an intermediate step.

PROPOSITION 4 . 1 . Suppose G is 2-transitive on Sylr(G) for each prime r
and G is faithful on Sylp(G) for some prime p.

(i) If G on Sylp(G) is not similar to a subgroup of T(qn) on K, then G =
V • SL{2,3), \V\ = 32 andp = 2.

(ii) If G on Sylp(G) is similar to a subgroup of V(qn) on K, then G € Af2

or G^S4, p = 3 and q = 2 = n.

PROOF: By Corollary 3.7, G is solvable and we apply the results from Section 2.
(i) By inspecting the groups listed in Proposition 2.3, one confirms that the only

group satisfying our stronger condition is (i), where \V\ == 32 and G — V • SL{2,3),
with p = 2.

(ii) Now suppose G on Sylp(G) is similar to the subgroup G ^ T(qn), but G £
AT2. Let Pe Sylp(G).

From the 2-transitivity of G on K, \G\ — qn(qn — \)m where m | n. Moreover,
using Proposition 1.2, it is straightforward to deduce that V ^ G and V is the unique
minimal normal subgroup of G. Also CQ(V) = V.

STEP 1. For all primes r ^ q such that r | \G\, G on Sylr(G) is similar to G on
Sylp(G). _ _

Let r be any prime divisor of \G\, r ^ q. If Kr ^ 1, then V ^ KT < JV^-(S).
Thus [R, V] = 1 and so R~ < C-^V) = V. Hence ~KT = 1 for any prime divisor of
\G\ , r y£ q. Then G is 2-transitive and faithful on Sylr{G). Moreover, by Proposition
1.2, N-g(Tt) is a complement to V in G. This leads to an application of Ore's Theorem
and the statement in Step 1, as in [12, II, Satz 3.8].

STEP 2. m is a power of q and VS ^ G.
Since G (fc Af2, if q is Mersenne, n ^ 2 by Proposition 2.2. Thus by Proposition

2.1, if r is a prime, r | |G|, r ^ q, and R £ Sylr(G), from Step 1 it follows that
5 < VS. Yet |G| = qn(qn - l)m - I^SIm. Thus m is a power of q.

Moreover V ^ G and for each prime r \ \G\, r ^ q and S e Sylr(G), 5 < VS.
So VS ^ G. This gives Step 2 and, then, the next step is transparent.

STEP 3. G = VS(T) where (r) ^ (a) and |(T)| = m .

STEP 4. There is a Zsigmondy prime r for the pair q and n.
Suppose not. By Proposition 1.5 and the argument in Step 2, it must be that q = 2

and n = 6.

https://doi.org/10.1017/S0004972700014507 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014507


[17] Sylow subgroups 133

Then \G\ = 26 • (9 • 7) • 2 from Step 2. It is easy to verify that the subgroup

H < T(26) with \H\ = 26(9 • 7) • 2 and VS s% H, is not 2-transitive on Syl2{B). This

verifies Step 4.

STEP 5. G/Kq does not have a normal Sylow g-subgroup and G/Kq is a supersolvable
group which acts faithfully and 2-transitively on Sylq(G/Kq). Consequently \G/Kq\ =

s(s — 1) where s is a prime and a — 1 is a power of q.

If Q e Sylq{G) and KqQ/Kq < G/Kq, then KqQ < JVG(Q) and i f ,Q < G. Hence
Q < G. From Step 2 and Step 3, and the fact that 5 is cyclic, G/V has a normal
Sylow subgroup for each prime t,t ^ q. Consequently G/V is nilpotent, contrary to
the hypothesis that G (fc Af2. So G/Kq does not have a normal Sylow g-subgroup.

That G/Kq is supersolvable follows since V ^ Kq and T(qn)/V = S(cr) is super-
solvable. By hypothesis, G is 2-transitive on Sylq(G) and so G/Kq is faithful and 2-
transitive on Sylq(G/Kq). Since G/Kq does not have a normal Sylow g-subgroup, it
follows, from Proposition 1.2, that \G/Kq\ = s(s — 1), for a prime 3, and q \ a —I.
Because G/V has normal Sylow i-subgroups for t ^ q and V ^ Kq, a — 1 is a power
of g.

STEP 6. V G Sylq(Kq) and so m = a - 1.

Let X G Sylq(Kq}. Note if, has a normal Sylow g-subgroup. Also V ^ X and

so V n Z(-X") zfi 1. V n Z(X) < G, V is the minimal normal subgroup of G and so

V ^ Z{X). Hence X ^ CO(V) = V. Thus V = X.

Thus the order of a Sylow g-subgroup of G/V is the same as the order of a Sylow

g-subgroup of G/Kq. That is, m — a — 1.

Since m > 1, we obtain

STEP 7. a is odd and g = 2.

STEP 8. a = r.

The prime a is the only odd prime for which a Sylow s-subgroup of G is not
contained in K2. Note that V(T) G Syh (G) and if, for 1 6 Sylr(G) with 1 <
5 , S < if 2 , then ffl, (T)] ^ lR D F ( T ) = 1. This would mean that H is contained in
the fixed field of (T) , contrary to the fact that r is a Zsigmondy prime for 2, n. Thus
a = r.

STEP 9. If L is subfield of K fixed by ( r ) , then L is a maximal subfield of K.

From Galois theory, |K : L| = m is a power of 2. Also r is a Zsigmondy prime for
2 and n . Suppose L < Lo < K with |L0| = 2™°. If n0 ^ 6, choose t a Zsigmondy
prime for 2 and no, or if no = 6, choose t = 3. In either case, t ^ r. Note that when
n0 = 6, L = GF(23) since m is a power of 2. Following the usual correspondence
into G, if T £ Sylt{U) with T ^ 5 , T is not contained in the fixed field of (T) , but,
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because t ^ r, T must be contained in the fixed field of (r) by the argument in Step 8.
Consequently L is a maximal subfield of K.

STEP 10. The conclusion.

The degree of K over a maximal subfield is a prime and so m = 2. But then from
Step 6, s = 3 and from Step 8 and Step 4, 3 is a Zsigmondy prime for 2, n. It follows
that n = 2 and G S 5 4 . D

In Corollary 3.7 the subgroup f\ KT played a role. More can be said. One can
r||G|

show that P) KT = Zoo(G), the hypercenter of G. We omit the proof since in the
r||G|

cases where we use it, G is solvable and this fact is included in standard references [12,
VI, Satz 11.11 c] and [8, Theorem 5.a,b].

Note if H < G such that Z«,{G) ^ H, Z^G) < £<„(#), and if G/Z^G) G Af,
then G = Zoo(G) eM.lt follows that for any i, if G/Z^G) G Af{, then G G Af*.

PROPOSITION 4 . 2 . Suppose G is 2-transitive on Sylr(G) for each prime r.
Then G G Af3. Further, if \Syl3(G)\ = 1 or \Syl2(G)\ = 1, G G Af2 and if for
T G Syl2(G), T < Z^G), then GeAf.

PROOF: We have seen G/Z^a) is isomorphic to a subgroup of f] G/KP.
P\\G\

For each p, G/Kp is 2-transitive on Sylr(G/Kp) for each prime r and faithful on
Sylp(G/KP) and so from Proposition 4.2, G/Kp G Af3 . Consequently G/Z^G) G A/3

and thus G G Af3 .
Note that for any prime r, if \Sylr[G)\ = 1, then for any N<G, \Sylr(G/N)\ = 1.

Inspection of the two possibilities for G/Kp which are not in Af2 shows neither has a
normal Sylow 2-subgroup nor a normal Sylow 3-subgroup. Consequently G/Zoo{G) G
A/2 and so GeAf2.

Finally, a faithful non-identity 2-transitive group must have even order and so
G = Kp for each p and thus G G Af. D

Frankly, we had hoped for a complete classification of groups G which are 2-
transitive on SylT(G) for each prime r. Let X — {G \ G is 2-transitive on Sylr{G) for
each prime r}. Certainly X is quotient-closed, but direct products are more subtle.

Observe that, in general, if G\ is 2-transitive on T\ and G2 is 2-transitive on 1*2,
then G\ X G2 acting componentwise on Fj x 1^ is 2-transitive if and only if |Fi | = 1
or | r a | = l .

COROLLARY 4 . 3 . Suppose {GUG2} C X. Then Gi x G2 G X if and only if

\Sylr{G2)\ = 1 for each prime r such that \Sylr(Gi)\ ^ l .

Of deeper concern is classifying those groups G such that G/Z^G) is one of
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our known A'-groups, and whether G 6 X implies characterisable restrictions on

Kp/Zoo(G) for some prime p.
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