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Abstract

We analyze the unit-demand Euclidean vehicle routeing problem, where n customers are
modeled as independent, identically distributed uniform points and have unit demand.
We show new lower bounds on the optimal cost for the metric vehicle routeing problem
and analyze them in this setting. We prove that there exists a constant ¢ > 0 such that
the iterated tour partitioning heuristic given by Haimovich and Rinnooy Kan (1985) is a
(2 — ¢)-approximation algorithm with probability arbitrarily close to 1 as the number of
customers goes to oo. It has been a longstanding open problem as to whether one can
improve upon the factor of 2 given by Haimovich and Rinnooy Kan. We also generalize
this, and previous results, to the multidepot case.
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1. Introduction

1.1. Unit-demand vehicle routeing problem

We study the unit-demand Euclidean vehicle routeing problem (VRP), where the customers,
X1, ..., Xy, and the depot, y;, are given as points in the plane and the distance between points
is the Euclidean distance. Each customer has unit demand. There are an unlimited number of
identical vehicles, and each one has capacity Q € N. The route of each vehicle starts and ends
at the depot, y;. Each vehicle cannot deliver more than its capacity. The cost of a solution is
the sum of the traversing costs of each vehicle. In the problems we consider the objective is to
route vehicles to meet the demand of every customer while minimizing the overall cost.

Except in some special cases, the VRP is an NP-hard problem. In their seminal paper [8],
Haimovich and Rinnooy Kan provided a worst-case analysis and a probabilistic analysis of
the VRP (see also [9]). In [8] they proved a lower bound on the cost of the VRP with
metric distance which is the maximum between the cost of a traveling salesman problem
(TSP) tour and the so-called radial cost. When Q is fixed, the unit-demand Euclidean VRP
admits a polynomial-time approximation scheme. This means that for any ¢ > 0 there exists a
(1 4 &)-approximation algorithm. The first polynomial-time approximation scheme for this
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case appeared in [8]. Subsequently, Asano et al. [3] improved its running time using the
polynomial-time approximation scheme for the Euclidean TSP (see [2] or [11]).

In [8] the authors also analyzed the problem from a probabilistic point of view when the
locations of the customers are modeled as independent, identically distributed (i.i.d.) points in
the plane and Q is a function of the number of customers. Their analysis showed that the lower
bound they propose is asymptotically optimal when Q = o(y/n) or n = 0(Q?). As aresult, the
iterated tour partitioning (ITP) heuristic of [8] becomes asymptotically optimal in both cases.
In the rest of the cases, the ITP heuristic is within a factor of 2 of the optimal cost. That is,
under no assumptions on Q as the number of customers goes to oo, the probabilistic analysis
of the ITP heuristic is no better than its worst-case analysis.

In this paper we show that the ITP heuristic is indeed better on average than is suggested by
its worst-case analysis, by proving that its approximation ratio is strictly smaller than 2. The
primary contributions of this paper are as follows.

1. We improve the approximation ratio of the ITP heuristic of [8] for the VRP. This im-
provement, though slight, does resolve a longstanding open question of whether any
improvement was possible.

2. We provide nonlinear inequalities (Lemma 3) that are useful for improving bounds for
VRP problems.

3. We show that, for n points uniformly distributed in the unit square and for every p with
0 < p < 1, there is a constant c(p) such that

lim P(at least pn points have a neighbor at distance less than or equal to %) =0.
n

n—oo

This result implies nontrivial lower bounds on the cost of combinatorial optimization
problems such as the minimum latency problem.

4. We extend the probabilistic analysis of VRP to the multidepot case.

To be more precise, we first improve the radial cost lower bound on the cost of the metric
VRP given by [8]. The improvement we present is at least a fraction of /n with probability
converging to 1 as n tends to oo, when the n customers are given as uniformly distributed points
in the square [0, 1]%> and the distance is the Euclidean distance. As a result, the approximation
ratio of the ITP heuristic is strictly better than 2 with probability 1 as the number of customers
goes to 0o. As a side effect, our analysis also shows a further improvement on the approximation
ratio when both O = O(y/n) and \/n = O(Q). This parametric case is the border line between
the cases analyzed by Haimovich and Rinnooy Kan [8].

In the second part of the paper, the results proven for the unit-demand Euclidean VRP
are generalized to the multidepot case where the number and location of the depots is fixed
in advance. Related works are [10] and [13]. Li and Simchi-Levi [10] performed a worst-
case analysis of the multidepot VRP when the distances satisfy the triangle inequality, and
showed how to reduce this problem to a single-depot case with distances satisfying the triangle
inequality. Their analysis is valid for metric spaces and, thus, cannot take advantage of the
properties of the Euclidean metric in the plane. Stougie [13] studied a two-stage multidepot
problem where, at the first stage, the central planner decides how many depots to build (and
where to build them) and, at the second stage, deals with a multidepot VRP. Stougie’s analysis
was probabilistic, since the customers of the second stage are i.i.d. points in the unit square.
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The objective in this problem is to minimize the sum of the costs of both stages. Unlike in
our approach, the number and locations of depots are variables. Stougie’s approach does not
translate well to our context, since the optimal solution of the first stage simplifies the analysis
of the second stage problem. We introduce a natural generalization of the ITP heuristic to the
multidepot case and show that the results proved for the single-depot case carry through.

The rest of the paper is organized as follows. In Section 2 we present both new and known
lower bounds on the optimal cost of the VRP. In Section 3 we analyze the value of the lower
bound in a probabilistic setting. We present lower and upper bounds on the cost of combinatorial
optimization problems such as the minimum latency problem. We also prove our main results
about the approximation ratio of the ITP heuristic. We discuss the multi-depot VRP (MDVRP)
in Section 4. In Section 5 we present an algorithm for the MDVRP that generalizes the ITP
heuristic. In Section 6 we present lower bounds for the MDVRP. In Section 7 we analyze
the lower bounds and the algorithm for MDVRP in a probabilistic setting. We summarize the
results presented in the paper in Section 8.

1.2. Notation

Unless otherwise stated, the customers and the depot are modeled as points in the plane.
The location of the ith customer is denoted by x;, for any 1 <i < n. The depot is located at y;.
The set of customers is denoted by X™. The distance between customers i and j is denoted
by c¢;,j or by cy; x ;o and the distance between a customer i and depot y; is denoted by cy, ;.
A solution to a VRP is denoted by a pair (K, V), where K is the number of vehicles used and
V ={uv: k € {1,..., K}} is the set of vehicles (or routes). Given a solution (K, V), we let
dl!‘ = 1 when vehicle v; € V, visits customer i and let d{‘ = 0 otherwise. The routeing cost of
vehicle vy is denoted by c(vg). By R = Z?:l 2cy,,i/ O we denote the so-called radial cost, as
in [8]. The radial cost is a lower bound on the cost of the VRP; see [8] or Lemma 3 below. We
denote by ¢(VRP) or by c(VRP(X ™)) the cost of an optimal VRP, and we denote by c(TSP)
or ¢(TSP(X ™)) the cost of an optimal TSP tour. Given a probability space and a probability
measure, the probability that event A occurs is denoted by P(A). The probability of event A
conditioned on event B is denoted by P(A | B). The complement of event A is denoted by A.
We use upper-case letters (e.g. X) to denote random variables and lower-case letters (e.g. x) to
denote realizations of random variables.

For a real number a, we denote by |a] = sup{k € Z: k < a} and [a]| = inf{k € Z: k > a}
its floor and ceiling values, respectively. For a finite set A, we denote by |A]| its cardinality. For
two real-valued functions f and g, we say that f(n) = O(g(n)) if, for some numbers ¢ > 0
and ng, f(n) < cg(n) for all n > ng. Similarly, we say that f(n) = Q(g(n)) if, for some
numbers ¢ > 0 and ng, f(n) > cg(n) for all n > ng. Finally, we say that f(n) = ®(g(n)) if
f(n) =0(gm)) and f(n) = Q(gn)).

2. Lower bounds on the optimal cost of the VRP

We assume in this section that all distances satisfy the triangle inequality. We refer to such
problems as ‘metric’. In this section we present both new and known lower bounds on the cost
of a metric VRP. The main result of this section is summarized in Lemma 5, which improves
the lower bound of [8]. We here state this lower bound on the cost of a metric VRP.

Lemma 1. ([8].) The cost of the metric VRP is at least max{R, c(TSP)}.

The ITP heuristic ITP(«) for the unit-demand VRP defined in [8] (see also [1]) receives an
a-optimal TSP as part of its input and outputs a solution with cost at most R+« (1—1/Q)c(TSP).
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We briefly describe this heuristic. It receives a tour (yi,i1,i2,...,1i, y1) of cost at most
ac(TSP) as part of the input, and selects the best valid route among Q solutions constructed
as follows. For each r, 1 < t < (Q, the solution, route,, to the VRP is the union of the
K: =[(n—1)/Q1 + 1routes

t . .
vlz(y11l19""lfsy1)s
= V1, 0415+ -5 i1 0, Y1),

v't% = (y15 lt+Q+1’ ORI lt+2Qa yl)a
t . .
v((n—l)/Q]+1 = (y1, L[(n—t)/Q1—1)Q+t+15 + -+ In, yi)-
That is, route; transforms the original tour, (y1, i1, ..., ja, Y1), into routes with Q customers

each (except possibly the first and the last routes). The average cost of these solutions is at most
R + (1 — 1/Q)ac(TSP) and, therefore, one of them has cost at most R 4+ (1 — 1/Q)axc(TSP).
By Lemma 1, max{R, c(TSP)} is a lower bound on the optimal cost of the VRP, and one of the
solutions considered route; is therefore within 1 4 (1 — 1/Q)«a times the optimal cost.

In the Euclidean setting there exists a polynomial-time approximation scheme for the TSP
(see [2] or [11]). Therefore, the ITP heuristic is a (2 — 1/ Q)-approximation algorithm in this
case. We denote by ¢(VRP!P) the cost of the solution generated by the ITP heuristic when it
receives an optimal TSP as part of the input. When Q is not fixed, that is, it is part of the input,
the approximation ratio is asymptotically 2, as was shown for a family of examples in [10]. We
state this result as a lemma.

Lemma 2. ([10].) The ITP heuristic ITP(1) is a 2-approximation algorithm.

Corollary 2 of [6] presents a lower bound on the cost of the VRP. The impact of this lower
bound on the worst-case analysis of the VRP is discussed in that paper. In Lemma 3 below we
state a stronger version of this bound. The new lower bound is more suitable for the probabilistic
analysis we perform in this paper.

Definition 1. Given a route vy = (y1, ll , 112‘, ik & yl) that starts and ends at depot y;, we
associate with it the sequence of customers lk = (z1 , 12, ceoyd k) For any customers i and j
visited by v, let lk/ be the length of the unique path from i to j  determined by vk that does not
pass through the depot y;. If i or j is not visited by vg, we let lk = 0. Given asolution (K, V) to
the VRP, its associated sequences 1, ..., X arethe sequences assomated withvy,...,vg €V,

respectively.

Since the distance matrix is symmetric, lk = l k . For example, let
=(1,1,2,3,4,5,6, y1)

with ¢y, 1 = ¢y.6 = 5541 = 2foralls, 1 <s < 6. Inthis example /5 ; = I¢ , = 8.

Lemma 3. Let the pair (K, V) be a solution to the metric VRP. For each k, 1 < k < K,
and i, 1 <1i < n, let the value ofd!‘ € {0, 1} determine whether or not vehicle vy € V visits
customer i. The cost of (K, V) is at least

dkdk

K n
L p— — zﬁ-——i—L——. 1

k=1 i=1 k=11i,jefl,..
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Proof. To 51mp11fy our notation, let us define z dk /30, dk

Since Z/ 1Z = 1, we can rewrite (1) as
ZchM iz +Z S kbt Zchvl,z Zz +Z S kbt
k=1 i=1 k=1 1i,je{l,..., n} k=1 i=1 k= 11/6{1 ,,,,, n}
K
S Y ey Y e
k=1 i,je{l,...,n} k=1 i,je{l,...,n}
K

K
SZ' Z c(vk)zlej.

The lastinequality holds because ifzle? = Othen(cy,,; + lfj + cyl’j)z{,‘zlj‘. = c(vk)zf.‘zl; =0;
otherwise, vy starts and ends at depot y; and visits customers i and j, and, thus,

k k_k k_k
(Cyri +1j 4 ¢y,.j)7 25 < c(ui)z; 2

by the triangle inequality. We use the equality Z;’-:l z]; = 1 again, to simplify the last expres-

sion:
> Y et = Zc(va Zz Y e,

k=1 i,je{l,..., i=1 k=1

Remark 1. Let the pair (K, V) be a solution to the metric VRP, and let the value of dik e {0, 1}
determine whether or not vehicle vy € V visits customer i. Therefore, since any vehicle vg
delivers Y™™, d* < Q units of demand, the term Y&, S™7_, 2cy, id¥/ 30, d¥ is atleast the
radial cost, R = Y "_, 2¢y,,i/ Q.

The lower bound on the cost of a solution to the metric VRP given by Lemma 3 contains
two sums. One sum is at least the radial cost, as observed in Remark 1. The second sum is an
improvement over the radial cost. This improvement will be analyzed in a probabilistic setting
in the next section. We give some definitions first.

Definition 2. Given a solution (K, V) to a VRP, a vehicle vy is said to be half-full if it visits
at least Q/2 customers. Let A C X ) be the set of customers visited by half-full vehicles. A
solution is said to have the fullness property if |[A| > n — Q/2.

The following lemma states that there always exists an optimal solution that has the fullness
property.
Lemma 4. There exists an optimal solution (K, V) such that |A| > n — Q/2.

Proof. Let (K, V) be an optimal solution such that the associated set A has maximal
cardinality. Either there is at most one vehicle that visits at most Q/2 of the customers or
there are at least two. In the first case |A| > n — Q/2. In the second case we can replace
two vehicles that visit at most Q/2 of the customers by one vehicle without increasing the
routeing cost. In this case we find an optimal solution with an associated set, A’, bigger than
A, contradicting the maximality of A.
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We give a name to the quadratic term in (1).

Definition 3. Given a solution (K, V), let

QC(K, V) = Z 3 ZSW' )

k=1 i,jefl,..., t=1%1

Let QC be the maximum value of QC(K, V) among all optimal solutions (K, V') that have the
fullness property of Definition 2.

It is apparent that the radial cost plus the quadratic term QC is a lower bound on the cost of
a solution (K, V) that has the fullness property. Therefore, the following lemma holds.

Lemma 5. The cost of the VRP is at least max{R + QC, c(TSP)}.

3. Probabilistic analysis

The main technical result of this section is Lemma 7, which shows that the quadratic term (2)
is Q(+/n) in a probabilistic model. This in turn implies our main result, Theorem 2, which
states that the approximation ratio of the I'TP heuristic is strictly better than 2 in a probabilistic
model.

We start by giving the classic result of [4] concerning the asymptotic behavior of the cost of
the TSP. Let X, X5, ... be a sequence of i.i.d. points having a distribution on [0, 1]2. That is,
the x and y coordinates of each X; have a joint distribution on the square [0, 1]%. Let f be the
density of the absolutely continuous part of the distribution of each X;. There exists a constant
B > 0, independent of the distribution of the X;, such that with probability 1 the cost of an
optimal subtour through the first n points satisfies

_ c(TSP(X™)) 12
nlggoT—ﬂ/f dx. 3)

Computing the exact value of g is an open problem. However, in [4] it was shown that
0.62 < B <0.93.

From now on we assume that the customers X1, ..., X,, are independent random variables
with distribution U[0, 1]2. Although the results proven in this paper also hold for more general
random variables, the restriction to uniform random variables is made in order to simplify our
proofs. In this case the ratio of the cost of the TSP to 4/ converges almost surely (a.s.) to 8. The
following theorem was proved in [8]. Informally, the result is that the radial cost dominates the
cost of the TSP when Q = o(/n), and that the opposite happens when n = 0(0?). Therefore,
the ITP heuristic is asymptotically optimal in both cases.

Theorem 1. ([8].) Let X1, X2, ... be a sequence of i.i.d. uniform random points in [0, 112, and
let X™ denote the first n points of this sequence. Let ju denote the expected distance between
X1 and the depot.

o Iflim, o0 Q/y/n =0 then
c(VRP(X™))0
m —W,— =

n—o00 n

a.s.
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o Iflim,_ o Q/+/n = 00 then
5 c(VRP(X™))
nggo ﬁ -

where B > 0 is the constant introduced in [4].

This theorem implies that the ITP heuristic is asymptotically optimal whenever

lim g:0 or lim g

= OQ.
n—oo /n n—o00 /n

Corollary 1. Iflim, oo Q/+/n =0 or lim, oo Q//n = 00, then ¢(VRP'™P) /c(VRP) = 1

a.s.

In order to prove that the ITP heuristic is strictly better than a 2-approximation algorithm on
average, we have to prove that the quadratic term (2) has nonnegligible growth as a function
of n. Informally, the quadratic term takes into account part of the distance between customers
that is neglected by the radial cost. This cost is related to the distance of a generic customer i
to its closest neighbor j # i. If we define a threshold value and consider a customer to be
‘isolated” whenever its distance to its closest neighbor is at least the threshold value, then the
following lemma states that we can define the threshold as a function of a parameter p in
order to guarantee that the proportion of isolated customers is at least 1 — p with probability
approaching 1 as n goes to co. This lemma is critical in proving that the quadratic term (2) is
Q(4/n) with probability 1.

Lemma 6. Forany p, 0 < p < 1, there exists a value c(p) > 0 such that

c
lim P(at least pn customers have a neighbor at distance less than or equal to ﬂ) =0.

n—oo ﬁ
“

Proof. First divide the unit square into M?> = apn subsquares, each with a side whose
lengthis 1/,/apn. We assume that apn is the square of an integer. This assumption is used to
simplify the proof, but the proof carries through even if apn is not the square of an integer if
M is defined as the (unique) integer such that M2 < apn < (M + 1)?. We will soon choose o
as a function of p.

Suppose that n points are distributed at random, corresponding to the selection (with replace-
ment) of n squares at random. We will refer to a selected square as being isolated if no other
selected square is a neighbor. (Neighbors include the square and its eight adjacent squares.)
Otherwise, selected squares are said to be nonisolated. Then,

1
P| at least pn customers have a neighbor at a distance less than or equal to
Japn

< P(at least pn selected squares have a selected neighbor)

= P(at least pn selected squares are nonisolated).

Suppose that we select points randomly one at a time. As the kth point is randomly selected,
the probability that it is adjacent to a point that has already been randomly selected is at most
9(k — 1)/apn, which is bounded from above by 9n/apn = 9/ap. This upper bound is
independent of the locations of the first k — 1 points. Therefore, the total number of nonisolated
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points is bounded by 2X, where X is the number of successes in n Bernoulli experiments with
success probability 9/ap. The factor of 2 comes from the fact that if point k is adjacent to a
previously selected point i < k, then i is also adjacent to k. Thus,

P(at least pn selected squares are nonisolated)

< P(there are at least pn/2 successes out of n with probability of success of 9/ap).

Therefore, if we choose « such that 18/ap < p (thatis, & > 18/p?), then, by the weak
law of large numbers, lim,,_, o P(at least pn selected squares are nonisolated) = 0. Therefore,
any value of ¢(p) smaller than ,/p/ 34/2 satisfies (4).

This lemma is similar in style to known bounds on the minimum distance between a fixed
pointand n i.i.d. points. Itdiffers from them in the fact thatitis an upper bound on the probability
of a set of dependent events defined from dependent random variables (the minimum distances
among the n points). We will use it to prove a lower bound on the quadratic term (2). It also
provides nontrivial lower bounds on the cost of combinatorial optimization problems such as
minimum weighted matching, the TSP, and the minimum latency problem, as the next corollary
shows. We will invest some time in analyzing the minimum latency problem, since the authors
are not aware of asymptotic results for this problem.

The minimum latency problem (see, e.g. [5]) is to find a tour of minimum latency through
all customers. The latency of a customer iy, denoted by ¢;,, is the time taken to arrive at ix.
The latency of a tour is the sum of the waiting times of all customers. That is, given a solution
(1, 11,102, ..., 10n, y1) of the latency problem, its cost is

n n—1
Z Cipy = Z(” - k)cik,ikJrl
k=1 k=0

(we denote by i the depot y;). We observe that the lower bounds we obtain in the following
corollary for a minimum weighted matching and the TSP are of the same order of magnitude as
the asymptotic results proved for these respective problems in [12] and [4]. The lower bound
for the minimum latency problem is also of the same order of magnitude as the optimal cost of
this problem, as we show in Proposition 1.

Corollary 2. The cost of a minimum weighted matching and the cost of the TSP when points
are uniformly distributed in [0, 11* are Q2(y/n) with probability 1. The cost of the minimum
latency problem when points are uniformly distributed in [0, 11? is 2 (n3/?) with probability 1.

Proof. For a fixed p, 0 < p < 1, and for a ¢(p) such that (4) holds, minimum weighted
matching has a cost of at least (c(p)/2+/n)(1 — p)n = Q(/n) with probability 1. Selecting
p= % and c(p) less than ./p, /3+/2 means that minimum weighted matching has a cost of
at least 0.04,/n with probability 1. This bound holds also for the TSP, since the minimum
weighted matching is a relaxation of the TSP and gives a lower bound for this problem.

Given a solution (yi,i1,i2,...,iy,y1) of the minimum latency problem, its cost is
Zz;(l) (n —k)ciy, i, - Informally, Lemma 6 states that a significant percentage of customers are
isolated. That is, for a fixed p, 0 < p < 1, and for a ¢(p) such that (4) holds, at least (1 — p)n
of the total line segments connecting two customers used by any solution of the latency problem
have a cost of at least c(p)/+/n. Since the cost function of the minimum latency problem is a
weighted sum of the line segments used, where the line segments used first have greater weight,
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the cost of any solution is at least

n—1 2 2
c(p) _clp) (1 =p)n 3/2
Y n—lb—== = Q). )
Pl Jn Jn 2
In particular, for p = % and c(p) less than ,/p/ 34/2, (5) implies that the minimum latency
problem has a cost of at least 0.0373/2 with probability 1.

The next proposition complements Corollary 2 for the minimum latency problem. That is, it
shows that the minimum latency problem has cost O (n3/?) when the depot and the customers
are points in [0, 1]2. We observe that this result holds in the worst-case sense, namely, when
we do not assume any probabilistic distribution of the points.

Proposition 1. The cost of the minimum latency problem when the customers and the depot
are located in [0, 117 is O (n3/?).

Proof. We will use an optimal solution to the TSP through the n customers to construct a
solution to the minimum latency problem. Let routeg = (i1, ..., i) be an optimal traveling
tour through the n customers. Few [7] proved that the optimal cost of the TSP through any n
points in [0, 112 is at most +/2n. The cost of routey is thus ZZ;]I Ciigg1 T Cinin < 2n. We
consider the following n routes for the latency problem. For each I, 1 <[ < n, let route; be

(yl»ilsil-l—lv -"1in’ilsi27 -~'9il—17 }71) Thatis,
route; = (y1, i1, ---,In, Y1),
rOUteZ = ()’1712, "‘7inai17y1)9
routel’l = (ylyl}’l’lly "'5in7]5y1)'

For each /, 1 <1 < n, the latency cost of route; is

n—1

-1
ney i+ Y (1 —k = Degiy + (= Deigiy + >0 —k = Deiig,,-
k=l k=1

Since each line segment (i, ix41) of the tour routep appears in each possible place in routes
routey, ..., route,, the sum of the latency costs of these routes is

n—1

n n—1
nn—1)
Z”C,vl,iz + Zl( Cigigpr + c,'n,”) <n®V2+ T\/Zn.
1=0 1

=1 k=

The average cost of these routes is at most nv/2 + [(n — 1)/2]v/2n = O (n3/?). Since at least
one of the routes routeq, ..., route, has a cost of at most the average, this proves that there
exists a solution to the minimum latency with cost O n3/?).

We will use Lemma 6 to prove that the quadratic term (2) is € (y/n) with probability 1 (see
Lemma 7). We give some definitions first.

Definition 4. We say that a customer i is nonisolated with respect to a parameter c if it has a
neighbor at a distance at most ¢/./n.
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Proposition 2. Given a sequence | = (i1, iz, ...,1is) of s > 1 customers where b of them are
nonisolated with respect to c, the following inequality holds:

l,’j C (S )
> U (Z-2b).
5 =
ity S VO

Proof. We can express the sum Y, ;1 kij/s? as SUClR2e(s — 1)/521ei iy, Let
&(t) = 0 whenever i; and i;4 are both nonisolated customers with respecttoc,andlet§(r) = 1
otherwise. Then ¢;, ;,., > 8(t)c/+/n and, therefore,

s—1
3 by _ SO
2 52 Usli+1

S
i jEliteemis) =1

s—1

- Z 2t(s — 1) §(t)c
= —— NG

s—1

2t(s —t 2t(s —t c

=<Z%— > %)ﬁ ©)

t=1 {t: 6(1)=0}

In order to bound the right-hand side of this inequality from below, we will use the identities
s—1 —1

_ s(s -1 (s — l)s(2s — 1) 2(s -1
Zt - Z - 3 :

t=1
The sum Y 5_| 2t (s — 1)/ is then

s—1 s—1 5.2

2t
=z s—l)——(s—l)-—(s—l)z

(N

ta|L\3
e

t=1 t=1

In order to bound the sum — 3 ;. 5,)—0y 21 (s — 1) /s from below, we observe that, among
all possible distributions of b nonisolated customers in a sequence with s customers, this sum
reaches its minimum value when the nonisolated customers are located in the center of the
sequence /. The reason for this is that the weight —2¢ (s — ¢) /s is a quadratic convex function
of ¢ that reaches its minimum at ¢t = s/2. That is, this sum reaches its minimum when
the nonisolated customers in the sequence [ are iy, igy1, ..., iq+b—1, Where a equals either
L(s —b)/2] or [ (s —b)/2] + 1. (In particular, a equals at most (s — b)/2 + 1.) Therefore, the
sum Y, 5—oy 2 (s — 1)/s* equals at most

a+b—1 a+b—1
Z 22‘(S—t)S Z %zb(ZG—i—b—l)Sb(S*I-l)SZb. @)
52 52 s s

t=a t=a

Inequalities (7) and (8) imply that the right-hand side of (6) equals at least (c//n)(s/6 — 2b).

For Q > 2, the quadratic term QC, defined in (2), is € (y/n) with probability 1, as the next
lemma shows.
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Lemma 7. Assuming that Q > 2, there exists a ¢ > 0 such that lim,,_, .o P(QC > ¢./n) exists
and is equal to 1.

Proof. Let (K, V) be any optimal solution that has the fullness property. By Lemma 4,
there is always an optimal solution that has the fullness property. This implies that at most
one vehicle of this solution visits only one customer. We will prove that there exists a
¢ > 0 such that lim,_, . P(QC(K, V) > ¢/n) = 1 for any such (K, V), which implies
that lim,,—, 0o P(QC > ¢/n) = 1. Let p, 0 < p < 1, and ¢ > 0 be parameters to be fixed
afterwards. Each vehicle vy € V has associated with it a sequence [; of s; customers, by of
which are nonisolated with respect to c. Proposition 2 implies that

S Y bty (2
kL J S —<——2bk>
ij k2 —

k=1 i,je(l,...,n} (Z?—ld/) =1 V" 6

We know that

P(|{customers nonisolated with respect to c}| < pn)
+ P(|{customers nonisolated with respect to c}| > pn) > 1

for any values of p and c. If we choose p and ¢ such that Lemma 6 holds, then

lim inf P(|{customers nonisolated with respect to c}| < pn) = 1.
n—oo

Therefore, lim,_, o P(|{customers nonisolated with respect to c}| < pn) exists and is equal
to 1 and, thus,

dtd* ¢ (n
lim p<z > i 2 (% -2m))
— 2 —
e k=1 i,je{l,..., (Z?:l d]) \/E 6

exists and is equal to 1.
We now have all the pieces necessary to prove the main result.

Theorem 2. There exists a constant ¢ > 0 such that

RPITP
fim p( CYRPD 5,
noo \ ¢(VRP)

exists and is equal to 1.

Proof. We know that ¢(VRP'T’) < R + ¢(TSP). Lemma 5 states that c(VRP) > max{R +
QC, ¢(TSP)}. Therefore,

c(VRPITP) - R + ¢(TSP) -y oC
c¢(VRP) ~ max{R + QC, c¢(TSP)} — c(TSP)’

&)
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We know that the ratio of the cost of TSP to \/n converges a.s. to a constant, 8. By Lemma 7,
we know that lim,—,oc P(QC > ¢4/n) = 1. With the choice & = ¢/8 < /p(3 —2p)/3v/28,

the limit
C
lim P25~ (10)
o0 \ c(TSP)

exists and is equal to 1.
Equations (9) and (10) prove the theorem.

The statement of Theorem 2 does not claim any numerical value for the constant ¢. However,
it is easy to give a lower bound on the value of ¢ by following the proof of this theorem. For
points distributed uniformly in [0, 1)2, the constant B > 0 is at most 0.93 (see, e.g. [4]). For
p = %, the value ﬁ(% — 2p)/3+/2p (and, therefore, ¢) is at least 0.0046. It is possible
to prove a tighter bound for the constant ¢(p) in Lemma 6 and to prove a tighter bound in
Proposition 2: as a result, we can prove that ¢ is at least 0.015.

We can generalize this as follows. Let u = E(cy,, x) be the expected distance of customer X
to the depot. If lim,_, oo Q/+/n exists and is equal to a finite value w > 0, the strong law of
large numbers implies that

Iim —— =1 as.
n—>00 (2u/w)/n

We have the following result for the approximation ratio of the ITP heuristic.

Theorem 3. Let ¢ be the constant defined in Lemma 7. Assume that lim,,_, oo Q//n exists and
is equal to w, 0 < w < oo. The approximation ratio of the ITP heuristic is such that

e if2u/w + ¢ > B then

, c(VRPITP) B ¢
lim P <1+ - — -
c(VRP) 2u/w+c¢  2u/w+c

n—oo

exists and is equal to 1, and

e if2u/w+ ¢ < B then

¢(VRP) — ' wp

VRP!TP 2
lim p<u <1 “)
n—oo
exists and is equal to 1.

Proof. The results follow from the ratio

c(VRPITP) - R + c(TSP)
c¢(VRP) — max{R + QC, ¢(TSP)}

and the limits

.. . c(TSP) B . ocC c

lim inf > -, lim sup < -,

n—oo R+ QC ~ 2u/w+c n—soo R+Q0C ™~ 2u/w+c
R _ 21

lim = .
n—o0 ¢(TSP) wp
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4. Multidepot vehicle routeing problem

In this section we generalize the VRP to a multidepot scenario. There are n customers and
m depots. Each vehicle starts and ends at the same depot. We assume that there is no restriction
on the number of vehicles available at each depot.

4.1. Notation

We extend the notation from the previous sections. Unless otherwise stated, the customers
and depots are modeled as points in the plane. The location of the ith customer is denoted by
x; forany 1 <i < n. The location of the jth depot is denoted by y; for any 1 < j < m. The
set of customers is denoted by X . The set of depots is denoted by ¥ . A solution to an
MDVRP is denoted by a pair (K, V'), where K is the number of vehiclesusedand V = {v;: k €
{1,..., K}} is the set of vehicles (or routes). For each customer i, let ¢; = min{c; y: y € ymy
be its minimum distance to a depot. By Rmp = Y 7, 2¢;/Q we denote the multidepot radial
cost. We denote by c(MDVRP) or c(MDVRP(X ))) the cost of an optimal MDVRP, and
by ¢(TSP) or c(TSP(X M) U YY) the cost of an optimal traveling salesman tour through all
customers and depots. Let coo (MDVRP) denote the cost of the MDVRP when the capacity of
vehicles is infinite. Following Definition 1, given a route vy = (yy,, i ]f i]2‘, el ifk, Yy,) and
customers i and j visited by vg, we denote by lfj the length of the unique path from i to j
determined by vy that does not pass through the depot y,,. If i or j is not visited by vy, then
we let lfj =0.

5. An algorithm for the MDVRP

We generalize the ITP heuristic to the multidepot case. The multidepot iterated tour parti-
tioning (MDITP) heuristic MDITP(«) that we propose uses the heuristic ITP(«) as a subroutine.
It first assigns each customer to its closest depot (see Figure 1) and then solves m independent
VRP problems. More formally, the MDITP heuristic is as follows.

0. LetS; =@ forall j, 1 < j<m.
1. For each customer x;, find y}, its closest depot, and replace S; by S; U {x;}.

2. For each j, 1 < j < m, run the heuristic ITP(x) to solve the VRP problem VRP;
approximately, where y; is the only depot and the set of customers is S;.

FIGURE 1: Assigning customers to their closest depot.
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Let ¢(TSP;) := c¢(TSP(S; U {y;})) denote the cost of an optimal subtour that visits all
customers of S; and the depot y;. The cost of the solution produced by this heuristic is
the sum of the costs of the solutions produced by ITP(«) for each VRP;, which is at most
Rvp + Z;”:] ¢(TSP;). In what follows, we denote by c(MDVRPMPITPY the cost of this
heuristic when we use ITP(1) as a subroutine. This analysis implies the following result.

Lemma 8. The cost of MDVRP(1) is at most Ryp + Z'}Ll c(TSP}).

It is easy to see that the heuristic MDITP(1) is an €2 (m)-approximation algorithm in the
worst-case analysis, where m is the number of depots. Let us consider the following example.

Example 1. There are m depots located on the unit circle and there are m customers located
close to the origin, (0, 0). Let ¢ > 0 and let Q, the capacity of each vehicle, be infinite. For
each j, 1 < j < m, depot y; is located at the point (cos 2 j/m, sin 27 j/m) and customer i
is located at the point (¢ cos 2mj/m, € sin2mj/m).

In this example, the heuristic MDITP(«) will assign customer i ; to depot y; and will output
a solution with cost 2m (1 — ¢). On the other hand, the solution that uses only one vehicle with
route (y1, 1,02, ..., im, i1, y1) hasacostof atmost 2(1 —¢)+e2m. By letting £ go to 0, the ratio
of the two solutions goes to m. Therefore, the heuristic MDITP(1) is an €2 (i)-approximation
algorithm. However, in Section 7 we will show that the heuristic MDITP(1) performs much
better on average. Namely, its approximation ratio is the same as that of the ITP heuristic for
the single-depot case, on average.

6. Lower bounds on the optimal cost of the MDVRP

In this section we generalize the results of Section 2 to the multidepot case. The following
lemma generalizes Lemma 1.

Lemma 9. The cost of the MDVRP is at least max{Ryp, coo (MDVRP)}.

Proof. Let X; be the set of customers visited by vehicle v and let y be the depot at which
vg starts and ends. Then

ZieX Ci 2
>2 1 >2 N> =0k 5 & .
e(ve) z 2max(eiy) 2 2maxier) 2 2= 0— 2 Z ci
ieXy
Summing over all vehicles, we find that c((MDVRP) > Rpyp. The inequality c(MDVRP) >
¢ (MDVRP) holds since any feasible solution to the MDVRP with vehicles with capacity Q
is also feasible for the infinite-capacity MDVRP.

The next lemma relates coo (MDVRP) to the cost of a TSP.

Lemma 10. Let c(TSP(Y ™)) denote the cost of an optimal subtour through the depots. Then
Coo(MDVRP) > ¢(TSP(X™ U Y ™)) — ¢(TSP(Y ™)).

Proof. Observe that coo (MDVRP) + c¢(TSP(Y (m)Y) is the cost of the walking tour formed
by the union of the routes of an optimal solution to the infinite-capacity MDVRP plus a subtour
through all the depots. This walking tour can be transformed into a TSP of lesser cost through
all customers and depots by shortcutting nodes already visited. Therefore, coo (MDVRP) +
c¢(TSP(Y ™)) > ¢(TSP(X™ U Y ™)), and the result follows.
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The following lemma is a generalization of Lemma 3.

Lemma 11. Let (K, V) be a solution to the MDVRP. Let dk = 1 if vehicle vy visits customer i
and let dk = 0 otherwise. Then the cost of (K, V) is at least

K n . dkdk
2¢; R B 1
22 CZ, 1 ,+Z 2 i b

1 k=1 i,jefl

We generalize the fullness property given in Definition 2 to the multidepot case. A solution
to the MDVREP is said to have the fullness property if |A| > n —m Q/2. The following lemma
states that there always exists an optimal solution to the MDVRP that has the fullness property.

Lemma 12. There exists an optimal solution (K, V') to the MDVRP suchthat |A| > n—mQ /2.

Proof. Given an optimal solution (K, V'), each depot has at most one vehicle that is not
half-full. Otherwise, we can merge the routes of two vehicles that are not half-full and obtain
another optimal solution that has the fullness property.

We give a name to the quadratic term in (11).
Definition 5. Given a solution (K, V) to the MDVRP, let
o,
ek =2, 2 ST g

k=1 i,je{2,...,

Let QC be the maximum value of QC(K, V') among all optimal solutions (K, V') to the MDVRP
that have the fullness property.

It is apparent that the multidepot radial cost plus the quadratic term QC is a lower bound on
the cost of any solution (K, V) that has the fullness property. Since there is at least one optimal
solution that has the fullness property, the following lemma holds.

Lemma 13. The cost of the MDVRP is at least
max{Rup + QC, ¢(TSP(X™ U Y ™)) — ¢(TSP(Y"™))}.
Lemma 7 also holds in the multidepot case. The constant ¢ in the following lemma is the
same one as in Lemma 7.
Lemma 14. Assuming that Q > 2, there exists a ¢ > 0 such that lim,_, ., P(QC > ¢\/n)
exists and is equal to 1.
7. Probabilistic analysis of the MDVRP

In this section we extend the main results of the single-depot case (e.g. Theorems 1 and 2)
to the multidepot case.
7.1. Probabilistic analysis of lower bounds

We analyze the unit-demand Euclidean MDVRP where the depots and customers are modeled
as points in the plane. The customers have unit demand. The m depots y1, ..., y;, are fixed in
advance, whereas the locations of the n customers are i.i.d. uniform random variables in [0, 1]?.
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Let Uy, ..., U, be a disjoint partition of the square [0, 112 such that each U j contains
exactly one depot, namely y;. For each j,1 < j < m,letn; > 0 be the number of
customers that belong to U; and let X)) be the set of customers that belong to U;. Let
¢(TSP;) := ¢(TSP(X ®) U {y 1)) be the cost of an optimal subtour that visits all customers of
X and depot y - The following result holds.

Lemma 15. We have
Z;.”:lc(TSPj) B

m a.s.
n—00  ¢(TSP)

Proof. Foreach j, 1 < j < m,let f; be the restriction of the uniform density to the set U;.

That is,
ifx e Uj,
X
Jit) = {0 otherwise.
The function f/|Uj] is the density function of a customer in U;. We will prove that
. c(TSPy) 12
nli)n;o 7 =8 f fi7dxas. (12)

for each j, 1 < j < m. Letus fix j. In order to prove (12), we would like to restrict the
experiment to the customers that fall inside U; and apply the classic result of [4] that we stated
at the beginning of Section 3. However, this has to be done with some care, since the number
of customers that fall inside U is random. We observe that the distribution of customers that
fall outside U; does not affect c(TSP ;). Therefore, the cost of the optimal TSP in the following
experiment is probabilistically the same random variable as ¢(TSP;). Let the n customers be
i.i.d. points with the following distribution: with probability p; = |U;| customer i is located
in U; according to density f;/p;, and with probability 1 — p; customer i is located in depot
v;. The main properties of the new experiment are as follows.

1. All the points fall inside U;.

2. The cost of an optimal tour through all points and depot y; in the new experiment has
the same distribution as the cost ¢(TSP;) in the original experiment.

Since the absolutely continuous-density part of the distribution of a customer in the new
experiment is f;, the classic result of [4] implies that (12) holds for each j.
Since (12) holds almost surely for each j, upon summation we have

| > ", c(TSP))

ni"‘éo— /Zfl/zdx ﬁff‘/zdx as. (13)

The last equality holds because f = Z —1 f;j and the supports of the functions f; are mutually
disjoint. Finally, (13) and (3) imply that

ZT:] C(TSPj) ) Z;-nzl C(TSPj)/ﬁ
im ———— = lim =
n—>00 c(TSP) n—00 C(TSP)/ﬁ

The following theorem generalizes Theorem 1 to the multidepot case.
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Theorem 4. Let X1, X2, ... be a sequence of i.i.d. uniform random points in [0, 113, and let
X™ denote the first n points of this sequence. Let i denote the expected distance between X
and its closest depot.

o Iflim,_ o Q//n =0 then

. ¢(MDVRP(X™))Q
lim =

n—o0 n

o Iflim,_, o Q//n = 00 then

2 a.s.

i c(MDVRP(X™))
et Jn =P

where 8 > 0 is the constant introduced in [4].

Proof. Lemmas 8, 9, and 10 imply that

max{Rmp, c(TSP(X™ U Y ™)) — ¢(TSP(Y ™))} < ¢(MDVRP(X ™))

m
< Rvp + Y_ c(TSP)).

j=1
The ratio of Ryp ton/Q is
Rmp O _anZCiQ v 2¢i
" i=1 nQ i1 "
The law of large numbers implies that this ratio converges a.s. to 2u. If X, X»,... are

uniformly bounded and lim,,_, oo Q/+/n = 0, then

. 2 c(TSP)Q Y0 e(TSP) @
im — —— — lim ——/— = —
n—o0 n n— 00 ﬁ ﬁ
since o,
. 2 e(TSP) (TSP(X™ Uy m))
lim ———— = lim
n—00 ﬁ n—00 ﬁ

is a constant. Therefore,

max{Rup, ¢(TSP(X™ U Y ™)) — ¢(TSP(Y ™))}

21 = lim

n—00 n/Q
c¢(MDVRP(X ™))
< lim
~ n—oo n/Q
) Rvp + Z;(l:l C(TSPJ')
< lim
n—00 n/Q

in this case.
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Now we analyze lim,,_, oo c(MDVRP(X ™))/ /n for lim,_, o, Q/+/n = oo. By definition

of Rvp, we have

Since the sum ), 2¢;/n a.s. converges to a constant as n goes to 0o, the whole expression
converges to 0 a.s. forlim, .o Q/+/n = co. Theratio of ¢c(TSP(X™ U Y ™)) to /n converges
to B a.s. The ratio of ¢(TSP(Y ")) to A/n converges to 0 since c(TSP( Y ™))) is a constant. The
ratio of Z'}Ll c(TSP;) to \/n also converges to B a.s., by Lemma 15. Therefore,

max{Ryp, ¢(TSP(X™ U Y™)) — c(TSP(Y ™))}

. ¢(MDVRP(X®))
< lim
n—o00 ﬁ
Rvp + Y., ¢(TSP;)
< lim 2= g
n— 00 ﬁ

in this case.

7.2. Probabilistic analysis of an algorithm for the MDVRP
The following theorem is an extension of Theorems 2 and 3.

Theorem 5. There exists a constant ¢ > O such that

c(MDVRPMPITP) .
- T <2-¢
c¢(MDVRP)

lim P

n—oo

(14)

exists and is equal to 1. Moreover,

1. iflimy— o0 Q//n = O then

c¢(MDVRPMDITPy
m ————
n—c  ¢(MDVRP)

2. iflimy oo Q/4/n = w > 0and 2u/w + ¢ < B, then

c¢(MDVRPMDITP) i B ¢
c¢(MDVRP) ~ 2u/w+é  2ujw+¢é

=1 a.s.,

lim P

n—oo
exists and is equal to 1,

3. iflimy 00 Q//f = w > 0and 2p/w + ¢ < B, then

. c(MDVRPMPITP) 2u
lim P[——— 2 <14+ 28
n—00 ¢(MDVRP) wp
exists and is equal to 1, and
4. iflim, 0 Q/+/n = 00 then
c¢(MDVRPMDITP)
————— =1 as.

m
n—co  ¢(MDVRP)
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Here B is the constant introduced in [4], W is the expected distance of a customer to its closest
depot, and ¢ is the constant introduced in Lemma 14.

Proof. The proofs of these results follow the same lines as the proofs of Theorems 2 and 3.
The proofs of (14) and item 2 follow from Lemmas 8, 13, 14, and 15. The proofs of items 1,
3, and 4 follow from Lemma 8 and Theorem 4.

8. Summary

We have studied the unit-demand Euclidean VRP using a probabilistic approach. We
presented a new lower bound for the metric VRP with an unlimited number of homogeneous
vehicles. This bound is at least the radial cost plus a term of the same order of magnitude as
the cost of the TSP when the customers have unit demand, they are modeled as i.i.d. uniform
random points in the plane, and the distance is the Euclidean distance. This lower bound
improves the radial cost bound defined in [8]. We showed that this improvement over the radial
cost is («/n) with probability converging to 1 as the number of customers goes to oo. In
particular, this improvement is of the same order of magnitude as the cost of the TSP, which is
also a lower bound on the cost of the unit-demand Euclidean VRP.

The improvement on the lower bound of the unit-demand Euclidean VRP we presented
implies an improvement on the approximation ratio of the ITP heuristic for this problem. As a
result, the approximation ratio of the ITP heuristic was shown to be strictly better than 2 with
probability 1 as the number of customers goes to co.

In the second part of the paper we analyzed the multidepot VRP. We gave a natural gener-
alization of the ITP heuristic for this problem. The lower bounds presented in the first part of
the paper were extended to this problem. The asymptotic results for the single-depot case from
the first part were generalized to the multidepot case.
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