A NOTE ON SOME PRIME HAUSDORFF METHODS OF SUMMABILITY

BY

M. R. PARAMESWARAN

Given a matrix $A = (a_{nk})$ (n, k=0, 1, 2, ...), let (A) denote the set of all sequences $x = \{x_k\}$ such that $\{A_n(x)\} \in c$ where $A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$ $(n \ge 0)$ and c denotes the set of all convergent sequences. It is well known (see e.g. Zeller [6] or Zeller and Beekmann [7], p. 48) that given an unbounded sequence x, there exists a regular (=permanent) matrix A with $a_{nk}=0$ for k>n (and indeed with $a_{nn}\neq 0$) such that $(A)=c\oplus x$, the linear space spanned by c and x. We call A an Einfolgenverfahren. (See [7].) In [4] Rhoades considered, inconclusively, the question whether there exists a Hausdorff matrix H such that $(H)=c\oplus x$ (for arbitrary unbounded sequence x). The present author showed in [3] that there are many sequences x for which there exist no Hausdorff methods H with $(H)=c\oplus x$ and suggested the possibility that there exist pairs [H, x], x unbounded and H Hausdorff, such that $(H)=c\oplus x$. Rhoades [5] settled this question by proving the following result.

THEOREM. Let H_{μ} be the Hausdorff method defined by the moment sequence $\{\mu_n\}$ where $\mu_n = (n-a/n+1)(\Re e a > 0)$ and let $x = \{x_n\}$ be the sequence

$$x_n = \frac{\Gamma(n+1)}{\Gamma(n-a+1)},$$

where we set $x_n=0$ if n-a+1 is 0 or a negative integer. Then $(H_{\mu})=c\oplus x$. {Note that if $v_n=-\mu_n/a$, then H_v is a regular Hausdorff matrix with $(H_v)=(H_{\mu})=c\oplus x$.} By well known elementary properties of Hausdorff methods, if $\lambda=\{\lambda_n\}$ is the moment sequence where $\lambda_n=(n-a/n+b)$, $\Re e a>0$, $\Re e b>0$, then $(H_{\lambda})=(H_{\mu})$ and hence $(H_{\lambda})=c\oplus x$ by the Theorem. This shows that all the known primes in the Banach algebra of all multiplicative Hausdorff methods are in fact Einfolgenverfahren. {For the definitions, terminology and classic results, see Hardy [1] or Zeller and Beekmann [7].}

Rhoades' proof of the Theorem depends on deep results on Hausdorff methods as well as on Zeller's technique for constructing Einfolgenverfahren. He uses the former to prove that $(H_{\mu}) \supseteq c \oplus x$ and the latter to obtain a regular A with $(A) = c \oplus x$; he then shows that $(A) \supseteq (H_{\mu})$. In the present note we give a short alternative proof which is both simple and direct.

Proof of the Theorem. We have

$$\mu_n = \frac{n-a}{n+1} = 1 - \frac{a+1}{n+1}.$$
299

Hence H_{μ} is in fact the matrix method $H_{\mu}=I-(a+1)C_1$ where I is the identity and C_1 is the Cesàro matrix of order 1. Now, as explicitly stated in [2], it is easy to see from Hardy's proof (see [1], Theorem 52) of Mercer's theorem that u= $\{u_n\} \in (H_{\mu})$ implies $u_n = Kx_n + s_n$ where K is a constant and $\{s_n\} \in c$; i.e. $u \in c \oplus x$. Thus, $(H_{\mu}) \subseteq c \oplus x$. We prove the reverse inclusion relation by direct calculation as follows. Let $t = \{t_n\} = H_{\mu}x = [I-(a+1)C_1](x)$. Then

(1)
$$t_n = \frac{\Gamma(n+1)}{\Gamma(n+1-a)} - \frac{a+1}{n+1} \sum_{\nu=0}^n \frac{\Gamma(\nu+1)}{\Gamma(\nu+1-a)}$$

Now, if a is not a positive integer, then

(2)

$$\frac{\Gamma(\nu+1)}{\Gamma(\nu+1-a)} = \frac{(\nu+1)\Gamma(\nu+1) - \nu\Gamma(\nu+1)}{\Gamma(\nu+1-a)}$$

$$= \frac{\Gamma(\nu+2)}{\Gamma(\nu+1-a)} - \frac{(\nu-a+a)\Gamma(\nu+1)}{\Gamma(\nu+1-a)}$$

$$= \frac{\Gamma(\nu+2)}{\Gamma(\nu+1-a)} - \frac{\Gamma(\nu+1)}{\Gamma(\nu-a)} - \frac{a\Gamma(\nu+1)}{\Gamma(\nu+1-a)}$$

Hence

(3)
$$t_n = \frac{\Gamma(n+1)}{\Gamma(n+1-a)} - \frac{a+1}{n+1} \sum_{\nu=0}^n \frac{1}{a+1} \left\{ \frac{\Gamma(\nu+2)}{\Gamma(\nu+1-a)} - \frac{\Gamma(\nu+1)}{\Gamma(\nu-a)} \right\}$$

(4)
$$= \frac{\Gamma(n+1)}{\Gamma(n+1-a)} - \frac{1}{n+1} \left\{ \frac{\Gamma(n+2)}{\Gamma(n+1-a)} - \frac{\Gamma(1)}{\Gamma(-a)} \right\}$$
$$= 0 + o(1) = o(1).$$

Thus, $(H_{\mu}) \supseteq c \oplus x$, if *a* is not a positive integer. If *a* is a positive integer then $x_{\nu}=0$ for $\nu < a$ and $x_a=a+1$; hence $t_n=0$ for $n \le a$. So for n > a we write $\sum_{0}^{n} x_{\nu}$ as $x_a + \sum_{a+1}^{n} x_{\nu}$. Then the symbol $\sum_{\nu=0}^{n}$ in (3) will be replaced by $x_a + \sum_{\nu=a+1}^{n}$ and the symbol $\Gamma(1)/\Gamma(-a)$ in (4) by 0. We see thus that if *a* is a positive integer, then $t_n=0$ for all *n*. Thus whatever be *a* with $\Re e a > 0$, we have $(H_{\mu}) \supseteq c \oplus x$. This completes the proof of the theorem.

References

1. G. H. Hardy, Divergent series (Oxford, 1949).

2. A. Jakimovski and M. R. Parameswaran, Generalized Tauberian theorems for summability—(A), Quart. J. Math. Oxford (2) 9 (1958), 290–298.

3. M. R. Parameswaran, Remark on the structure of the summability field of a Hausdorff matrix, Proc. Nat. Inst. Sci. India (Sec. A) 27 (1961), 175–177.

4. B. E. Rhoades, Some structural properties of Hausdorff matrices, Bull. Amer. Math. Soc. 65 (1959), 9-11.

300

1975]

5. — , Size of convergence domains for known Hausdorff prime matrices, J. Math. Analysis and Appl. 19 (1967), 457-468.

6. K. Zeller, Merkwürdigkeiten bei Matrixverfahren; Einfolgenverfahren, Arch. Math. 4 (1953), 1-5.

7. K. Zeller and W. Beekman, Theorie der Limitierungsverfahren (Berlin 1958/1970).

DEPT. OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA CANADA.