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A NOTE ON SOME PRIME HAUSDORFF 
METHODS OF SUMMABILITY 

BY 

M. R. PARAMESWARAN 

Given a matrix A = (ank) (n, k=0,1, 2 , . . .), let (A) denote the set of all sequences 
x={xk} such that {An(x}} e c where An(x)=^[k*L0 ankxk (w^O) and c denotes the 
set of all convergent sequences. It is well known (see e.g. Zeller [6] or Zeller and 
Beekmann [7], p. 48) that given an unbounded sequence x, there exists a regular 
(=permanent) matrix A with ank=0 for k>n (and indeed with ann9^0) such that 
(A)=c(Bx, the linear space spanned by c and x. We call A an Einfolgenverfahren. 
(See [7].) In [4] Rhoades considered, inconclusively, the question whether there 
exists a Hausdorff matrix H such that (H)=c(&x (for arbitrary unbounded se
quence x). The present author showed in [3] that there are many sequences x for 
which there exist no Hausdorff methods H with (H)=cÇBx and suggested the pos
sibility that there exist pairs [H, x], x unbounded and H Hausdorff, such that 
(H)=c(&x. Rhoades [5] settled this question by proving the following result. 

THEOREM. Let H^ be the Hausdorff method defined by the moment sequence 
{/Ltn} where /j,n=(n—aln+l)(&e 0>O) and let x={xn} be the sequence 

Y T(n+1) 
X*~r(n-a + iy 

where we set xn=0 ifn—a+\ is 0 or a negative integer. Then (H^=c®x. {Note 
that ifvn=—juja, then Hv is a regular Hausdorff matrix with (/fv)=(iir / i)=c0x.} 
By well known elementary properties of Hausdorff methods, ifÀ={Àn} is the moment 
sequence where Xn—(n—ajn+b), &e #>0 , ^ è > 0 , then (H))={Hlù and hence 
( i /A)=c0x by the Theorem. This shows that all the known primes in the Banach 
algebra of all multiplicative Hausdorff methods are in fact Einfolgenverfahren. 
{For the definitions, terminology and classic results, see Hardy [1] or Zeller and 
Beekmann [7].} 

Rhoades' proof of the Theorem depends on deep results on Hausdorff methods 
as well as on Zeller's technique for constructing Einfolgenverfahren. He uses the 
former to prove that (H^^ctBx and the latter to obtain a regular A with (A)= 
c®x; he then shows that (^4)^ (ifM). In the present note we give a short alternative 
proof which is both simple and direct. 

Proof of the Theorem. We have 

n — a . a + 1 

n + 1 n + 1 
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Hence H^ is in fact the matrix method J^=7—(a+l )C x where / is the identity 
and C1 is the Cesàro matrix of order 1. Now, as explicitly stated in [2], it is easy 
to see from Hardy's proof (see [1], Theorem 52) of Mercer's theorem that u= 
{un} e (H^) implies un=Kxn+sn where K is a constant and {sn} e c; i.e. u e <:©*. 
Thus, (H^^cQx. We prove the reverse inclusion relation by direct calculation 
as follows. Let t={tn}=H^x= [ / - ( a+ l )CJ (^ ) . Then 

( 1 ) t n = IXn + l) _ £ ± 1 | ^ W L 

r(n + l - a ) n + lv= 0r(v+l-f l ) 

Now, if a is not a positive integer, then 

r ( v + l ) __ ( y + l ) r ( y + l ) - y r ( v + l ) 

r(v+i-fl) ro+i-a) 
^ r(r+2) (yfl+fl)r(v+i) 

r ( v + l ~ a ) r(v+l—a) 

= r(v+2) r(v+i) flr(y+i) 
T(v+l-a) T{v-a) T(v+l-a)' 

Hence 

( 3 ) , T(n + 1) 0 + 1 ^ 1 f T(v+2) r ( y + l ) j 

(4) = r(n+i) i_ f r(n+2) r(i) j 

= 0+*( l ) = o(l). 

Thus, (Hy)^.c®x, if a is not a positive integer. If a is a positive integer then 
x v =0 for v<a and x a = a + l ; hence tn=0 for «<#. So for n>a we write 2o*v 
as x a +2r+i xv- Then the symbol ^ÎLo *n (3) will be replaced by *a+2v=a+i anc* 
the symbol Y{\)jY{—a) in (4) by 0. We see thus that if a is a positive integer, 
then tn=0 for all n. Thus whatever be a with 3Se a>0, we have (H^cQx. This 
completes the proof of the theorem. 
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