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GROUPS COVERED BY FINITELY MANY NILPOTENT SUBGROUPS

GERARD ENDIMIONI

Let G be a finitely generated soluble group. Lennox and Wiegold have proved
that G has a finite covering by nilpotent subgroups if and only if any infinite set
of elements of G contains a pair {x, y} such that (z, y) is nilpotent. The main
theorem of this paper is an improvement of the previous result: we show that G has
a finite covering by nilpotent subgroups if and only if any infinite set of elements of
G contains a pair {xj y} such that [a!,nj/] — 1 for some integer n = n(x, y) ^ 0.

1. INTRODUCTION AND RESULTS

Let x and y be elements of a group G and let n be a non-negative integer. As
usual, [x,ny\ is denned inductively by [x,oy] — x and [x,n+iy] — [[x,ny],y], where
[i, y\ = x~ly~1xy. We say that G is covered by a family of subgroups [Hi)i^j if
G = (J Hi. The family {Hi)i^j is called a covering of G. The following characterisation

iei
for finitely generated soluble groups covered by finitely many nilpotent subgroups was
obtained by Lennox and Wiegold [4]:

THEOREM A. Let G be a finitely generated soluble group. Then the following

properties are equivalent:

(i) G is Unite-by-nilpotent (that is, G has a Unite covering by nilpotent

subgroups, by Lemma 5 below).

(ii) Any infinite set of elements of G contains a pair {x, y} which generate a

nilpotent subgroup.

The main purpose of this note is to improve the previous result. We shall prove:

THEOREM 1 . Let G be a finitely generated soluble group. Then the following

properties are equivalent:

(i) G has a finite covering by nilpotent subgroups.

(ii) Any infinite set of elements of G contains a. pair {x, y} such that [x,ny] =

1 for some integer n — n(x, y) ^ 0.
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Note that this theorem is not true for an arbitrary group: the standard wreath
product of a group of prime order p and an infinite elementary abelian p-group satisfies
(ii) (this group is locally nilpotent) but does not satisfy (i) by Lemma 5 below (the
centre is trivial).

The origin of the previous results is a problem of P. Erdos [6]. Associate with a
group G a graph T(G) in this way: the vertices of T(G) are the elements of G, and
two vertices x, y are connected by an edge if and only if \x, y] ^ 1.

Suppose that T(G) contains no infinite complete subgraph (that is, any infinite set

of elements of G contains a pair {x, y} such that \x, y] = 1); is there then a finite

bound on the cardinality of complete subgraphs of T(G) ?

Neumann [6] solved the problem in the affirmative by proving that if F(G) contains
no infinite complete subgraph, then G has a finite covering by abelian subgroups.
Therefore, if G is covered by n abelian subgroups, the order of a complete subgraph of
T(G) is at most n. Now consider the graph T*(G), where the vertices are the elements
of G, and two vertices x, y are connected by an edge if and only if [z,ni/] ^ 1 and
[y,nx] ^ 1 for every integer n > 0. By observing that F*(G) contains no infinite
complete subgraph if and only if G satisfies the property (ii) of Theorem 1, we obtain
at once the following consequence of the Theorem 1:

COROLLARY. Let G» be a finitely generated soluble group. Suppose that the

graph F*(G) defined above contains no infinite complete subgraph. Then, there exists

a finite bound on the cardinality of complete subgraphs of T*(G).

Now, consider an infinite group G. As was observed in [5], if for every pair {X, Y}

of infinite subsets of G there exists x £ X, y £ Y such that [x, y] — 1, then G is
abelian. For finitely generated soluble groups, this result was extended in this way:

THEOREM B . [9] Let k > 0 be an integer. Let G be an infinite finitely generated

soluble group such that, whenever X, Y are infinite subsets of G, there exist x £ X,

y £ y such that [x,fcy] = 1. Then G is a k-Engel group (that is, [x,ky] = 1 for all x, y

in G)

By a result of Gruenberg [2], it is well-known that every finitely generated soluble
Engel group is nilpotent. Therefore, under the assumptions of Theorem B, the group
G is nilpotent. As a consequence of Theorem 1, we shall prove a result of a similar
nature:

THEOREM 2 . Let G be an infinite finitely generated soluble group such that,

whenever X, Y are infinite subsets of G, there exist x £ X, y £ Y and an integer

n ^ 0 such that [z,ny] = 1 • Then G is nilpotent.
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2. SOME PRELIMINARY LEMMAS

Let u be an element of a group G. An element x of G is called a right Engel

element with respect to u if there exists an integer n ^ 0 such that [z,nt4] = 1- Let
RU(G) denote the set of all such elements. An element of R(G) :— f] it,,(G) is called

a right Engel element. If the derived subgroup G' is nilpotent (in particular if G is

metabelian), then Ru(G) is a subgroup of G [7].

LEMMA 1 . Let u, u i , . . . , U& be arbitrary elements of a metabelian group G.
Then

(i) RU.1[G) = RU{G).
(ii) fl t-i{Rvl(G)n...nR»k(G)}tc n <-1fl.1...

t€G t£G

(iii) If G = {w\, ..., wq) is finitely generated, we have

R(G)= f]t-1{Rwl(G)n...nRWq(G)}t.
t€G

PROOF: (i) It suffices to show the relation

for arbitrary u,x £ G and n ^ 0. Observe that our relation is true for n 6 {0, 1} and

suppose that [ i , , . ^ " 1 ] = un~1[x,n_1u](~1) u~n+1 for an integer n > 1. Then

Since [x^-iw] commutes with its conjugates, we can write

But [[x,n_iu], u"1] = u[[z)n_iit], u]~1u~1, hence we obtain

(ii) We show the assertion in the case k = 2: the assertion in the general case will
follow at once by an easy induction on k. For convenience denote Ui by u and «2 by
v. Let x be an element of f) t-1{Ru{G)nRv{G)}t. Since f| t-1{Ru(G)nRv{G)}t is

1GG t€G

a normal subgroup of G, it suffices to prove that x belongs to RuV(G). First note that
[z, uv) is an element of f| t~1{Rtl(G) H Rv(G)}t. Thus there exists an integer n > 0
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such that [a;, uv,nu] = [x, uv,nv] = 1. From the relations [y, uv] = [y, u][y, v][y, u, v]

and [y, u, v] = [y, v, u](y g G'), we deduce that [a;,2nui;] is a product of commutators
of the form [a;, uv,Tu',,v'], where r + s ^ 2n — 1, r ^ s and {u', v'} = {it, v}. But the
previous inequalities imply r ^ n, hence [a;,2nwu] = 1 and so x £ RUv{G) as required.

(iii) Clearly, we have the inclusion R(G) C f| t~1{Rwl(G) D . . . D RwJG)}t.
tea

Conversely, to prove the inclusion f| t~1{RWl(G)D.. .nRu,q(G)}t C R(G), it must be
teG

shown that f) t'1 {Rwl(G) n.. .r\RwJG)}i C RU{G) for an arbitrary element u£G.
tec

Write u in the form of a product of elements in {wi, ..., wq} U {w^1, . . . , w~x} and
apply (i) (ii): it follows that

^(G) n ... n ^(G)}* c f|
t€G

Hence f| t " 1 - ^ (G) n . . . D RwJG)}t C i?u(G), so (iii) is proved. D
tec

LEMMA 2 . Let G be a metabelian group satisfying the property (ii) of Theorem

1. Then

(i) .RU(G) has finite index in G for every u E G.

(ii) If G is finitely generated, R{G) has finite index in G.

PROOF: (i) Suppose there exists u £ G such that \G: RU(G)\ is infinite and
choose a right transversal T of RU(G) in G. If x~xux = y~xuy (x, y £ T), then
[xy~l, u] = 1, hence x = y since zy"1 £ .RU(G). Therefore, the set of conjugates of u

by elements of T is infinite. Hence there exist x, y £ T (x ^ y) and n > 0 such that
[a;~1ua;,n3/~1>iij/] = 1. We have

1 = [yx'1 uxy'1 ,nu) = \u[u, xy~l],nu] = [[«, zj/"1],^]

] ~ 1

,n
+1u]

and so xy~x £ .RU(G), a contradiction.

(ii) Suppose that G = (wlt ..., wq). By (i), every subgroup RWl (G), . . . , R

has finite index in G, hence also RWI{G) n . . . D Rwq{G) and f| ^ { ^ ( G ) n . . . D
16G

^ ^ ( G ) } ^ . Using Lemma 1 (iii), we obtain the required result. D

The following result is due to Lennox [4]:

LEMMA 3 . Let G be a finitely generated soluble group and A an abelian normal

subgroup such that G/A is polycyclic and (a, x) is polycyclic whenever a 6 A, x 6 G.
TAen G is polycyclic.
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LEMMA 4 . Let G be a finitely generated soluble group satisfying the property

(ii) of Theorem 1. Then G is polycyclic.

PROOF: Denote by d the derived length of G. First we show the lemma in the
case d ^ 2. If d ^ 1, the result is obvious. Suppose now that d = 2. By Lemma 2,
\G: R(G)\ is finite; hence R(G) is finitely generated. Moreover R(G) is a soluble Engel
group and hence R(G) is nilpotent [2]. Therefore we can say that G is poly cyclic-by-
polycyclic so G is polycyclic. Finally, use induction on d in the general case. If d > 0,
put A = G ^ " 1 ) . It follows from the inductive hypothesis that G/A is polycyclic.
Clearly, the derived length of (a, a;) is at most 2 whenever a 6 A, x 6 G, hence (a, x)

is polycyclic. Lemma 3 permits us to conclude that G is polycyclic. D

Finally, we shall need the following characterisation of groups covered by finitely

many nilpotent subgroups (see [10] for the equivalence of (i) and (ii) and [3] for the

equivalence of (ii) and (iii)):

LEMMA 5 . For an arbitrary group G, the following properties are equivalent:

(i) G has a finite covering by nilpotent subgroups.
(ii) For some integer c ̂  0, the term Cc(G) of the upper central series of G

has finite index in G.
(iii) G is finite-by-nilpotent.

3. PROOFS OF THE THEOREMS

PROOF OF THEOREM 1: We have only to show that (ii) implies (i) since the
converse is clearly true. Use induction on the derived length d of G, the case d = 0
being trivial. For d > 0, it follows from the inductive hypothesis and Lemma 5 that
there exists an integer c > 0 such that \G/G^'1'': (c(G/G<-d-1))\ < oo. But in a
finitely generated soluble group, the hypercentre coincides with the set of right Engel
elements [1]; hence \G/G^d~^: R(G/G<'d~1'>)\ is finite. Let e denote the exponent of
the quotient group {G / G^-^) / R(G / G^'^) . Therefore, for all x, y E G, there exists
an integer m ^ 0 such that [a;e,m2/] 6 G^d~l\ The subgroup H = {[xe,my], y) is
clearly metabelian. Hence R(H) has finite index in H by Lemma 2. Denote by / the
exponent of H/R(G). Thus there exists an integer n Jj 0 such that [[a;e,mj/]̂ )n!/] — 1-
Since [xe,mj/] commutes with its conjugates, we obtain

l[*e,my}f,ny} = [[xe,my],ny}f = l.

In other words, [xe,m+ny] belongs to the torsion group r(G(-d~1'>) of G^d'l). This
means that the quotient group {G/r(G(d~1))}/E(G/r(G(d~1))) has exponent dividing
e and so is finite. But i?(G/r(G(<£-1))) coincides with the hypercentre of G/r(G(-d-^)
by the result quoted above. Moreover, G/r(G^d~1^) satisfies the maximal condition
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on subgroups by Lemma 4. Therefore we have R(G/T(G<-d~1))) = Cc> ifl/T{G^-^))

for some integer c' ^ 0 and \G/T{G^'^) : Cc '(G/r(G( < '-1 ))) | is finite. We deduce

from Lemma 5 that G/r{G^d~1^) is finite-by-nilpotent. But G satisfies the maximal

condition (Lemma 4) hence r(G^d~1^) is finite and so G is finite-by-nilpotent. Finally,

Lemma 5 shows that G has a finite covering by nilpotent subgroups, as required. D

P R O O F OF T H E O R E M 2: It suffices to show that (*(G) - G, where (*{G) is the

hypercentre of G. Clearly, G satisfies the property (ii) of Theorem 1, hence G has a

finite covering by nilpotent subgroups. It follows from Lemma 5 that £*(G) has finite

index in G. In particular, (*(G) is infinite. Let x, y be elements of G. Subsets a:£*(G)

and y£*(G) are infinite, hence there exist u, v £ (*(G), n ^ 0, such that [xu,nyw] = 1.

This implies [x,ny] £ C*(G), so G/C,*{G) is an Engel group. But it is well-known that

finite Engel groups are nilpotent (for example [8, 7.21]), so G/(*(G) is nilpotent. Since

the centre of G/(*{G) is trivial, we obtain £*(G) = G. D
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