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GROUPS COVERED BY FINITELY MANY NILPOTENT SUBGROUPS

GERARD ENDIMIONI

Let G be a finitely generated soluble group. Lennox and Wiegold have proved
that G has a finite covering by nilpotent subgroups if and only if any infinite set
of elements of G contains a pair {z, y} such that {z, y) is nilpotent. The main
theorem of this paper is an improvement of the previous result: we show that G has
a finite covering by nilpotent subgroups if and only if any infinite set of elements of
G contains a pair {z, y} such that [z,,y] =1 for some integer n = n(z, y) > 0.

1. INTRODUCTION AND RESULTS

Let z and y be elements of a group G and let n be a non-negative integer. As
usual, [z,,y] is defined inductively by [z,0y] = z and [z,nt1y] = [[z,ny], y], where
[z, y] = z 'y lzy. We say that G is covered by a family of subgroups (Hi)er if
G = U H;. Thefamily (H;);c, is called a covering of G. The following characterisation
for ﬁlzlei{ely generated soluble groups covered by finitely many nilpotent subgroups was
obtained by Lennox and Wiegold [4]:

THEOREM A. Let G be a finitely generated soluble group. Then the following
properties are equivalent:
(i) G is finite-by-nilpotent (that is, G has a finite covering by nilpotent
subgroups, by Lemma 5 below).
(i1) Any infinite set of elements of G contains a pair {z, y} which generate a
nilpotent subgroup.

The main purpose of this note is to improve the previous result. We shall prove:

THEOREM 1. Let G be a finitely generated soluble group. Then the following

properties are equivalent:

(i) G has a finite covering by nilpotent subgroups.
(i1) Any infinite set of elements of G contains a pair {z, y} such that [z,,y] =

1 for some integer n = n(z, y) > 0.
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Note that this theorem is not true for an arbitrary group: the standard wreath
product of a group of prime order p and an infinite elementary abelian p-group satisfies
(ii) (this group is locally nilpotent) but does not satisfy (i) by Lemma 5 below (the
centre is trivial).

The origin of the previous results is a problem of P. Erdds [6]. Associate with a
group G a graph I'(G) in this way: the vertices of I'(G) are the elements of G, and
two vertices z, y are connected by an edge if and only if [z, y] # 1.

Suppose that I'(G) contains no infinite complete subgraph (that is, any infinite set
of elements of G contains a pair {z, y} such that [z, y| = 1); is there then o finite
bound on the cardinality of complete subgraphs of T'(G) ?

Neumann [6] solved the problem in the affirmative by proving that if I'(G) contains
no infinite complete subgraph, then G has a finite covering by abelian subgroups.
Therefore, if G is covered by n abelian subgroups, the order of a complete subgraph of
I'(G) is at most n. Now consider the graph I'*(G), where the vertices are the elements
of G, and two vertices z, y are connected by an edge if and only if [z,,y] # 1 and
ly,nz] # 1 for every integer n > 0. By observing that I'*(G) contains no infinite
complete subgraph if and only if G satisfies the property (ii) of Theorem 1, we obtain
at once the following consequence of the Theorem 1:

COROLLARY. Let G be a finitely generated soluble group. Suppose that the
graph I'*(G) defined above contains no infinite complete subgraph. Then, there exists
a finite bound on the cardinality of complete subgraphs of I'*(G).

Now, consider an infinite group G. As was observed in [5], if for every pair {X, Y}
of infinite subsets of G there exists ¢ € X, y € Y such that [z,y] = 1, then G is
abelian. For finitely generated soluble groups, this result was extended in this way:

THEOREM B. [9] Let k > 0 be aninteger. Let G be an infinite finitely generated
soluble group such that, whenever X, Y are infinite subsets of G, there exist z € X,
y €Y such that [z,ky] = 1. Then G is a k-Engel group (that is, [z,;y] =1 forall z, y
in G)

By a result of Gruenberg [2], it is well-known that every finitely generated soluble
Engel group is nilpotent. Therefore, under the assumptions of Theorem B, the group
G is nilpotent. As a consequence of Theorem 1, we shall prove a result of a similar
nature:

THEOREM 2. Let G be an infinite finitely generated soluble group such that,
whenever X, Y are infinite subsets of G, there exist z € X, y € Y and an integer
n > 0 such that [z,,y] = 1. Then G is nilpotent.

https://doi.org/10.1017/50004972700013575 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013575

i3] Nilpotent subgroups 461

2. SOME PRELIMINARY LEMMAS

Let u be an element of a group G. An element z of G is called a right Engel
element with respect to u if there exists an integer n > 0 such that [z,,u] = 1. Let

R.(G) denote the set of all such elements. An element of R(G) := [} Ru(G) is called
u€EG
a right Engel element. If the derived subgroup G’ is nilpotent (in particular if G is

metabelian), then R,(G) is a subgroup of G [7].

LEMMA 1. Let u,uy,...,ur be arbitrary elements of a metabelian group G.
Then

(i) R.-1(G) = R.(G).
@) N t{Ru,(G)N...N Ry, (G)} C tht_lRul...uh(G)t.

teEG
(i) If G = (w, ..., w,) is finitely generated, we have

R(G) =[]t {Ruw,(G) N...N Ry (G)}.

t€G
PROOF: (i) It suffices to show the relation
[zmu-l] = un[zmu](—l)"u—n

for arbitrary u,z € G and n > (. Observe that our relation is true for n € {0, 1} and

suppose that [z,,_ju™!] = u"—l[w,n_lu](_l)n—lu_"“ for an integer n > 1. Then

[2me ] = (o107, 87 = [0 2 w] T T, w7

-1 -t 1y —n4l
=1 Y[zymoru) Y, w e
Since [z,5—1u] commutes with its conjugates, we can write

[z,nu_I] = u"_l[[z,n_lu], u_l](_l)"_lu_"'*'l.

But {[z,n—1u], v7}] = u[[z,n—1u], u] "'z, hence we obtain

n—1
(zmu™] = u™ Hu[[z,n1u], w] Tu "D

T = g, u) Dy,
(ii) We show the assertion in the case k = 2: the assertion in the general case will
follow at once by an easy induction on k. For convenience denote u; by u and u; by

v. Let z be an element of () t™{R,(G)NR,(G)}. Since (] t ' {R.(G)NR,(G)}t is
1€G teG

a normal subgroup of G, it suffices to prove that z belongs to R,,(G). First note that

[z, uv] is an element of () t7!{R.(G) N R,(G)}t. Thus there exists an integer n > 0
teG
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such that [z, uv,,u] = [z, uv,nv] = 1. From the relations [y, wv] = [y, u|[y, vy, u, v]
and [y, u, v] = [y, v, u](y € G'), we deduce that [z,2,uv] is a product of commutators
of the form [z, wv,,u',,v'], where r+35>2n—1, r > s and {v', v'} = {u, v}. But the
previous inequalities imply r > n, hence [z,3,uv] =1 and so z € Ru(G) as required.

(iii) Clearly, we have the inclusion R(G) € [ t™'{Ry,(G) N ... N Ry, (G)}t.
t€G
Conversely, to prove the inclusion [} t7'{Ry,(G)N...N Ry, (G)}t C R(G), it must be
teG

shown that (] ¢7'{Ry1(G)N...N Ry, (G)}t C Ry(G) for an arbitrary element v € G.
teG
Write » in the form of a product of elements in {w;, ..., wo} U {w?, ..., w;'} and

apply (i) (ii): it follows that

()t {Rur(G)N ... N Ry (G)} C [t Ru(G)-
teG teG

Hence ] t7'{Ryw,(G)N...N Ry, (G)}t C Ry(G), so (iii) is proved. 0
teG

LEMMA 2. Let G be a metabelian group satisfying the property (ii) of Theorem
1. Then
(1) R.(G) has finite index in G for every v € G.
(ii)) If G is finitely generated, R(G) has finite index in G.

PROOF: (i) Suppose there exists u € G such that |G: R,(G)| is infinite and
choose a right transversal T of R,(G) in G. I z7'uz = y~uy (z,y € T), then
[zy~!
by elements of T is infinite. Hence there exist z, y € T (z # y) and n > 0 such that

, 4] =1, hence z = y since zy~! € R,(G). Therefore, the set of conjugates of u

[z 7 uz,,y " 'uy] = 1. We have

1

1= [yz luey ™ nu) = [ufu, 2y |y = [[u, 2y )nul

= [[zy—la u]_lmu] = [[zy_la u]mu]_l = [wy-lm.+1'u']_-1

and so zy~! € Ry(G), a contradiction.
(ii) Suppose that G = (wy, ..., wq). By (i), every subgroup Ry, (G), ..., Ru,(G)
has finite index in G, hence also Ry, (G)N...N Ry, (G) and () t7{Ry, (G)N...N
. teG
R, (G)}t. Using Lemma 1 (iii), we obtain the required result. 0
The following result is due to Lennox [4]:

LEMMA 3. Let G be a finitely generated soluble group and A an abelian normal
subgroup such that G/A is polycyclic and (a, z} is polycyclic whenever a € A, z € G.
Then G is polycyclic.
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LEMMA 4. Let G be a finitely generated soluble group satisfying the property
(ii) of Theorem 1. Then G is polycyclic.

PRrROOF: Denote by d the derived length of G. First we show the lemma in the
case d < 2. If d € 1, the result is obvious. Suppose now that d = 2. By Lemma 2,
|G: R(G)] is finite; hence R(G) is finitely generated. Moreover R(G) is a soluble Engel
group and hence R(G) is nilpotent {2]. Therefore we can say that G is polycyclic-by-
polycyclic so G is polycyclic. Finally, use induction on d in the general case. If d > 0,
put A = G4, It follows from the inductive hypothesis that G/A is polycyclic.
Clearly, the derived length of (g, ¢} is at most 2 whenever a € 4, =z € G, hence {(q, z)
is polycyclic. Lemma 3 permits us to conclude that G is polycyclic.

Finally, we shall need the following characterisation of groups covered by finitely
many nilpotent subgroups (see [10] for the equivalence of (i) and (ii} and [3] for the
equivalence of (ii) and (iii)):

LEMMA 5. For an arbitrary group G, the following properties are equivalent:

(i) G has a finite covering by nilpotent subgroups.
(ii) For some integer ¢ > 0, the term (.(G) of the upper central series of G
has finite index in G.
(i) G is finite-by-nilpotent.

3. PROOFs OF THE THEOREMS

Proor oF THEOREM 1: We have only to show that (ii) implies (i) since the
converse is clearly true. Use induction on the derived length d of G, the case d = 0
being trivial. For d > 0, it follows from the inductive hypothesis and Lemma 5 that
there exists an integer ¢ > 0 such that IG/G("‘l): CC(G/G(d"l))I < oo. Butin a
finitely generated soluble group, the hypercentre coincides with the set of right Engel
elements [1]; hence |G/G(*~1): R(G/G(4~V)| is finite. Let e denote the exponent of
the quotient group (G/G4~1)/R(G/G(4=V). Therefore, for all z, y € G, there exists
an integer m > 0 such that [¢®,,y] € G{4~1). The subgroup H = ([z°,my], ¥) is
clearly metabelian. Hence R(H) has finite index in H by Lemma 2. Denote by f the
exponent of H/R(G). Thus there exists an integer n > 0 such that [[z°,,y]/,ny] = 1.

Since [z®,my] commutes with its conjugates, we obtain

“ze’my]fmy] = “""e’my]my]f =1

In other words, [z%,m+ny] belongs to the torsion group T(G(d‘l)) of G{4-1)  This
means that the quotient group {G/7(G~V)}/R(G/7(G(¢~V)) has exponent dividing
e and so is finite. But R(G/T (G(d_l))) coincides with the hypercentre of G/T(G(d"l))
by the result quoted above. Moreover, G/T(G(d_l)) satisfies the maximal condition
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on subgroups by Lemma 4. Therefore we have R(G/T(G(d"l))) = (g (G/T(G(d_l)))
for some integer ¢' > 0 and |G/T(GY): (,(G/T(G¥~V))| is finite. We deduce
from Lemma 5 that G/r (G(d‘l)) is finite-by-nilpotent. But G satisfies the maximal
condition (Lemma 4) hence T(G(d_l)) is finite and so G is finite-by-nilpotent. Finally,

Lemma 5 shows that G has a finite covering by nilpotent subgroups, as required. 0

PRrOOF OF THEOREM 2: It suffices to show that (*(G) = G, where (*(G) is the
hypercentre of G. Clearly, G satisfies the property (ii) of Theorem 1, hence G has a
finite covering by nilpotent subgroups. It follows from Lemma 5 that {*(G) has finite
index in G. In particular, (*(G) is infinite. Let z, y be elements of G. Subsets z(*(G)
and y(*(G) are infinite, hence there exist u, v € (*(G), n > 0, such that [zu,,yv] =1.
This implies [z,,y] € (*(G), so G/(*(G) is an Engel group. But it is well-known that
finite Engel groups are nilpotent (for example [8, 7.21]), so G/{*(G) is nilpotent. Since
the centre of G/(*(G) is trivial, we obtain {*(G) = G. 0
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