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SIMPLICIAL QUADRATIC FORMS 

BARRY MONSON 

0. Introduction. Simplicial quadratic forms (cf. Definition 1.4), and 
various equivalent forms, have occasionally been studied in geometry [8], 
and in number theory [9], [10], in connection with the extremal properties 
of integral quadratic forms. Our investigations, which employ simple 
techniques from graph theory and geometry, partly continue both those 
of Coxeter [5], who introduced the graphs described in Section 1, and 
Vinberg [20], [21], who described an algorithm for determining a funda­
mental region for a discrete group acting on spherical, Euclidean, or 
hyperbolic space. After a preliminary discussion of reflexible forms and 
the Caley-Klein model for (n — 1)-space (1.2), we define a simplicial 
form and its graph. Having enumerated them completely, we turn in 
Section 2 to their equivalence, which is related to a geometric dissection. 
The unit group for each simplicial form can then be determined from 
Theorem 3.7. 

I wish to thank Professor H. S. M. Coxeter for many helpful ideas, and 
Professor G. Maxwell and the referee for suggesting numerous improve­
ments. 

1. Simplicial forms. Let G be a Coxeter group with presentation 

(1.1) (Ru . . . , Rn\(RtRjy<i = / , U hj ^ n) 

where each pu = 1 and ptj = oo if there is no corresponding relation. 
It is known that G may be realized as a subgroup of GL(Rn) [2, Chapter 
v, § 4]. Indeed, fix a basis {Ci, . . . , cn\ for Rw and define on Rw a sym­
metric bilinear form ( • , • ) with (c*, Cj) = — 2 cos ir/pij. Take Ri = 
R(ct), where for any u £ Rnwithô = (u, u) ^ 0, we define 

R(u) : w -> w - 20-1(w, U )u , (w £ Rn). 

The reflection R(u) is an involutory automorphism of ( • , • ). 
Naturally, G is called crystallographic if it leaves invariant some n-

dimensional lattice L C Rw. In [14, Proposition 1.3], Maxwell shows that 
L contains a root lattice Q(B) generated by a basic system B = {d, . . . , en} 
of roots for G: that is, for 1 ^ i, j ^ n, there are bt > 0 with e* = bid 
and Cjt = bj(Cj, c*)/&* G Z. Thus, the Cartan matrix C = [cjt] is integral. 
With respect to the basis B, Ri : e ; —> ey — c;*e*, so that Q(B) is also 
G-invariant. 
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If we take u = X) ^*e* and v = £ ^ e ; we may define a bilinear form 

n n 

(u, v) = 1] Sw^y, 
where atj = (e*, e^). Since a** = 26^, c^ = 2a f ; /a j ;- and au/a^j = 
Cij/cju we may suitably rescale L so as to obtain all aiU 2atj G Z. Hence, 
we may assume below t h a t / ( u ) = (u, u ) is an integral quadra t ic form. 
Since each Rt is a unit (or unimodular automorphism) of/ , the group 
G = G(f) is a subgroup of €(j), the group of all units f o r / . T h e sym­
metry of the lattice Q(B) under Rh . . . , Rn def ines / as a reflexible form 
[5, p . 403], a basis dependent notion. 

For forms of suitable signature, G may be considered as act ing on 
Xn~l, one of (n — 1)-dimensional spherical space S n _ 1 , Euclidean space 
E n _ 1 , or hyperbolic space H n _ 1 , as modelled below using the dual space 
Rn . Indeed, we set Xn~l = K/K+ for a suitable cone 

K ç M = {x G R n | x ^ Ô}, 

where R + denotes the positive reals. An ordinary point of Xn~l is thus a 
ray R + x along some vector x G K. For notat ional convenience we 
represent R + x by x, and assume when necessary t h a t coordinates are 
positive homogeneous; we also use ( • , • ) to denote both the pairing 
x ( u ) = (x, u ) (for x £ Rn, u G Rn) and, in the non-degenerate cases, 
the adjoint form defined natural ly on R \ 

1.2. The Cayley-Klein Model for X"-1 [6, § 12.1, § 14.2]. 
(a) For S n _ 1 , ( • , • ) is positive definite and K = M. 
(b) For E n _ 1 , ( • , • ) is positive semidefinite with radical spanned by 

some non-zero m Ç Rn , sCnd K = {x G M\(x, m ) > 0}. W e adjoin to 
E n _ 1 all points a t infinity (for which (x, m ) = 0) . 

(c) For Hw _ 1 , ( • , • ) is non-degenerate with negative inertial index 1 
and K is one component of {x G M\(x, x) < 0}. We adjoin to H n _ 1 both 
Î2, the set of points a t infinity ((x, x) = 0 ) , and all ultra-infinite points 
( ( x , x ) > 0 ) . 

Remarks. Any linear subspace U C Rw defines a (possibly empty) 
ordinary subspace (U P\ K)/K+ of Xn~l, to which we adjoin those non-
ordinary points lying in U. If U contains no ordinary points, it is said 
to be at infinity (ultra-infinite) if it contains a t least one (no) points a t 
infinity. Henceforth, we shall conveniently (and loosely) use U itself to 
refer to the subspace of Xn~l. 

T h e isometries of Xn~l are defined by those automorphisms of ( • , • ) 
which preserve K (under the contragredient action on R n ) . In par t icular 
for each u G Rw with (u, u ) > 0, there is a geometric reflection R(u) 
with mirror 

H(u) = {x G X^KXtU) = 0}. 
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If the coordinates of u are taken as positive homogeneous, then the half-
space 

H~(u) = {x G A ^ K x , u) g 0} 

is well defined. We require the following analytic results [6, § 6.7, § 10.7, 
§12.1]: 

1.3. (a) For (u, u ) , (v, v) > 0, (u, v € R»), U = H(u) H H(v) is 
ordinary, at infinity, or ultra-infinite according as\t\ < 1, = 1, or > 1, where 

t= - ( u , v ) [ ( u , u ) ( v , v ) ] - 1 / 2 . 

When U is ordinary, the dihedral angle containing H~(u) P\ H~(v) is 
arc cos /. 

(b) If the vector x representing an ordinary point is fixed, the distance 
from x to H(u) increases monotonically with (x, u ) 2 / (u , u ) . 

Returning now to our reflexible form/, we have each an > 0, so that 
the hyperplanes Ht = i /(e f) enclose a simplex 

A = {x|(x, e,) ^ 0, 1 ^ i ^ n) 

in which x may denote a non-ordinary point. With respect to the dual 
basis {ë\ . . . , ëw}, the vertex Vt opposite the wall Hi has coordinates 
(0, . . . , —1, . . . , 0). The reflections R\, . . . , Rn in the walls generate 
a group G(f) of isometries on Xn~l. Since G(f) consists of units, it acts 
discontinuously on Xn~l and has some polytope as a fundamental region 
(a general proof is similar to that in the Euclidean case: [1, p. 313]). 

Definition 1.4. The reflexible form / is simplicial if the simplex A is a 
fundamental region of finite volume for G(f). The case H1 is excluded. 

Remark. For the hyperbolic line, there are infinitely many possibilities 
for the indefinite binary form/, for which we have no convenient notation 
(cf. [15]). Henceforth,/will denote a simplicial form, and will be named 
after the corresponding space Xn~l. Any form obtained from/ by setting 
various ul = 0 is said to be derived from/. 

LEMMA 1.5. (a) The form derived from f by setting ul = 0 is positive 
definite (perhaps semi-definite in the hyperbolic case). All further derived 
forms are definite. 

(b) Each derived binary form is one of those listed in Figure 1. 

Proof. Since A has finite volume, each vertex Vt is ordinary (or perhaps 
on 12 in Hw_1). The geometry of the bundle centred at Vt is thus spherical 
or Euclidean [6, p. 197], so that the form derived by setting ul = 0 is 
a spherical or Euclidean simplicial form. Moreover, for i 7^ j} the edge 
VtVj is ordinary, so that / is positive definite on the space 
W = {u g R" |^ = uj = 0} (cf. [6, § 4.5, § 10.8]). 

Now each an > 0; since 

cos (ir/pij) = (cf, C;) = —aijiaaajj)-1'2, 
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a,ij S 0 for i 9e j . By (a),/(w'ef + ujej) is positive (or semi) definite, so 
that diidjj — dij2 > 0 (or = 0). Since also aiU dj:}, 2dij/du G Z, the 
only possibilities are those displayed in Figure 1, for positive integers 
d and b. 

(a) a (u ' ) 2 -h b(uJ)2 a
# #

b ( P j j = 2) 

(b) a [ ( u j ) 2 - qu'uJ 4- q(uJ)2 ] a
# ^ q 

i i o a ^ - — ^ 
(c) a (u ' - uJ)2 * C Z ^ * 

FIGURE 1. Binary Simplicial Forms. 

Each derived binary form is conveniently represented as shown in 
Figure 1 by a graph having a node labelled u a t / ' for each ul [5, p. 415]. 
If two nodes are joined by X branches where X = 0, 1, or 2, then 

d{j = — X max {an/2, djj/2). 

The form/ is likewise represented by a form graph with n labelled nodes; 
the common label u l " is omitted though understood. For instance, 
graph (i) in Figure 4 represents the positive form 

f = x2 — 2xy + 2y2 — 2yz + 2s2. 

Listed next to each form in Figure 1 is pih the period of RfRj (a rota­
tion about the facet Ht P\ Hj of A). Since A is a fundamental region, 
ir/pij is the dihedral angle H~ Pi Hf~\ in particular, we easily compute 
that 

1.6(a) E a c h £ „ G {2,3 ,4 ,6 , oo), ( U t V j g n). 

The semi-definite binary forms in Figure 1, namely form (c) and form (b) 
with g = 4, can occur only with E1 and H2 (by 1.5 (a)). In this case, 
pi} = oo and ir/pij = 0, so that Hi is parallel to Hj. 

Both the group G(f) and the simplex A are represented by another 
sort of graph, the Coxeter diagram, which has a node for each R{. Nodes i 
and j are adjacent when ptj > 2, and the corresponding branch is labelled 
pij, although the common label " 3 " is omitted and understood. 

The simplicial forms can therefore be enumerated by relabelling the 
Coxeter diagrams for simplexes of finite volume in Xn~l with dihedral 
angles ir/pij satisfying 1.6(a). A complete list of such simplexes can be 
extracted from [7, p. 297] and [3]. Take one of these Coxeter diagrams. 
Label nodes i and j (and perhaps double the branch) so as to obtain a 
rational multiple of some form in Figure 1, for which ptj labels the branch 
joining nodes i and j (ptj = 2 indicates no branch). The branch label is 
deleted. In attempting this for each pair of nodes, an inconsistency can 

q = 1,2,3,4 
j Pjj = 3,4,6,°° 

(Pj j = ~ ) 

https://doi.org/10.4153/CJM-1983-007-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-007-5


SIMPLICIAL QUADRATIC FORMS 105 

arise only in traversing a circuit, for which the product of successive ratios 
of node labels yields 2*3 *4W = 1 for integers^, /, m. Given condition 1.6(a), 
a relabelling is therefore possible just when 

1.6(b). No circuit in the Coxeter diagram for A contains an odd number 
of branches marked "4" or an odd number marked "6" , [12, p. 71], 
[2, Chapter v, § 4, Exercise 6]. 

A suitable integral multiple of the da's yields a simplicial form / ; 
except for doubled branches the form graph is topologically the same as 
the Coxeter diagram. For example, the Coxeter group [4,3] yields the 
two simplicial forms whose graphs are displayed in Figure 4 (i), (ii). 

PROPOSITION 1.7. Let fbe a simplicial form. 
(a) If fis Euclidean or hyperbolic, then its graph is connected. 
(b) / / / is spherical, its graph may not be connected; G(f) is the direct 

product of the Coxeter groups defined by the connected components of the graph. 

Proof. Part (a) follows easily from 1.5(a). Since the involutions Rf and 
Rj commute if and only if ptj = 2 (just when the corresponding nodes are 
non-adjacent), we obtain (b). 

The connected spherical, Euclidean, and hyperbolic simplicial forms 
are listed in Tables 1, 2 and 3 respectively. Only primitive forms, for 
which g.c.d.(an, . . . , ann) = 1, are listed (any multiple o f /has the same 
unit group). The forms are further classified according to the determinant 
A(/) = det M(f), where M(f) = [atj]. In the Euclidean case A(/) = 0; 
otherwise the computation is often simplified by expanding A(/) along 
the row corresponding to a univalent node i in the graph: 

A(f) = atMft) -atj*A(ftj). 

Here fi(fij) denotes the form derived by deleting node i (and node j) 
[5, p. 426]. 

Remarks. In [19], Vinberg classified all linear groups generated by 
reflections having the presentation 1.1. Indeed, for any reflexible form 
the group G(f) acts discontinuously on the interior of some convex cone 
K. In [14], Maxwell sets 

L* = {u |u - (u)T £ L, for all T G G}. 

W h e n / is non-degenerate, P(B) = Q(B)* is a (weight) lattice and any 
G-invariant lattice L satisfies Q(B) Ç L Ç P(B) and L* = P(B), for 
some basic system B. These lattices are thus in one to one correspondence 
with subgroups of P(B)/Q(B), whose structure is determined easily by 
computing the elementary divisors of the Cartan matrix C (cf. [13, p. 169], 
[5, § 10-14]). We note finally that most reflexible forms have unit groups 
with more complicated fundamental regions than those considered here: 
[11, pp. 546-569], [16], [17], [20] and [21]. 
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2. Geometrical aspects of equivalence. For a fixed basic system 
{ei, . . . , en] suppose that two bilinear forms ( • , • ) and [ • , • ] define 
the simplicial forms/and g respectively. These two forms are equivalent 
(/ = g) if for some unimodular matrix P, / ( u ) = g(uP), (u 6 Rn). 
Thus, the unit group € (f) is isomorphic to 0(g) = P~l© (f)P. Also, 
M(f) = PM(g)P\ A(f) = A(g), a n d / a n d g have the same signature. 
If we use [ • , • ] to construct the metric for Xn~l, we note that the 
associated simplex $ has walls H(et), whereas the simplex A fo r / has 
walls H (pi) j where pt- is the ith row of P. 

FIGURE 2. Two Graphs for Lemma 2.1. 

Suppose that the form / has the left graph in Figure 2. Two special 
nodes r and s are labelled ' V and joined by X branches where X = 0, 1, or 
2; except for a possible third node q (labelled (X + 2)a and adjacent to r 
but not s), each other node either lies in A and is adjacent to neither r 
nor s, or lies in B and is adjacent to both r and s by the same number of 
branches. Either of A and B may be empty. Such a graph may con­
veniently be called (r, s)-symmetric and is easily spotted despite its 
awkward description. 

LEMMA 2.1. (a) Suppose that the form f has the (r, s)-symmetric graph 
displayed on the left of Figure 2. Then f = g where the form g has the right 
graph in Figure 2 (only node r has changed). 

FIGURE 3. Five Equivalent Reflexible Forms. 
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(b) Furthermore, if f and g are simplicial forms with simplexes A and $ 
respectively, then $ C A. 

Proof. Let the unimodular matrix P have rows p f = e* (i ^ r) and 
p r = e r + es. I t is easily verified tha t M(f) = PM(g)P\ a n d / ^ g. 
The simplexes $ and A differ only in their r th walls; from 1.3(a), H~(pr) 
H H~(ps) is twice the dihedral angle H~(er) C\ H~(es) of $. Hence, 
$ C A. 

By inspection, we find tha t every equivalence of simplicial forms is 
determined by one or more applications of Lemma 2.1; a typical case is 
illustrated in Figure 3, in which only the first and last forms define 
simplexes of finite volume. (Clearly, Lemma 2.1(a) pertains to any 
reflexible form defined by such a graph.) On the other hand, two forms 
are inequivalent if they differ in rank, signature or determinant , or if jus t 
one has a fractional coefficient a^. Each of these tests fails for the 
following examples: 

(a) Of the three forms whose graphs are shown in Figure 4 (iii), only 
the last represents 2 (mod 3). 

(b) The matrices for the two forms in Figure 4 (iv) have different ranks 
(mod 2) . 

An explanation of the layout of the Tables is given in Section 4. We 
summarize by noting tha t : 

2.2. In each class of equivalent simplicial forms, a unique form g has 
a simplex with smallest volume. (We shall say tha t g is minimal.) 

Again suppose t h a t / = g with <ï> C A. Reflect <ï> in its walls, and do 
the same for the resulting transforms. If some transform ($)T, T G G (g), 
meets int (A), then ( $ ) T Ç A: otherwise some H (pi) meets int ((<£) T) , 
so t ha t H(PiTl) meets int ( $ ) , contradicting the fact tha t RfeiT1) £ 
G (g). If A has finite volume, then some m distinct copies of <£ pack A 
and Gij) is isomorphic to a subgroup of index m in G(g). In example 2.4 
below we use the following facts to determine m (cf. [18] for a related 
geometric approach) . 

2.3. (a) {$)T Q A, T G G (g), if and only if all entries in the matr ix 
PT~l are non-negative. (Consider the contragredient action of T on each 
Vt = ( 0 , . . . , - 1 , . . . , 0 ) . ) 

(b) The reflection T~lRiT reflects ($)T through its ith. wall into 
($)RiT, which by (a) lies in A just when the matr ix PT~lRt ^ 0. 

Example 2.4. Consider the form g in Figure 4 (v). Wi th the nodes 
indexed 1 to 4 along the top and node 5 hanging below, P has rows 
ei + e2 + e5, e2, e3, e4, e5. By 2.3 (a), $ ç A. Since Rt takes e,- to 
e ; — CjiQu w e obtain the following chart : 
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Step T Rows of PT-1 

o) I ex + e2 + e5 6'2 , 63 , 64 e5 

(ii) Ri e2 + e6 6 l + 02 , 63 , 04 e5 

(iii) RiRi e5 ei , e2 + e3, e4 e2 + e5 

(iv) RzRiRi e5 ^1 , 02 , 63 + 04 e2 + e3 + e5 

(v) i?4i?3i?2i?l e5 ei , e2 , e3 e2 + e3 + e4 + e5 

At each step, all coefficients of the e* must be non-negative, so there is 
only one Ri which advances the algorithm (T = Rt . . .). Since the pro­
cedure stops after five steps, m = 5. Note that since G(f) C G(g), each 
e* occurs by itself in some row of the table. 

The computation also describes how the m copies of $ fit together 
within A. Considerable effort is avoided when the graph of/ has a chain 
of m nodes labelled b, b, . . . , b, a, a in order, with the last two joined by X 
branches and with b = (X + 2)a. If also these last two are (r, s)-sym-

(i) (ii) 

3 3 
(iii) • • -

3 3 3 
• • • * 

3 3 
• — « ^ — • — • 

(iv) . 2 . 2 . 4 . 4 

(v) 5 : ' 2 f -2 '2 ^ / : . 2 . 2 . 2 . 

(vi) 

FIGURE 4. Several Simplicial Forms. 

metric with respect to a subgraph B disjoint from the chain, then we may 
apply Lemma 2.1 to obtain an equivalent form g. Moreover, the above 
procedure yields the index m. Numerous examples can be spotted in the 
Tables (cf. [18, Corollary 5]). 

The algorithm is awkward only for the equivalent Euclidean forms 
defined by the fifth and seventh graphs listed in the right half of Table 2. 
For these forms the simplexes A and $ are similar with corresponding edges 

https://doi.org/10.4153/CJM-1983-007-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-007-5


SIMPLICIAL QUADRATIC FORMS 109 

in the ratio 2 : 1 ; hence m — 2W_1. We remark that in the Tables, when 
f = g with g minimal, then the index m = [G(g) : G(f)] is noted in paren­
theses next to / . 

3. The unit group û(f). In order to describe û(f) for the simplicial 
form / we must first determine F, the group generated by all unimodular 
reflections R(u). G(f) could be a proper subgroup of F. 

LEMMA 3.1. Suppose R(u) is unimodular for u = (u1, . . . , un). Then 
we may assume that 

(a) Ô = (u, u) > 0, 
(b) u is primitive (ul, . . . , u11 are integers with g.c.d. 1), and 
(c) a |2(u,e,) , (l^j S n). 

Proof. R(u) maps e ; to the integral vector 

e, - 2(u, e^r1^1 , • . • ,un). 
Thus the u*'s are commensurable, and since u has positive homogeneous 
coordinates we obtain (b) and (c). 

Let a? be the set of all vectors u arising in Lemma 3.1. We now state 
Vinberg's 

3.2. Algorithm for determining a fundamental region $ for F. 
(a) Le t / n be the form derived f rom/ by setting un = 0 (i.e., delete 

the wth node in the graph). Suppose that G(fn), which is generated by 
Ri, . . . , Rn-i, contains all unimodular reflections of fn. 

(b) Form a sequence of vectors di = d , d2 = e2, . . . , dn_i = e„-i, dn, 
dn+i, . . . where each Aj G 8% and for / ^ n} d x is some vector u Ç ^ for which 

(i) (d„u) ^ 0 , (1 ^ j < / ) , 
(ii) Vn G tf"(u),and 

(iii) the distance from Vn to H(u) is minimized. 
Then (c) $ = O M H~(dj) is a fundamental region for F. 

(d) If for some m, n?=i H~(dj) is a polytope of finite volume, then the 
algorithm stops at dm. 

Proof. A proof for more general groups generated by reflections may 
be found in [20, pp. 27-29]. 

PROPOSITION 3.3. Suppose f is a connected simplicial form with a con­
nected derived form fn, for which G(fn) contains all unimodular reflections 
forfn. Then either 

(a) G{f) — F, the group generated by all unimodular reflections for f, or 
(b) / = g, where g is a connected simplicial form with a simplex strictly 

contained in that off. 

Proof. While proceeding with the algorithm 3.2, either (a) or (b) must 
occur. 

(i) Condition 3.2 (b) guarantees that H-(d{) H H~(dj) is a strip or 
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acute angle containing Vn\ conversely, if H(u) andff(v) are walls of some 
$o = ( $ ) r 0 , where 

To e F and Vn G $o C H~(u) H ff-(v), 

then (u, v) ^ 0 [21, pp. 328, 331]. Thus , in using the algorithm, we may 
suppose wi thout loss of generality t ha t $ C A. 

(ii) Consider dn = u = (u\ . . . , un) £ <%. N o w # ( u ) meets int (A) , 
the interior of A, if and only if some ul < 0 < uj\ and V\ Ç H(u) if and 
only if ul = 0, in which case R(u) defines a unit for the corresponding 
derived form (by 3.1). This fact along with condition 3.2 (a) implies 
tha t (0, . . . , 0, - 1 ) = Vn g H(u). Consequently conditions 3.2 (a) , 
(b) imply tha t un > 0 and t ha t 

p(u) = ann(u
nYI ( u , u ) 

is minimized for u (cf. 1.3 (b) ) . Even when Vn £ 12 in H""1 , p(u) is the 
appropriate parameter [21, p . 328]. Note t ha t if p(u) = p(en) = 1, 
we could choose dn = en so t ha t by 3.2 (d) , $ = A and F = G(f) (con­
clusion 3.3 (a) ) . T h u s we may assume t h a t ^ (u) < p(en) = 1; since by (i) 
we have $ ÇZ A, this implies t ha t H(u) meets int (A) . 

(iii) LEMMA 3.4. For some i, (u, et) > 0. 

Proof. S i n c e / is connected, all cofactors Aij in A(/) = det {aa) are 
positive, except t ha t Au = 0 when Vt £ 12 in H * 1 [4, p. 601]. If all 
(u, e,) ^ 0, then 

O ^ E E t u , et)A
 ij(u, e,) = (u, u) A(/), 

giving a contradiction for H w _ 1 and E n _ 1 . If for Sw _ 1 each 

A(/K = XM"(u,e,) gO, 
i 

then each uj ^ 0 so t ha t H(u) would not meet int ( A). 

(iv) Let w = u — unen. Thus , for 5 = (u, u ) , 

p(u) = (fjd) - 1 + t t » ( 2 ( u , e n ) / « ) . 

Now p(u) < p(en) = 1 sindfn ^ 0 by 1.5 (a) . By 3.1 (c), 3.2 (b) and 
3.4, both un and 2 (u , en)/<5 are positive integers. Hence both equal 1 and 
(w, w) = ann. Fur thermore , 

(w, e,) = (u, e,) - unanj. 

By 3.1, ann divides both 2anj and 2 (u , ew) = 5, which in turn divides 
2 (u , e ; ) (by 3.1). Hence, (w, w) = ann divides 2(w, e ; ) , 1 ^ j ^ n, 
and R(w) defines a unit for / n . But by hypothesis 3.2 (a), R(yr) 6 G(fn) 
so t ha t H(w) cannot cut the (conical) fundamental region for G(fn). 
T h u s u1, . . . , ww_1 cannot differ in sign; bu t H(u) meets int (A) and 
un > 0. Hence ul ^ 0, (1 ^ i ^ n - 1). In short, 

3.5. If u ^ eni H(u) cuts off the nth corner of A, so t ha t $ = Hr P\ 
. . . C\ Hn_i~ C\ H~(x\) has finite volume and is the fundamental region 
for F. 
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(v) Let P be the unimodular matrix with rows ei, . . . , en_i, u. Thus, 
PM(f)Pt — M(g) for a simplicial form g with simplex $ (of finite 
volume). Since fn is connected, then so is g: otherwise, (u, ey) = 0, 
1 ^ j ^ n — 1, and 

n 

b = 2un(u,en) = 2 j ] M i ( u , e / ) = 2<5, 
i = i 

whence ô = 0 (a contradiction). This concludes the proof of 3.3. 

Case (b) of Proposition 3.3 is clearly impossible when fis the minimal 
form described in 2.2. By applying Proposition 3.3 in an inductive way, 
we may conclude that G(f) = F for all minimal foims except those in 
Figure 4 (vi), for which it is also true by special consideration that 
F = G(f). 

Example 3.6. The third graph in Figure 4 (vi) describes the form 

/ (u ) = (u1)2 - ulu2 + (u2)2 - 2u2u* + (w3)2. 

Using the notation of this section we find that ô|2(w, u) for the 
vectors w = (0, 1, 1), (1, 2, 2), and (2, 4, 3) arising from (a z ;)

- 1 . Thus, 
b\ul, u2, and 2w3, and since u = (u1, u2, u8) is primitive, b = 1 or 2. But 
some u* < 0 < u\ so that u = ± ( 1 , - 1 , - 1 ) or db(l, 0, - 1 ) , for 
which 2 = b K u\ Hence, F = G(f). 

We conclude with the following description of the unit group Û (f) 
for/. 

THEOREM 3.7. (a) Each connected simplicial form f is equivalent to a 
minimal form g, and 0(f) = 0(g)-

(b) 0(g) = B X [A • G(g)l where 
(i) in the semidirect product A • G(g), A is the automorphism group for 

the (labelled) graph for g. 
(ii) for E*-1 andHn-\B= {±I};forSn-\B = {I). 

Proof. Part (a) follows from 2.2, and the semidirect product is described 
in [20, p. 27]. For any automorphism T in the cases Ew_1 and Hw_1, just 
one of T or —T preserves the space (cf. 1.2), whence B = { ± / j . But 
the central inversion — / is an isometry of Sn_1, so that it must appear 
in the semidirect product. 

4. Remarks on the tables. The graphs for all primitive connected 
simplicial forms are listed according to geometric type, determinant A(/), 
and integral equivalence. Within each half of any table, the left column 
of graphs contains inequivalent minimal forms (cf. 2.2) separated by any 
equivalent forms in the right column. The index (cf. Section 2) in 
parentheses beside each equivalent form should not be confused with the 
node labels. 
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TABLE 1 - CONNECTED SPHERICAL SIMPL1CIAL FORMS 

3A 

V<* 

%5 

1 

MINIMAL FORMS 

2. 2^ 

J 2 

•—•—•—• 

2. 2. 2» . 

TT 

EQUIVALENT FORMS 
(& INDEX)  

(2) 

(2) 

~ < 

(3) 

(6) 

N> 5 

-r 
-•—•-...-•—•—• 

2 2 2 
-•—•-... -%-

—*-...-«-<^(2) 

TABLE 2 - EUCLIDEAN SIMPLICIAL FORMS ( A = 0) 

N MINIMAL FORMS EQUIVALENT FORMS 
(S INDEX) 

5 *̂x̂* (24) 

2 * — * 4 • = = • (2)1 

5 *̂x̂* (24) 

2 * — * 4 • = = • (2)1 
7 — < 

3 . « 3 .3 
3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

7 — < 
3 . « 3 .3 

3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

8 
3 . « 3 .3 

3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

8 
I 

3 . « 3 .3 
3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

9 ^ _ 

3 . « 3 .3 
3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

9 
I 

3 . « 3 .3 
3 * '• * (3) 

A (6, 
2#—+_2+ (2) 

N 

- ** 

N 

h 5 

2 2 2 2^*2 

2 2 2 2 (2) 

(2N"1) 

3 . « 3 .3 

N 

- ** 

N 

h 5 

2 2 2 2 4 

2 2 2 2^*2 

2 2 2 2 (2) 

(2N"1) 

4 2, . , .2 2 * — < C * (2)| 

n H 

N 

- ** 

N 

h 5 

2 2 2 2 4 

2 2 2 2^*2 

2 2 2 2 (2) 

(2N"1) 

4 2, . , .2 2 * — < C * (2)| 

n H 

N 

- ** 

N 

h 5 

2 2 2 2 4 

N N-GON) 

5 t2 «2 t t # 1 

N 

- ** 

N 

h 5 

2 2 2 2 4 

N N-GON) 

5 2 2 2 (d 
t2 • • 2t 

(6) 

2. . < ^ 
(121 

N 

- ** 

N 

h 5 

2 2 2 2 4 

N N-GON) 

5 2 2 2 (d 
t2 • • 2t 

(6) 

2. . < ^ 
(121 

N I . . . <-"% 
5 2 2 2 (d 

t2 • • 2t 

(6) 

2. . < ^ 
(121 

N 2 2 

^>~-...—<%> 
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TABLE 3-A - HYPERBOLIC SIMPLICIAL FORMS 

- A M I N . FORMS 

= 3 

E Q U I V . FORMS 

-• • 

2 3 

2 2 " 

*3 m==m 

2 6 

4 4 

A 
=• (2) 

(2) 

A 
(2) 

(2) 

j \ (2) 

2A.2 (2) 

(3) 

(6) 

27/. 

2 4 

•—•—• 

4 2 •—•—• 

•—•—• 
3 6 

3 3-

2 8 •—•—• 

2 6 3 

3 9 •—•—-• 

A 

. A 
"2A2 

A<2) 
A ( 2 ) 

3 A ( ; 

16 

27 

36 

108 

2 A , 
Ji- l2 

4 12 

4 16 

• # 

3. . ." 
12 

A 

' A (2, 

. A (2, 

A 
*» <» ( 2 ) 

TABLE 3-B - HYPERBOLIC SIMPLICIAL FORMS 

-A MIN. FORMS I r ^ Â T 
1 

27 

16 

7 

4 

• • •—« 2 2 ^ * 

— < ^ <2>; 

2 2 

3 
2 2 6 •—•—•—• 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

N = 4 

1 

27 

16 

7 

4 

2 2 2 

3 3 3 

2 2 ^ * 

— < ^ <2>; 

2 2 

3 
2 2 6 •—•—•—• 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

3 

16 

\ 

1 

. . . . 

2 

^ * <2) 

^ < J (2) 

1 

27 

16 

7 

4 

2 2 2 

3 3 3 

2 2 ^ * 

— < ^ <2>; 

2 2 

3 
2 2 6 •—•—•—• 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

3 

16 

\ 

1 

. . . . 

2 

^ * <2) 

^ < J (2) 

1 

27 

16 

7 

4 

2 2 2 

3 3 3 

• • — • — • 

(3)| 

3 3 ^ 

3 

2 4 4 

2 4 2 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

3 

16 

\ 

1 

2 3 

^ * <2) 

^ < J (2) 

1 

27 

16 

7 

4 

2 2 2 

3 3 3 

• • — • — • 

(3)| 

3 3 ^ 

3 

2 4 4 

2 4 2 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

3 

16 

\ 

1 •—•—•—• 
2 4 

^ * <2) 

^ < J (2) 

1 

27 

16 

7 

4 

3 3 
• — • • m 

"a" 

3 3 " " ! 

•—•—•—• 
(6) 

•—<J(12)-

3 

2 4 4 

2 4 2 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 

3 

16 

\ 

1 •—•—•—• 
2 4 

^ * <2) 

^ < J (2) 

1 

27 

16 

7 

4 

3 3 
• — • • m 

"a" 

3 3 " " ! 

•—•—•—• 
(6) 

•—<J(12)-

3 

2 

2 2 <» | 

•—•—•—• 
(3) 

2 ~ > (6) 
2* 

2 

2 2 

• «1 
2 
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TABLE 3-C - HYPERBOLIC SIMPLICIAL FORMS 

-A MINIMAL FORMS EQUIVALENT FORMS 
(& INDEX) 

27 

4 

3 3 6 
•—•—•—• 

|243 
16 

3 3 9 
•—•—•—• 

2 4 
•—•—•-

27 
2 6 6 3 
•—•—•—• 

(2) 

(8) 

(2) 

(2) 

(4) 

N = 5 

< 
2 2 

2 2 

< 
2 2 

(2) 

(2) 

> 
• 2 (3) 

2> i • <6) 

(6) 

(12) 

TABLE 3-D - HYPERBOLIC SIMPLICIAL FORMS 

MINIMAL FORMS EQUIVALENT FORMS 

(& INDEX) 
= 5 

2 2 

< 

2 2 4 

2 2 4 4 

< 

(5) 

(2) 

(8) 

4 2 

< (3) 

2 2 

< 

(6) 

2 (2) 

N = 6 

2 2 2 

2 2 2 

(3) 

(6) 

https://doi.org/10.4153/CJM-1983-007-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-007-5


SIMPLICIAL QUADRATIC FORMS 115 

TABLE 3-E - HYPERBOLIC SIMPLICIAL FORMS 

-A MINIMAL FORMS EQUIVALENT FORMS 
(& INDEX) 

2 2 2 2 2 2 2 

(5) 

2 2 
(10) 

2 2 

< 
2 

•—•-T~ 

(20) 

(50) 

2 

• •-

•^c 

(60) 

(120) 

2 2 2 4 

2 2 2 2 
- • — f — • — • 

2 2 2 4 4 
• •—•—•—• 

2 2 V»2 

< 
(2) 

(16) 

2 2 2 

~T~ 
2 2 2 4 

•—•—•—• • 

—UL 

(10) 

(3) 

(6) 

TABLE 3-F - HYPERBOLIC SIMPLICIAL FORMS 

A MINIMAL FORMS " ^ H N S E X ^ 

2N 

N = 6, 7, 8, 9 

(AN (N-D-GON 

WITH A TAIL) 

_4_ 
2N 

N = 7, 8, 9, 10 

•—•—?-... -•—•—• 

2 2 2 2 2 

T~< (2) 

• ^ N MINIMAL FORMS 

10 

-• • • r™ 
•—•—• • •—•—•—•—• 
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