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Abstract

Let A be a domain of the boundary of a (weakly) pseudoconvex domain Ω of Cn and M a smooth, closed,
maximally complex submanifold of A. We find a subdomain E of Cn, depending only on Ω and A, and
a complex variety W ⊂ E such that bW = M in E. Moreover, a generalization to analytic sets of depth at
least 4 is given.
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1. Introduction

In the last fifty years, the boundary problem, that is the problem of characterizing real
submanifolds which are boundaries of ‘something’ analytic, has been widely treated.

The first result of this kind is due to Wermer [20]: compact real curves in Cn are
boundaries of complex varieties if and only if they satisfy a global integral condition,
the moments condition. For higher dimension the problem was solved, by Harvey and
Lawson [9], proving that an obviously necessary condition (maximal complexity) is
also sufficient for compact manifolds in Cn. Later on, characterizations for closed (not
necessarily compact) submanifolds in q-concave open subsets of CPn were provided
by Dolbeault and Henkin and by Dihn in [5–7]. A new approach to the problem in
CPn has been recently set forth by Harvey and Lawson [11–14].

Our goal is to drop the compactness hypothesis. The results in [4] deal with
the global situation of submanifolds contained in the boundary of a special class
of strongly pseudoconvex unbounded domains in Cn. In this paper we consider the
boundary problem for complex analytic varieties in a ‘semiglobal’ setting.

The boundary problem has been considered in this context by Chirka [3], who
proved the following ‘relative’ Harvey–Lawson result.
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[2] Semiglobal extension 459

T [3]. Let K be a compact, polynomially convex subset of Cn and let M ⊂
Cn \ K be a maximally complex submanifold of real dimension 2p − 1 such that M ∪ K
is compact. Then there is a p-dimensional analytic subset A in Cn \ (K ∪ M) such
that A ∪ K ∪ M is compact, M ⊂ A and A is a regular submanifold with boundary M
outside a set E ⊂ A \ K of (2p − 1)-Hausdorff measure 0.

In our situation, we let Ω ⊂ Cn be a smooth, (weakly) pseudoconvex open domain
in Cn with boundary bΩ, and we let M be a smooth, maximally complex (2m + 1)-
dimensional real closed submanifold (m ≥ 1) of some open domain A ⊂ bΩ with
K = bΩ \ A. We want to find a domain E of Cn, not depending on M, and a complex
subvariety W of E such that bW = M in E (possibly in the sense of currents).

In the paper we use a parameter version of Harvey and Lawson’s theorem to
construct a solution (E, W) to the problem above, where E can be characterized,
roughly, in terms of the envelope of K with respect to the algebra of functions
holomorphic in a neighborhood of Ω. We refer to Section 3 for a precise statement
of the results, which in some ways echoes that of Lupacciolu on the extension of
CR-functions (see [16, Theorem 2]).

If A is not relatively compact, our theorem can be restated in terms of ‘principal
divisors hull’, leading to a global result for unbounded strictly pseudoconvex domains,
different from the results in [4]. Indeed, this method of proof allows us to drop the
Lupacciolu hypothesis in [4] and extend the maximally complex submanifold to a
domain, which can anyhow not be the whole of Ω. If the Lupacciolu hypothesis
holds, then the domain of extension is in fact all of Ω. So this result is actually a
generalization of the one in [4].

The crucial question of the maximality of the domain E we construct is not
answered; in some simple cases the domain is indeed maximal (see Example 4.1).

In the last section, by the same methods, the extension result is proved for analytic
sets (see Theorem 5.1).

It is worth noticing that in [18] related results are obtained via a bump lemma and
cohomological methods. That approach may be generalized to complex spaces.

2. Definitions and notations

In this paper we will always consider, unless otherwise stated, Cn with coordinates
z1 = x1 + iy1, . . . , zn = xn + iyn, x1, . . . , xn, y1, . . . , yn ∈ R.

A smooth real (2m + 1)-dimensional submanifold M of Cn is said to be a CR
manifold if its complex tangent TCp M has constant dimension at each point p. If m > 0
and dimC TCp M = m, that is, it is the maximal possible, M is said to be maximally
complex. Observe that a smooth hypersurface of Cn is always maximally complex.

If m = 0 and M = γ is a compact curve, we say that γ satisfies the moments
condition if ∫

γ

ω = 0,

for any holomorphic (1, 0)-form ω.
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It is easy to observe that the (smooth) boundary of a complex variety of Cn of
dimension m + 1 is maximally complex if m > 0 (respectively satisfies the moments
condition if m = 0).

3. Main result

Let Ω ⊂ Cn be a (weakly) pseudoconvex open domain in Cn. Let A be a relatively
compact subdomain of bΩ, and K = bΩ \ A. We set K̂ to be the hull of K with respect
to the algebra O(Ω) of the functions holomorphic in a neighborhood of Ω:

K̂ = {x ∈Ω : | f (x)| ≤ ‖ f ‖K , ∀ f ∈ O(Ω)}.

(From now on, when the algebra is not specified, we always assume that the hull is
with respect to O(Ω).) Observe that, when Ω is bounded and strongly pseudoconvex
(and thus admits a fundamental system of Stein neighborhoods, see [19]), K̂ coincides
with the intersection of the hulls K̂α of K with respect to O(Ωα), where Ωα is any
fundamental system of Stein neighborhoods. Moreover, in this case we have the
following result by Alexander and Stout [1].

T [1]. If K is a compact subset of bΩ, then for any connected component U of
bΩ \ K there is a (unique) component Ũ of Ω \ K̂ such that bŨ ∩ bΩ coincides with U.

The following is our result in the case when Ω is strongly pseudoconvex; below
(see Theorem 3.4), we give the statement under the weaker hypothesis of Ω being just
pseudoconvex. The reason for the separation is that in the strongly pseudoconvex case
several improvements are possible with respect to Theorem 3.4; moreover, in order to
state the latter we will need a refinement of Alexander and Stout’s result.

T 3.1. Let Ω be strongly pseudoconvex, A ⊂ bΩ a domain with boundary
bA = K and Ã the component of Ω \ K̂ corresponding to A. Then for any maximally
complex (2m + 1)-dimensional closed real submanifold M of A, m ≥ 1, there exists
an (m + 1)-dimensional complex variety W in Ã, with isolated singularities, such that
bW ∩ (A \ K̂) = M ∩ (A \ K̂).

We remark, however, that Theorem 3.1 can be more easily proved as a consequence
of Chirka’s relative Harvey–Lawson result [3], since Ω in this case admits a Stein
basis. The fact that the singularities of W are isolated depends on the regularity of W in
a neighborhood of M as shown in the following lemma, which is an easy consequence
of Lewy’s extension result for CR functions (see for example [4] for a proof).

L 3.2. There exist a tubular neighborhood I of A and an (m + 1)-dimensional
complex submanifold with boundary WI ⊂Ω ∩ I such that A ∩ bWI = M.

For Theorem 3.4 we are going to drop the strongly pseudoconvexity assumption,
and in this case the Alexander–Stout result does not hold as it is stated; hence we
shall premise some considerations and prove an analogous lemma for the weakly
pseudoconvex case.
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If K′ is a compact subset of Ω, we say that K′ is O(Ω)-convex if it coincides with
its hull K̂′ with respect to the algebra O(Ω): in particular, for any K ⊂ bΩ we have that
K̂ is O(Ω)-convex.

Let K̂ be a O(Ω)-convex compact subset of Ω, with K = K̂ ∩ bΩ (from now on
we will always assume this hypothesis on K). The following lemma, which is a
direct consequence of the result by Alexander and Stout [1], shows that there is a
correspondence between the connected components of bΩ \ K and those of Ω \ K̂.

L 3.3. For any connected component of A of bΩ \ K there exists a connected
component Ã of Ω \ K̂ such that bÃ ∩ bΩ = A.

P. Choose any pair A, B of (distinct) connected components of bΩ \ K. We are
going to show that Ω \ K̂ disconnects A from B, that is, there is no continuous arc γ
in Ω \ K̂ connecting a point of A to one of B (this implies the thesis). Fix a tubular
neighborhoodU of bΩ in Ω, such that the projection π :U→ bΩ realizing the distance
(that is with the property d(p, π(p)) = d(p, bΩ) for all p ∈ U) is well defined. For a
small ε > 0, we let Kε be the intersection of π−1(K) with a closed ε-neighborhood of
K in Ω. If Ωn is an exhaustion of Ω by smooth, strictly pseudoconvex subdomains,
then, for n large enough, the compact set Kn

ε = bΩn ∩ Kε is nonempty and bΩn \ Kn
ε

contains two connected components An and Bn corresponding to A and B. Define a
compact subset Hn

ε ⊂Ωn as Hn
ε = (̂Kn

ε )
O(Ωn); by Alexander and Stout’s theorem [1] we

have that An is disconnected from Bn in Ωn \ Hn
ε . Since O(Ω)|

Ωn
⊂ O(Ωn), we also

have that Hn
ε ⊂ Ln

ε = K̂n
ε ∩Ωn. If now we let S n

ε = Kε ∩ (Ω \Ωn), we clearly have that
K̂ε contains S n

ε ∪ Ln
ε and thus S n

ε ∪ Hn
ε . The latter set disconnects A from B, hence the

same holds true for K̂ε.
If now we let ε→ 0, the Kε are a decreasing sequence of compact sets whose

intersection is K, hence the hulls K̂ε are a sequence of compact sets, each one
disconnecting A from B, decreasing to K̂. If there existed an arc γ ⊂Ω \ K̂, connecting
A to B, then γ ∩ K̂ε would be a sequence of nonempty compact subsets of γ decreasing
to ∅, which is a contradiction. �

Now, let us get back to the weakly pseudoconvex setting. Let K̂P ⊂ C
n be

the polynomial hull of K, and let E = (Cn \ K̂P) ∪ Ã; then E is an open domain
containing A. With this definition, our main result can be stated as follows.

T 3.4. Let Ω ⊂ Cn be a (weakly) pseudoconvex open domain in Cn, and let K̂ be
a O(Ω)-convex compact subset of Ω, with K = K̂ ∩ bΩ. Let A be a relatively compact
connected component of bΩ \ K. For any maximally complex (2m + 1)-dimensional
closed real submanifold M of A, m ≥ 2, there exists an (m + 1)-dimensional complex
variety W ⊂ E such that bW = M (where the boundary is taken in E and in the sense
of currents).

In the more general situation of Theorem 3.4, Lemma 3.2 may not hold, and
for this reason there is no statement about singularities corresponding to the one in
Theorem 3.1. In order to obtain the extension, however, we follow the same general
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method as in [4] and we slice M with suitable families of complex manifolds. The main
differences with respect to [4] are due to the fact that we have to cut Ω with level-
sets of holomorphic functions instead of hyperplanes. This creates some additional
difficulties: first of all it is no longer possible to use the parameter which defines the
level-sets as a coordinate; secondly, when m = 1, the intersections between tubular
domains (see Lemmas 3.11, 3.14 and 3.15) may not be connected.

In order to apply the slicing technique we will need the following lemma.

L 3.5. Let z0 ∈Ω \ K̂. Then there exist an open neighborhood Ω′ ⊃Ω and
f ∈ O(Ω′) such that the following conditions hold.

(1) f (z0) = 0.
(2) { f = 0} is a regular complex hypersurface of Ω′ \ K̂.
(3) { f = 0} intersects M transversally in a compact manifold.

R 3.6. If f is such a function for z0, for any point z′ sufficiently near to z0,
f (z) − f (z′) satisfies conditions (1), (2) and (3) for z′.

P. By the definition of K̂, since z0 ∈Ω \ K̂ there is a neighborhood Ω′ such that
z0 < K̂O(Ω′). Hence we can find a holomorphic function g in Ω′ such that g(z0) = 1
and ‖g‖K < 1; h(z) = g(z) − 1 is a holomorphic function whose zero set does not
intersect K̂. Since regular level sets are dense, by choosing a suitable small vector
v and redefining h as h(z + v) − h(z0 + v) we can safely assume that h satisfies both
(1) and (2). Moreover, {h = 0} ∩ bΩ b bΩ \ K, showing compactness. Then we may
suppose that M is not contained in {z1 = z0

1} and, for ε small enough, we consider the
function f (z) = h(z) + ε(z1 − z0

1). It is not difficult to see (by applying Sard’s lemma)
that (3) holds for generic ε. �

Now, in the following subsection we deal with the proofs of Theorems 3.4 and 3.1
when m ≥ 2; later on we treat the case m = 1. This is due to the fact that in the latter
case proving that we can apply Harvey–Lawson to { f = 0} ∩ M is not automatic.

3.1. Dimension of M greater than or equal to five: m ≥ 2. First of all, note that
Chirka’s theorem [3] already provides a complex variety W defined on Cn \ K̂P such
that bW = M, hence from now on we focus on the extension to Ã.

For any z0 ∈ Ã, Lemma 3.5 provides a holomorphic function such that the level-
set f0 = { f = 0} contains z0 and intersects M transversally in a compact manifold M0.
The intersection is again maximally complex (it is the intersection of a complex
manifold and a maximally complex manifold, see [9]), so we can apply the Harvey–
Lawson theorem to obtain a holomorphic chain W0 ⊂ C

n such that bW0 = M0. For τ
in a small neighborhood U of 0 in C, the hypersurface fτ = { f − τ = 0} intersects M
transversally along a compact submanifold Mτ which, again by the Harvey–Lawson
theorem, bounds a holomorphic chain Wτ.

We claim the following proposition holds.

P 3.7. The union WU =
⋃
τ∈U Wτ is a complex subvariety of an open set

Ũ ⊂ E such that Ã ∩ Ũ = Ã ∩
⋃
τ∈U fτ.
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We need some intermediate results. Let us consider a generic projection π :
Ũ → Cm and set Cn = Cm × Cn−m, with holomorphic coordinates (w′, w), w′ ∈ Cm,
w = (w1, . . . , wn−m) ∈ Cn−m. Let Vτ = Cm \ π(Mτ).

For τ ∈ U, w′ ∈ Cm \ π(Mτ) and α ∈ Nn−m, we define

Iα(w′, τ) +
∫

(η′,η)∈Mτ

ηαωBM(η′ − w′),

where ωBM is the Bochner–Martinelli kernel.
The following lemma is proved in [4] in a situation where M is contained in the

boundary of a strictly pseudoconvex domain, and where thus Lemma 3.2 implies that
each Wτ is a regular manifold in a neighborhood of Mτ. With our hypotheses the proof
in [4] essentially carries over, but for the convenience of the reader we present it here
with the appropriate modifications.

L 3.8. Let F(w′, τ) be the multiple-valued function which represents Wτ on
Cm \ π(Mτ) and denote by Pα(F(w′, τ)) the sum of the αth powers of the values of
F(w′, τ). Then

Pα(F(w′, τ)) = Iα(w′, τ).

In particular, the cardinality P0(F(w′, τ)) of F(w′, τ) is finite.

P. Let V0 be the unbounded component of Vτ; since the Harvey–Lawson solution
Wτ is compact, one has Pα(F(w′, τ)) = 0 for w′ ∈ V0. We follow [9] to show that
also Iα(F(w′, τ)) = 0 on V0. Indeed, if w′ is far enough from π(Mτ), then β =

ηαωBM(η′ − w′) is a regular (m, m − 1)-form on some ball BR of Cn containing Mτ.
Since β is then ∂-closed, in BR there exists a (m, m − 2)-form γ such that ∂γ = β. Thus
we can write, in the language of currents,

[Mτ](β) = [Mτ]m,m−1(∂γ) = ∂[Mτ]m,m−1(γ) = 0;

in fact, since Mτ is maximally complex, [Mτ] = [Mτ]m,m−1 + [Mτ]m−1,m and
∂[Mτ]m,m−1 = 0 (see [9]). Moreover, since [Mτ](β) is analytic in the variable w′,
[Mτ](β) = 0 for all w′ ∈ V0.

Now, by the regularity statement of Harvey and Lawson’s result we have that,
outside a closed set of Mτ with measure zero, Wτ ∪ Mτ is locally a regular complex
manifold with boundary. Hence, for w′ belonging to a open, dense subset U of the
regular points of π(Mτ), there is a small ball Bε(w′) ⊂ Cm such that Wτ ∩ π

−1(Bε(w′))
is a finite union of graphs of holomorphic functions.

To conclude the proof we need to show that the jumps of the functions Pα(F(w′, τ))
and Iα(w′, τ) across the common boundary of two components of Vτ are the same.
By density, it is sufficient to check this conditions along the set U. Then, let z′ ∈
π(Mτ) ∩ U be a regular point in the common boundary of two components V1 and V2.
As observed in the previous paragraph, we can (locally in a neighborhood of z′) write
Wτ as a finite union of graphs of holomorphic functions, whose boundaries Mi

τ are
either in Mτ or empty. In the first case, the Mi

τ are CR graphs over π(Mτ) in the

https://doi.org/10.1017/S0004972711002498 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002498


464 G. Della Sala and A. Saracco [7]

neighborhood of z′. We may thus consider the jump ji of Pα(F(w′, τ)) due to a single
function. We remark that the jump for a function f is ji = f (z′)α, and the total jump
will be the sum of them.

To deal with the jump of Iα(w′, τ) across z′, we split the integration set in the
sets Mi

τ (thus obtaining the integrals Iαi ) and Mτ \
⋃

i Mi
τ(I

α
0 ). Because of the Plemelj

formulas for hypersurfaces (see [9]) the jumps of Iαi are precisely ji. Moreover, since
the form ηαωBM(η′ − z′) is C∞ in a neighborhood of Mτ \

⋃
i Mi

τ, the jump of Iα0 is 0.
So Pα(F(w′, k)) = Iα(w′, k). �

R 3.9. Lemma 3.8 implies, in particular, that all the functions Pα(F(w′, τ)) are
continuous in τ. Indeed, they are represented as integrals of a fixed form over a
submanifold Mτ which varies continuously with the parameter τ.

L 3.10. Pα(F(w′, τ)) is holomorphic in the variable τ ∈ U ⊂ C, for each α ∈
Nn−m.

P. Let us fix a point (w′, τ) such that w′ < Mτ (this condition remains true for
τ ∈ Bε(τ), for ε > 0 small enough). Consider as domain of Pα(F) the set {w′} × Bε(τ).
In view of Morera’s theorem, we need to prove that for any simple curve γ ⊂ Bε(τ),∫

γ

Pα(F(w′, τ)) dτ = 0.

Let Γ ⊂ Bε(τ) be an open set such that bΓ = γ. By γ ∗ Mτ (Γ ∗ Mτ) we mean the
union of Mτ along γ (along Γ). Note that these sets are submanifolds of C × Cn. The
projection π : Γ ∗ Mτ→ C

n on the second factor is injective and π(Γ ∗ Mτ) is an open
subset of M bounded by π(bΓ ∗ Mτ) = π(γ ∗ Mτ). By Lemma 3.8 and Stokes’ theorem∫

γ

Pα(F(w′, τ)) dτ =

∫
γ

Iα(w′, τ) dτ

=

∫
γ

(∫
(η′,η)∈Mτ

ηαωBM(η′ − w′)
)

dτ

=

"
γ∗Mτ

ηαωBM(η′ − w′) ∧ dτ

=

"
Γ∗Mτ

d(ηαωBM(η′ − w′) ∧ dτ)

=

"
Γ∗Mτ

dηα ∧ ωBM(η′ − w′) ∧ dτ

=

"
π(Γ∗Mτ)

dηα ∧ ωBM(η′ − w′) ∧ π∗ dτ

= 0.

The last equality follows from the fact that in dηα appear only holomorphic
differentials, ηα being holomorphic. However, since all the holomorphic differentials
supported by π(Γ ∗ Mτ) ⊂ M already appear in ωBM(η′ − w′) ∧ π∗ dτ (due to the fact
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that M is maximally complex and supports only m + 1 holomorphic differentials) the
integral is zero. �

P  P 3.7. Let us fix a regular point (w′0, w0) ∈ fτ0 ⊂ Ũ. In a
neighborhood of this point W = WU is a manifold, since the construction depends
continuously on the initial data. We want to show that W is indeed analytic in Ũ.

Let us fix j ∈ {1, . . . , n − m} and consider α of the form (0, . . . , 0, α j, 0, . . . , 0);
let Pα

j be the corresponding Pα(F(w′, τ)). Observe that for any j we can consider a
finite number of Pα

j (it suffices to use h = max j P0
j (F(w′, τ)) of them). By a linear

combination of the Pα
j with rational coefficients, we obtain the elementary symmetric

functions
S 0

j (w′, k), . . . , S h
j (w′, τ)

in such a way that for any point (w′, w) ∈W there exists τ ∈ U such that (w′, w) ∈Wτ;
thus, defining

Q j(w′, w, τ) + S h
j (w′, τ) + S h−1

j (w′, τ)w j + · · · + S 0
j (w′, τ)wh

j ,

we have, in other words,

W ⊂ V =
⋃
τ∈U

n−m⋂
j=1

{Q j(w′, w, τ) = 0}.

Define Ṽ ⊂ Cn(w′, w) × C(τ) as

Ṽ =

n−m⋂
j=1

{Q j(w′, w, τ) = 0}

and
W̃ = Wτ ∗ U ⊂ Ṽ .

Observe that, since the functions S α
j are holomorphic, Ṽ is a complex subvariety of

Cn × U. Since Ṽ and W̃ have the same dimension, in a neighborhood of (w′0, w0, τ)

W̃ is an open subset of the regular part of Ṽ , thus a complex submanifold. We denote
by Reg(W̃) the set of points z ∈ W̃ such that W̃ ∩U is a complex submanifold in a
neighborhood U of z. It is easily seen that Reg(W̃) is an open and closed subset
of Reg(Ṽ), so a connected component. Observing that the closure of a connected
component of the regular part of a complex variety is a complex variety we obtain that
W̃ is a complex variety, W̃ being the closure of Reg(W̃) in Ṽ .

Finally, since the projection π : W̃ →W is a homeomorphism and so proper, it
follows that W is a complex subvariety as well. �

Now we prove that the varieties W̃U that we have found, which are defined in the
open subsets of type Ũ (see Proposition 3.7), patch together in such a way to define a
complex variety on the whole of E, thus completing the proof of Theorem 3.4.
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L 3.11. Let Ũ f and Ũg be two open subsets as in Proposition 3.7 and let W f and
Wg be the corresponding varieties. Let z1 ∈ Ũ f ∩ Ũg. Then W f and Wg coincide in a
neighborhood of z1.

P. Note that we are only interested in showing that the solutions in Ũ f ∩ Ã and
Ũg ∩ Ã agree, since we already know that the solution exists in Cn \ K̂P. So, let
λ = f (z1) and τ = g(z1) and consider

L(λ′, τ′) = { f = λ′} ∩ {g = τ′} ⊂ Ã

for (λ′, τ′) in a neighborhood of (λ, τ). Note that for almost every (λ′, τ′), L(λ′, τ′) is a
complex submanifold of codimension two of Ũ f ∩ Ũg. Moreover, W f ∩ L(λ′, τ′) and
Wg ∩ L(λ′, τ′) are both solutions of the Harvey–Lawson problem for M ∩ L(λ′, τ′),
consequently they must coincide. Since the complex subvarieties L(λ′, τ′) which are
regular form a dense subset, W f and Wg coincide on the connected component of
Ũ f ∩ Ũg containing z1. �

R 3.12. The above proof does not work in the case m = 1 since M ∩ L(λ′, τ′) is
generically empty.

In order to conclude the proof of Theorem 3.1, observe, first of all, that in this
case each Wτ, and hence the whole W, is contained in (the closure of) Ã: this is
a consequence of the existence of a strip (Lemma 3.2) and of the Stein manifold
version of the Harvey–Lawson result. Moreover, from [10] it also follows that each
Wτ has isolated singularities; now we have to show that the set S of the singular
points of the whole W is a discrete subset of Ω \ K̂. Let z1 ∈Ω \ K̂, and choose a
function h holomorphic in a neighborhood of Ω such that h(z1) = 1 and K ⊂ {|h| ≤ 1

2 },
and consider f = h − 3

4 . Observe that z1 ∈ {Re f > 0} and K ⊂ {Re f < 0}. Choose a
defining function ϕ for bΩ, strongly plurisubharmonic in a neighborhood of Ω and let
us consider the family

(φλ = λϕ + (1 − λ)Re f )λ∈[0,1]

of strongly plurisubharmonic functions. For λ near 1, {φλ = 0} does not intersect the
singular locus. Let λ be the largest value of λ for which {φλ = 0} ∩ S , ∅. Then the
analytic set S touches the boundary of the Stein domain

{φλ < 0} ∩Ω ⊂Ω.

Hence {φλ = 0} ∩ S is a set of isolated points in S . By repeating the same argument,
we conclude that S is made up of isolated points, thus completing the proof of
Theorem 3.1 for m ≥ 2. In the following subsection we deal with the case m = 1.

3.2. Dimension of M equal to three: m = 1. From now on, we are assuming that Ω

is strictly pseudoconvex, so that Lemma 3.2 applies. The first goal is to show that when
we slice M transversally with complex hypersurfaces, we obtain one-dimensional real
submanifolds which satisfy the moments condition.
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Again, we fix our attention to a neighborhood of the form

Ũ =
⋃
τ∈U

gτ.

Let us choose an arbitrary holomorphic (1, 0)-form ω in Cn.

L 3.13. The function

Φω(τ) =

∫
Mτ

ω

is holomorphic in U.

P. Using again Morera’s theorem, we need to prove that for any simple curve
γ ⊂ U, γ = bΓ, ∫

γ

Φω(τ) dτ = 0.

By Stokes’ theorem, ∫
γ

Φω(τ) dτ =

∫
γ

(∫
Mk

ω
)

dτ

=

"
γ∗Mτ

ω ∧ dτ

=

"
Γ∗Mτ

d(ω ∧ dτ)

=

"
Γ∗Mτ

∂ω ∧ dτ

=

"
π(Γ∗Mτ)

∂ω ∧ π∗ dτ

= 0.

The last equality is due to the fact that π(Γ ∗ Mτ) ⊂ M is maximally complex and thus
supports only (2, 1)- and (1, 2)-forms while ∂ω ∧ π∗ dτ is a (3, 0)-form. �

L 3.14. Let g be a holomorphic function on a neighborhood of Ω, and suppose
that {|g| > 1} ∩ K̂ = ∅. Then there exists a variety Wg on Ω ∩ {|g| > 1} such that
bWg ∩ bΩ = M ∩ {|g| > 1}.

L 3.15. Given two functions g1 and g2 as above, the varieties Wg1 and Wg2 agree
on {|g1| > 1} ∩ {|g2| > 1}.

P  L 3.14. We are going to use several times open subsets of the type Ũ
as in Proposition 3.7, so we need to fix some notation. Given an open subset U ⊂ C,
define Ũ by

Ũ =
⋃
τ∈U

{ f = τ}.
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From now on we use open subsets of the form U = B(τ, δ), where B(τ, δ) is the disc
centred at τ of radius δ. We say that { f = τ} is the core of Ũ and δ is its amplitude.

For a fixed d > 1 consider the compact set Hd = Ω ∩ {|g| ≥ d}; we show that Wg is
well defined on Hd. Let us fix also a compact set C ⊂Ω such that WI (see Lemma 3.2)
is a closed submanifold in Hd \C.

Consider all the open subsets Vα = Ũα ∩Ω, constructed using only the function
f = g − 1 up to addition of the function ε(z j − z0

j) (see Lemma 3.5). If we do not allow
ε to be greater than a fixed ε > 0, then by a standard argument of semicontinuity and
compactness we may suppose that the amplitude of each Ũ is greater than a positive δ.

We claim that it is possible to find a countable covering of Hd consisting of a
countable sequence Vi of those Vα in such a way to have the following conditions.
(1) V0 ⊂ Hd \C.
(2) If

Bl =

l⋃
i=1

Vi

then Vl+1 ∩ Bl ∩Ω , ∅.

The only claim we have to prove is the existence of V0, since the second statement
follows by a standard compactness argument.

Set L = maxHd Re g. Since Re g is a nonconstant pluriharmonic function, the level
set {Re g = L} is a compact subset of bΩ ∩ Hd. Then we can choose η > 0 such that
{Re g = L − η} ∩Ω is contained in Hd \C, and this allows us to define V0.

Let Ũ1 and Ũ2 be two such open sets and z0 ∈ Ũ1 ∩ Ũ2. We can suppose that the
cores of Ũ1 and Ũ2 contain z0. They are of the form

f + ε1(z j − z0
j) = τ(ε1) and f + ε2(z j − z0

j) = τ(ε2).

For ε ∈ (ε1, ε2), we consider the open sets Ũε whose core, passing by z0, is given by
the equation f + ε(z j − z0

j) = τ(ε). We must show that the set

Λ = {ε ∈ (ε1, ε2) : ∃Wε such that Wε ∩ (Ũ1 ∩ Ũε) = W1 ∩ (Ũ1 ∩ Ũε)}

is open and closed, where Wε is a variety in Ũε.
The set Λ is open. Indeed, if ε ∈ Λ, then for ε′ in a neighborhood of ε the core of Ũε′

is contained in Ũε and so its intersection with M is maximally complex. Because of
Lemma 3.13 the condition holds also for all the level sets in Ũε′ and then we can apply
again the Harvey–Lawson theorem [9] and the arguments of Proposition 3.7 in order
to obtain Wε′ . Moreover, there is a connected component of Uε ∩ Uε′ which contains
z0 and touches the boundary of Ω, where the Wε and Wε′ both coincide with WI (see
Lemma 3.2). By virtue of the analytic continuation principle, they must coincide in
the whole connected component.

The set Λ is closed. Indeed, since each Ũ has an amplitude of at least δ, we again
have that, for ε ∈ Λ, the intersection of Ũε and Ũε must include (for ε ∈ Λ, |ε − ε|
sufficiently small) a connected component containing z0 and touching the boundary.
We then conclude as in the previous case. �
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P  L 3.15. Let us consider the connected components of Wg1 ∩ {|g2| > 1}.
For each connected component W1 two cases are possible.

(1) W1 touches the boundary of Ω: W1 ∩ bΩ , ∅.
(2) The boundary of W1 is inside Ω:

bW1 b {|g1| = 1} ∪ {|g2| = 1} ⊂Ω.

In the former case, the result easily follows in view of the analytic continuation
principle (remember that on a strip near the boundary Wg1 and Wg2 coincide).

The latter case is actually impossible. Indeed, suppose on the contrary that the
component W1 satisfies (2). Restrict g1 and g2 to W1 and choose t > 1 such that

Wt + {|gi| > t, i = 1, 2} bW1.

The boundary bWt of Wt consists of points where either |g1| = t or |g2| = t. Choose a
point z0 of the boundary where |g1| = t and |g2| > t. Then |g2| is a plurisubharmonic
function on the analytic set

A = {g1 = g1(z0)} ∩ {|g2| ≥ t}.

Since Wt bW1, the boundary of the connected component of A through z0 is
contained in {|g2| = t}. This is a contradiction, because of the maximum principle for
plurisubharmonic functions. �

4. Some remarks

4.1. Maximality of the solution. As stated above, we do not have a complete answer
to the problem of the maximality of Ã. Nevertheless, here is a simple example where
the domain constructed is actually maximal.

E 4.1. Let Ω ⊂ Cn be a strongly convex domain with smooth boundary, 0 ∈Ω,
and let h be a pluriharmonic function defined in a neighborhood U of Ω such that
h(0) = 0 and h(z) = h(z1, . . . , zn−1, 0) (that is h does not depend on zn). Put

H = {z ∈ U : h(z) = 0}

and let
A = bΩ ∩ {z ∈ U : h(z) > 0}.

Then
Ã = Ω ∩ {z ∈ U : h(z) > 0}.

In order to show that Ã is maximal for our problem, it suffices to find, for
any z ∈ H ∩Ω, a complex manifold Wz ⊂ Ã such that Mz = Wz ∩ A is smooth and
Wz cannot be extended through any neighborhood of z. We may suppose z = 0.

So, let f ∈ O(Ω) be such that Re f = h, f (0) = 0. We define

W0 = {z ∈ Ã : zn = e1/ f (z)};

W0 extends as a closed submanifold of U \ { f = 0}. Moreover, observe that each
point of { f = 0} is a cluster point of W0. Suppose on the contrary that W0 extends
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through a neighborhood V of 0 by a complex manifold W ′
0. Then { f = 0} ∩ V ⊂W ′0,

thus { f = 0} ∩ V = W ′0 ∩ V . This is a contradiction.

4.2. The unbounded case. Let Ω ⊂ Cn be a strictly pseudoconvex domain, and
A ⊂ bΩ an unbounded open subset of bΩ.

Consider the set
A = {A′ b bΩ | A′ ⊂ A, A′ domain}.

For an arbitrary A′ ∈ A (bA′ = K′), let DA′ be the compact connected component of
Ω \ K̂′. Set

D =
⋃

A′∈A

DA′ .

From Theorem 3.4 it follows that for every maximally complex closed (2m + 1)-
dimensional real submanifold M of A, there is an (m + 1)-dimensional complex closed
subvariety W of D, with isolated singularities, such that bW ∩ A = M. Hence the
domain D is a possible solution of our extension problem.

When A = bΩ, we may restate the previous result in a more elegant way. In the
same situation as above, consider

Cn ⊂ CPn, Cn = CPn \ CPn−1
∞

and define the principal divisors hull ĈD of C = Ω ∩ CPn−1
∞ by

ĈD = {z ∈Ω | ∀ f ∈ O(Ω) L f ,z ∩C , ∅},

where L f ,z is the closure of the connected component (in Ω) of the level-set { f = f (z)}
passing through z. Then

D = Ω \ ĈD.

Indeed, if z ∈ D, then there exist an open subset A′ ⊂ bΩ and a function f ∈ O(Ω) such
that L f ,z ∩ bΩ is a compact submanifold of A′. In particular z < ĈD. Conversely, if
z < ĈD then there is a function g ∈ O(Ω′) (Ω′ ⊃Ω domain) such that N = Lg,z ∩C = ∅,
that is it is a compact submanifold of bΩ. By choosing a relatively compact open
subset A′ ⊂ bΩ large enough to contain N it follows that z ∈ DA′ ⊂ D.

5. Generalization to analytic sets

Let Ω, A and K be as before. We want now to consider the extension problem for
analytic sets.

Let us recall that if F is a coherent sheaf on a domain U in Cn, x ∈ U and

0→Omk
x → · · · → O

m0
x →Fx→ 0

is a resolution of Fx, then the depth of F at the point x is the integer p(Fx) = n − k.
We will say that M ⊂ A is a k-deep trace of an analytic subset if there is:

(i) an open set U ⊂ Cn (U ∩ bΩ = A);
(ii) an (m + 1)-dimensional irreducible analytic set WM , whose ideal sheaf IWM has

depth at least k at each point of U, such that WM ∩ bΩ = M.

In this case, we say that the real dimension of M is 2m + 1.
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T 5.1. For any (2m + 1)-dimensional 4-deep trace of analytic subset M ⊂ A,
there exists an (m + 1)-dimensional complex variety W in Ω \ K̂, such that bW ∩
(A \ K̂) = M ∩ (A \ K̂).

Observe that in this situation we already have a strip U on which the set M extends.
So we only need to generalize Lemma 3.5 and the results in Section 3.1.

L 5.2. Let z0 ∈Ω \ K̂. Then there exist an open Stein neighborhood Ωα ⊃Ω and
f ∈ O(Ωα) such that the following conditions hold.
(1) f (z0) = 0.
(2) { f = 0} is a regular complex hypersurface of Ωα \ K̂.
(3) { f = 0} intersects M in a compact set and WM in an analytic subset (of depth at

least 3).

P. The proof of the first two conditions is exactly the same as before. Hence we
focus on the third.

Again in the same way as before, we obtain compactness of the intersection with M.
Then we may suppose that WM is not contained in {z1 = z0

1} and, for ε small enough,
let f : Ωα→ C be the function f (z) = h(z) + ε(z1 − z0

1), where Ωα and h are as defined
in Lemma 3.5. Consider the stratification of WM in complex manifolds. By Sard’s
lemma, the set of ε for which the intersection of { f (z) = 0} with a fixed stratum is
transversal is open and dense. Hence the set of ε for which the intersection of { f (z) = 0}
with each stratum is transversal is also open and dense; in particular, it is nonempty.
The conclusion follows. �

The previous lemma enables us to extend each analytic subset

W0 = WM ∩ { f = 0}

to an analytic set defined on the whole of

Ω ∩ { f = 0}.

Indeed, on a strictly pseudoconvex corona the depth of W0 is at least 3 and thus W0
extends in the hole (see for example [2, 17]). Obviously the extension lies in { f = 0}.

Observe that, up to a arbitrarily small modification of bΩ, we can suppose that it
intersects each stratum of the stratification of WM transversally. In this situation M is
a smooth submanifold with negligible singularities of Hausdorff codimension at least
two (see [7]).

Again, we consider a generic projection π : Ũ → Cm and we use holomorphic
coordinates (w′, w), w = (w1, . . . , wn−m) on

Cn = Cm × Cn−m.

Keeping the notation used in Section 3.1, let Vτ = Cm \ π(Mτ).
For τ ∈ U, w′ ∈ Cm \ π(Mτ) and α ∈ Nn−m, we define

Iα(w′, τ) +
∫

(η′,η)∈Reg(Mτ)
ηαωBM(η′ − w′),

ωBM being the Bochner–Martinelli kernel.
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Observe that the previous integral is well defined and converges. In fact, Wτ =

WM ∩ { f = τ} is an analytic set and thus, by Lelong’s theorem, its volume is bounded
near the singular locus. Hence, by Fubini’s theorem, the regular part of Mτ = Wτ ∩ bΩ

has finite volume up to a small modification of bΩ.

L 5.3. Let F(w′, τ) be the multiple-valued function which represents M̃τ on
Cm \ π(Mτ). If we denote by Pα(F(w′, τ)) the sum of the αth powers of the values
of F(w′, τ), then

Pα(F(w′, τ)) = Iα(w′, τ).

In particular, F(w′, τ) is finite.

P. Let V0 be the unbounded component of Vτ (where, of course, the function
Pα(F(w′, τ)) vanishes). Following [9], it is easy to show that Iα(F(w′, τ)) also vanishes
on V0. Indeed, if w′ is far enough from π(Reg(Mτ)), then β = ηαωBM(η′ − w′) is a
regular (m, m − 1)-form on some ball BR of Reg(Mτ). Hence, since in BR there exists
γ such that ∂γ = β, we may write in the sense of currents

[Reg(Mτ)](β) = [Reg(Mτ)]m,m−1(∂γ) = ∂[Reg(Mτ)]m,m−1(γ).

We claim that ∂[Reg(Mτ)]m,m−1(γ) = 0 and, in order to prove this, we first show that
[Reg(Mτ)] is a closed current. Indeed, observe that d[Reg(Mτ)] is a flat current, since
it is the differential of an L1

loc current (see [8]). Moreover,

S = supp(d[Reg(Mτ)]) ⊂ Sing(Mτ),

so, denoting by dimH the Hausdorff dimension and byHs the s-Hausdorff measure,

dimH (S ) ≤ dimH (sing(Mτ)) ≤ dimH (Reg(Mτ)) − 2

and consequently
HdimH (Reg(Mτ))−1(S ) = 0.

By Federer’s support theorem (see [8]), this implies that

d[Reg(Mτ)] = 0.

Now, since Reg(Mτ) is maximally complex,

[Reg(Mτ)] = [Reg(Mτ)]m,m−1 + [Reg(Mτ)]m−1,m.

Since ∂[Reg(Mτ)]m,m−1 is the only component of bidegree (m, m − 2) of d[Reg(Mτ)]
and d[Reg(Mτ)] = 0, we have

∂[Reg(Mτ)]m,m−1 = 0.

Moreover, since [Reg Mτ](β) is analytic in the variable w′, [Reg Mτ](β) = 0 for all
w′ ∈ V0.

The rest of the proof proceeds as in Lemma 3.8. �

L 5.4. Pα(F(w′, τ)) is holomorphic in the variable τ ∈ U ⊂ C, for each α ∈
Nn−m−1.
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P. The only difference with the proof for the case of manifolds is the fact that I
is an integration over the regular part of Γ ∗ Mτ and not all over Γ ∗ Mτ. It is easy
to see that Stokes’ theorem is valid also in this situation, so the chain of integrals in
Lemma 3.10 holds in this case, too. �

The rest of the proof of Theorem 5.1 proceeds as in the proof of Theorem 3.4 (see
Section 3.1).
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