
Can. J. Math., Vol. XLI, No. 6, 1989, pp. 1005-1020 

ON THE HYPERPLANE SECTIONS OF BLOW-UPS 
OF COMPLEX PROJECTIVE PLANE 

ALDO BIANCOFIORE 

Introduction. Let L be a line bundle on a connected, smooth, algebraic, 
projective surface X. In this paper we have studied the following questions: 

1) Under which conditions is L spanned by global sections? I.e., if <j>i : X —•+ 
P^ denotes the map associated to the space T(L) of the sections of L, when is 
(f>L a morphism? 

2) Under which conditions is L very ample? I.e., when does <j>i give an 
embedding? 

These problems arise naturally in the study, and in particular in the classifi­
cation, of algebraic surfaces (see [8], [3], [5]). 

In particular we have restricted our attention to the case in which X is gotten 
by blowing up s distinct points JCI, . . . , xs G P2. If we denote by P\1..., Ps the 
corresponding exceptional curves then a line bundle L on X is of the form 

L = 7T*0F2(d)- Y, tjpj 

where ir : X —• P2 is the blowing up morphism with center x\,...,xs. 
It was classically known that if 

LEE7T*0P2(3)- ] T />;, 
7=1,...,* 

with x\,..., xs in sufficiently general position, then L is very ample if s ^ 6 
and L is spanned by global sections if s = 7. 

Partial answers to questions (1) and (2) are in [1] when t\ = • • • = ts = 1, in 
[7] when s = 9, in [9], [10], [11] when h°(L) = 5. 

Note that in our paper we obtain again the very ampleness of 

L = 7T*Op 2(4)- J2 PJ 
7=1, ...,10 

which gives the Bordiga surface in P4, see [13], [6], [9]. 
Further applications of our results can be found in [8]. 
In Section 0 we explain our notation and collect background material. 
In Section 1 we give a modified version of the Beauville-Reider theorem. 
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In Sections 2 and 3 we give sufficient conditions under which L is spanned 
or very ample. 

The similar questions in the case of a ruled surface are examined in [2]. 
We would like to thank A. J. Sommese for very useful discussions. 

0. Background material. (0.0) Let L be a line bundle on a smooth connected 
projective surface X. Let M — L — Kx, where Kx is the canonical line bundle 
onX. 

(0.1) In order to simplify our notations we give the following definitions: Let 
X and L be as in (0.0). 

1. We say that L is "0-very ample" if L is spanned by global sections; 
2. We say that L is "1-very ample" if L is very ample. 

THEOREM 0.2. Let X,L and M be as in (0.0). Assume that 
\) M is big and nef 
2) M2 ^ 5 + 4/,/+ 0,1 
3) L is not i-very ample. 

Then there is an effective divisor E on X such that 

M E - l - i £E2 <M • E/2 < 1 + i. 

Proof See [12, Theorem 1, pg. 310]. 

1. Some implications of Reider's method. (1.0) Let L be a line bundle on 
a smooth connected projective surface X. Let M = L — K\. 

Definition 1.0.1. For every m G N, denote by *Dm the set of all divisors 
E ÇX, such that E ^ 0 and mE is effective. Moreover we set 

® = U Vm and <DM = {E G <DX | M - IE G <D }. 
mGN 

THEOREM 1.1. (Reider): Let: 
1) M £<D 
2) M 2 ^ 5 + 4/ 
3) (M - E) • E ^ 2 + i for any E e <DM and i = 0 ,1. 

Then L is i-very ample. 

Proof. This is essentially the same as in Theorem (0.2). 

(1.2) Let E € £>i. Then E = Ex + • • • + Ek where Ehj = 1 , . . . , k are all the 
irreducible and reduced components of E. Denote by £*, / = 0,1, the set of all 
E e (D\ such that either k — 1 or if k ^ 2 then the following inequalities must 
be satisfied 

(1.2.1) YL Ej'(E-Ej)^(K-l)(2^i) + l 
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and 

(1.2.2) E'É'^2 if E = E'+ £"and£ ' , £ " G £>i. 

LEMMA 1.2.3. If any E G !£• H £>M, ' = 0,1, verify the inequality 

(1.2.4) (M-E)-E â 2 + / 

then (1.2.4) holds also for any E G £>M-

Proof Let £ = £i + • • • + Ek G *DM- where £),y = 1, . . . , &, are all the 
irreducible and reduced components of E. Then Ej G ^ n ^ . Assume that 
E$%. Then Jfc ̂  2. If (1.2.1) is not satisfied then 

(M-E)E= Y (M-EJ)-EJ- Y EJ'(E-EJ) 

7=1, . . . ,* 7 = 1 , - , * 

^ £(2 + /) - (k + 1)(2 + / ) ^ 2 + /, / = 0,1, 

i.e., (1.2.4) holds. Assume now that (1.2.2) does not hold. We proceed by in­
duction on k. Let k = 2. If (1.2.1) is not satisfied then we are in the above 
case and thus (1.2.4) holds. Suppose that (1.2.1) is satisfied. Since for k = 2 
(1.2.1) implies (1.2.2) then (1.2.4) is satisfied by assumption. We now assume 
that for any k' ^ k — 1 the statement is true. Since (1.2.2) is not satisfied there 
are £ ' , £ " £ <D{ such that E'+E" =E = Ex +••• +Ek and E' • E" Û 1. Then£' 
and E" satisfy (1.2.4) and we have 

(M - E) • E = (M - Ef) • É + (M - £") • E" - 2É • E" ^ 2 + 2/. 

Thus £ satisfies (1.2.4). 

LEMMA 1.3. Létf £ G *£/, / = 0,1. Then g(E) ^ 0, where 

g(E)=l + (E+Kx).E/2. 

Proof Let £ = E\ +• • •+£* G £>i where £y,y = 1, . . . , / : are all the irreducible 
and reduced components of E. Assume that g(E) < 0. Then k ^ 2. Moreover, 
since 

*(£)= 5 ] *(£,•)-(*-!)+1/2 YJ EJ<E~EJ) 
j=\,...,k 7 = 1 , - , * 

where g(E/) = 0 we have 

Y Ej-(E-Ej)<2(k-l)£(k-l)(2 + i) 
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which implies E £ %. Thus we have a contradiction. 

Remark 1.3.1. Let £ G £>i. Then 
1) (M - £ ) • £ = L £ - 2g(E) + 2 
2) If g(E) — 0 then £ G *£* if and only if £ is smooth. Moreover if L is /-very 

ample then L • E ^ /. 

LEMMA 1.3.2. Let E G ̂ M^giE) = 1 ami L be very ample. Then L • E ^ 3. 

£r<?o/. Since L is very ample then L • £ ^ 1. If L • E = 1 then £ is a line 
relative to L while if L • £ = 2 then £ is a conic relative to L. In both cases we 
have a contradiction since g(E) — 1. 

(1.4) Let£ G £>M- Since 

(1.4.1) M2 = 4 £ - ( M - £ ) + ( M - 2 £ ) 2 

then £ • (M - £) ^ 2 + / if and only if M2 ^ 5 + 4/ + (M - 2£)2. Moreover from 
(1.4.1) assuming 

(1.4.2) ( ^ 5 + 4/ 
1 (M - £) • £ ^ 1 + i 

then 

(1.4.3) ( M - 2 £ ) 2 ^ l . 

LEMMA 1.4.4. Let E G DM , / = 0,1. Assume that 

(1.4.5) £ 2 ^ Oand (M - 2£) • £ ^ 0. 

am/ £/̂ f (1.4.2) holds. Then one of the following is satisfied 
1) / = 0,£2 = 0 , M £ = 1 
2) 1 = 1,£2 = 0 , M £ = 1,2 
3) / = 1,E2 = 1,M = 3£. 

Proo/. From (1.4.2) and (1.4.5) it follows that 

0 ^ £ • (M - 2£) ^ 1 + / - £ 2 

which combined with Hodge Index Theorem, (1.4.5) and (1.4.3) gives 

(1.4.6) £ 2 ^ £ 2 • (M - 2£)2 Û (£ • (M - 2£))2 ^ (1 + / - £2)2 . 

Moreover 

(1.4.7) M £ > 2 £ 2 . 
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In fact if M • E = 2E2 then, by Hodge Index Theorem, M — 2E = XE for some 
À G Q. Thus E2 = 0 and again, by Hodge Index Theorem, we get M = \iE for 
some /i G Q. Thus M2 = 0 which contradicts (1.4.2). Applying now (1.4.6) and 
(1.4.7) we get the statement. 

LEMMA 1.4.8. Let M2 > 5 + Ai and let E2 ^ - 1 for any E G Œj n (DM 
such that g(E) = 0. If there is E G % Pi (DM such that g(E) = \,E2 = 0 and 
1 ^ M - E ^ 1 + /, r/ie« L is not i-very ample. 

Proof We have 

M'E = (M-E)'E=L-E- 2g(E) + 2 = L • E. 

If / = 1 the statement follows from (1.3.2). If / = 0 then M •£ = LE = 1. Let 

where £y,7 = 1, . . . , k are all the irreducible and reduced components of E. We 
study the two cases k — 1 and k ^ 2. Let & = 1. If £ is smooth it follows 
immediately that L is not spanned. If E is not smooth then there is a singular 
point P G E. Since if F is a base point we are done, we can suppose that P is 
not a base point. We have 

d i m | L - F | = dim|L| - 1. 

Furthermore D'.E ^ 2 for any D' e \L - P\. Hence \L - P\ = \L - E\. If 
D G |L| — |L — P\ then <2 G £> D £ is a base point. Thus also in this case L is 
not spanned. Let k ^ 2. Since 

1 = * ( £ ) = ] T £ ( E * ) - ( * - l ) + l / 2 ^ Et(E-Et) 
7 = 1 , . . . , * ; f = l , . . . , * 

^ J ] g(E,)+l 
f = l , . . . , * 

then g(£,) = 0 for t — 1 , . . . , k. Moreover 

0 = E2 = ] £ E, + ] T £, • (£ - Et) ^ -k + 2*: = k > 1 
/=i,...,* t=\,...,k 

which gives a contradiction. 

2. Rational surfaces. (2.0) Let JCI,...,JCJ be distinct points on P2. Let re : 
X —• P2 expresses X as P2 with JCI , . . . , xs blown up. Denote by Pj = n~l(xj)J = 
1, . . . , s the corresponding exceptional curves. We set 

L = ix\Ovi{d)) <g> [/»!]-" 0 • • • 0 [PsT
ts and M =L®KX 
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where t\,...,ts G N. Without loss of generality we can assume that t\ ^ • • • ^ 

fc.If 

r G |7T*(0P2(1))| 

then 

L = dr- ^2 *jpj a n d M = (d + 3)r- ^ (/,- + 1 )/>,-. 
j= l , . . . ,S 7=1,...,5 

Throughout the rest of the paper we will suppose X,L and M being as in (2.0). 

LEMMA 2.0.1. Let M2 > 0 and d à 0. 77œw M G 2). 

/V00/. From the Riemann-Roch Theorem it follows that 

h°(aM) è x(Ox) + (l/2)(a2M2 - aM • £ x ) > 0 

for a ^> 0, since 

/?2(aM) = /*Vx - aM) = 0. 

(2.1) Denote by £>* the set of all divisors 

£=)"•- XI aiPJ 
7 = 1 , . . . , 5 

on X such that y â 0 and a ; ^ _y. Then £> * D ^ • Moreover if we write 

0j£ = { £ G £ > i | M - 2 £ G î D * } 

then (DM D £>M. Let now 

E=yr- X ^ y G 2i H îDw, / = 0, 1 
7=l,...,s 

and let 

M-2E=xr- X V*/, 
7 = 1 , . . . , * 

i.e., x = d + 3-2y,\j = tj + l - 2CCJ. Since £, M - IE G 2) * then 

0 ^ j ^ (d + 3)/2 and fy + 1- j t ) /2 ^ a, ^ y. 

/?emar£ 2.1.1. In view of (1.4.3), if M2 ^ 5 + 4/ and if (M - E) E é 1+/, 
then JC à 1. 
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LEMMA 2.1.2. Let M2 ^ 5 + 4/ and let E G % H Œfo such that E2 2l 0. / / 
E • (M — E) ^ 1 + / then one of the following is verified: 

1) / = 0,£2 = 0,Af •£ = l 
2) / = l ,£ 2 = 0 , M - £ = 1,2 
3) / = 17£2 - l,Af = 3£. 

Proof By (1.4.4) we have to prove only that E • (M - 2£) =t 0. If 

£ • (M - 2£) = xy - ^ or, A, < 0 

then from (1.4.3) it follows that 

Vy=i,...,j y Vy=i,...,j / 

^ 0 ; 2 - £ 2 ) ( * 2 - l ) 

i.e., 

0 < E2 - E2x2 - y2 = E2x2 - ^ aj ^ 0. 

Hence we get a contradiction. 

LEMMA 2.1.3. Let M2 ^ 5 + 4/ <awd let 

(2.1.4) £M=E[(d + 3 ) / 2 ] r - J ] [ty + l)/2]Py. 
7 = 1 , . . . , * 

//"£M W effective then 

(2.1.5) £ M - ( M - £ M ) ^ 2 + / 

if and only if one of the following holds: 
1) M2 ^ 6 + 4/ 
2) d + 3 is even 
3) */ rj w J/ze number of j G { 1 , . . . , s} such that tj is even then r\ ̂ = 1. 

Proof. From (1.4.1) it follows that 

(2.1.6) EM-(M- EM) = (1/4)(M2 - (M - 2£M)2). 

Let h = d + 3 - 2[(d + 3)/2] then 

(2.1.7) (M -2EM)2 = h-rj. 

? 2 < ( E « A ) 
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Thus, using (2.1.6) and (2.1.7), it follows that (2.1.5) is satisfied if and only if 
at least one among 1), 2), and 3) holds. 

LEMMA 2.1.8. Let M2 ^ 5 + 4/ and let x ^ 1. Consider 

E=yr- ] T ajPj G %,i = 0,1. 
7=1, . . . ,* 

Then: 

1) lfy = 0 then $2/=i s
aj ~ ~^ and aj — ®iJ: ~ ^ • • • ?S 

2) If y è 1 then aj ^ 0 J = 1,. . . ,s 
3) Ify^2thenaj£y-lJ= l , . . . , s 

4) / / £A = j r - Éy=i,...,5 ̂  where Pj = M i n {<*/> (0 + ! ) / 2 } ' ^ w £ A G ^ 

(2.1.9) EA-(M-EA)èE-(M-E). 

Moreover if (M - 2£) G £>* then also (M - 2EA) G £>*. 

Proof 1) Since £ is effective and E ̂  0 then a7 ^ 0. Moreover if 

y=i,...,5 

then g(£) < 0 and from (1.3) it follows that E 0 %. 2) If a7 < 0 for some 
j G { 1 , . . . , 5} then £1 = /*,- and E2 — E — E\ are effective divisors such that 
E\ • £2 = O and again £ 0 *£/. 3) If ay = y for some 7 G { l , . . . , s } then 
g(£) < Oand therefore by (1.3) we have E £ %. 4) It is easy to see that (2.1.9) 
is verified. It remains to prove that EA G %. If ay = 1 for j = { 1 , . . . , s} then 
f3j = aj and £ = EA. Assume that at â 2 for some £ G { 1 , . . . , s} then: 

(2.1.10) £ + P , G £,. 

To prove (2.1.10) we have to prove that E + Pt satisfies (1.2.1) and (1.2.2). Let 
Ek+\ ~ Pt and E — E\ + • • • + £*. Then 

J ] Er(E+Pt-Ej)= YJ Ej'(E-Ej) + 2PfE 
j=l,...,Jt+l 7 = 1 , - , * 

^ (& - 1)(2 + 0 + 1 + 2a, ^ £(2 + 0 + 1 . 

Thus (1.2.1) is satisfied. Let E' and E" be effective divisors on X such that 
E — E' +E". To show that E + Pt verifies (1.2.2) it is enough to prove that 

(2.1.11) (Ef + Pt) • E" ^ 2. 
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If E" • />, è 0 then (2.1.11) is verified since E'E^2. Assume that E" Pt<0. 
Let F' = E' + Pt and F" = E" - Pt. Then F'and E" are effective divisors such 
that F' +F" = E and therefore Ff • F" ^ 2 since E G %. We have 

(£' + />,) • £" = F ' • (F" + P,) = F' • F" + F ' • Pt and 

E' Pt = at-E" Pt-\^ 2. 

Thus (2.1.11) is again verified and consequentelly (2.1.10) is satisfied too. By 
(2.1.10) and by induction on 

y=l , . . . , j 

we obtain that EA £ %. Moreover since 

(M - 2EA) • Fy = py = fy + 1 - 2/3y 

then 

Py: = < 1 if (tj + l)/2 < Œj and fy is even 
[ 0 if (tj + l)/2 < ay and fy is odd. 

It is easy to check that p7 ^ x. 

Denote by Tt the set of all 

E =yr- ^2 aJPJ ^%^^M such that 1 ^ y ^ (d + 2)/2 
y=i , . . . , j 

and 

Max {0, (fy + 2}; - d - 2)/2} ^ a} 

" \ Min{j - l,(*y + l)/2} if y à 2. 

THEOREM 2.2. Ler / = 0,1 a«d let: 

1) d^O 
2) M2 ^ 5 + 4/ 
3) (M - E) • £ ^ 2 + / /or 0/2? F G 7/ s«c/z that E2 < 0. 

77^« L is i-very ample unless there is E G Tt such that either E2 = 0 and 
l^M -E ^l+i or i = l,E2 = 1 andM EE3E. 

Proof. The theorem is a direct consequence of (1.1) and of (2.1.2). In fact 
since d ^ 0 and M2 ^ 5 + 4/, by (2.0.1), we have E G (D. Moreover applying 
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(1.2.3), (2.1.8) and (2.1.1), it follows that the condition 3) of (1.1) is satisfied if 
(M — E) - E ^ 2 + / for any E GT/. The theorem now follows applying (2.1.2). 

THEOREM 2.3. Let 

2) M2 à 5 + 4 / , / - 0 , 1 
Then L is i-very ample if for any y such that 1 =5 _y ^ (d + 2)/2 a/?d /or any 
D E |0p2(y)|, the following in equality holds: 

(2.3.1) ^ ^ ^ J ( ^ + 3 - J ) - 2 - / 

, /GAA 

w/îéTe AA = {/ E [l,...,5]|jcy E D]} . 

Proof The statement follows easily from (2.2) and the fact that (2.3.1) is 
equivalent to 

(2.3.2) E • (M - E) è 2 + i 

for any E=yr- ]C/=i,...,.s °7Fy s u c h t h a t l = ? = (d + 2 ) / 2 a n d ° = aj = L 

Remark 2.3.3. When ^ = • • • = ts — 1, the above theorem improves the 
result in [1]. In particular if d — 4 we get that L = 4r — Ylj=\ s^j *s '" 
very ample if s ^ 11 — /, / = 0,1. This bound is sharp (see [1]). Hence when 
s — 10, (j)L embeds X in P4 provided that at most 3, 7 and 9 of the Xj lie 
respectively on a line, a conic and a cubic. In this case (X,L) is called "Bordiga 
Surface" (see [9], [10], [11], [6], [13]). 

THEOREM 2.4. / / 

(2.4.1) d^i+ ] T fy,/ = 0,1 
7=1, . . . ,* 

£/*£« L /s i-very ample. 

Proof We have to proof that: 
1) M2 Si 5 + 4/ 
2) (M - £) • £ 2t 2 + / for any E = yr - Ey=i,...,, « /y ^ H ^ . 

If s = 0 then (2.4.1) is trivially true. Assume that 

7=1, . . . ,* 

Since 

M2 = (d + 3 ) 2 - J2 (0 + 1)2 = (4 + 2/) XI 0 + (3 + O 2 - s 
7=1,...,5 7=1,...,5 

à (3+ 2i) X </ + (3 + 02 

7=1, . . . , * 

=t 12 + 9 / > 5 + 4/, 
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1) is proved. We want now to prove 2). We have 

(M-E)E = y(d + 3-y)- J2 ctjitj + X-ctj). 

If y = 0 then (M - E) • E ^ 3. If y = 1, 2 then 0 ^ or,- ̂  1 and 

( A f - £ ) . £ â ( y - l ) J2 tj+y(3 + i-y)^2 + i. 

Thus we assume j ^ 3. If y ^ 3 then by (2.1.8) we may assume 

ccj ̂  Min{_y — 1, (tj + l)/2},y = 1 , . . . , s and 

(M-E).E^-y2 + (3 + i)y+ £ ) ( ^ - a7(/y + la,)). 
y=i , . . . , j 

We need to consider two cases: 

a) (tj + l ) /2 < y - 1 and b) y - 1 ^ (^ + l ) / 2 . 

In case a) 

3*y - «,•(*,• + 1 - aj) à ry(ry + 4) /2 - ((*,- + l ) /2) 2 > 0. 

In case b) 

ytj - ajitj + 1 - aj) è ytj - (y - \)(tj + 2 - y) = y2 - 3y + 2 + t} > 0. 

If(h + l)/2^y- 1, then 

(M -E)E^ -y2 + (3 + i)y+yt\ - ax(tx + 1 - c * i ) 

^ j} + 2 + fi ^ 2 + /. 

Assume now (fi + l ) / 2 < y — 1, then 

( 0 + 4 ) / 2 ^ j J = l , . . . . . . 

By (2.1.1) we may assume y û (d + 2)/2. Thus we have 

(M-E)-E^(d + 4)y/2- ^ ((r, + l ) /2) 2 

y=l, . . . ,5 

^ j(/ + 4)/2 + I J]) (2^ - (tj + l)2) J /4 

^y(/ + 4)/2+[ 53 (2ry-1)1/4 ^ 2 + i. 
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Remark 2.4.2. The bound (2.4.1) is sharp. It can be improved only under 
the condition that not all the points XjJ — 1 , . . . , s, lie on a line. 

Remark 2 A3. We like to point out that the above theorem is very useful in 
the investigation of the existence of surfaces whose minimal model is P2, see 
[8]. However if 

d<i + Y^j lh 

where / = 0,1 in order to be able to answer to the question if L is /- very ample 
it is necessary a study of the position of the points JCI, . . . ,x5. A contribution to 
this problem is given in the following section. 

3. General position. 

Definition 3.0. We say that JCI, . . . ,xs are in general position with respect to 
L if for any E G |#P2(v)| such that: 

1) £ is irreducible and reduced 
2) lûyû(d + 2)/2 
3) ^ ) ^ ( f ; + l ) / 2 , / = l , . . . , * . 

Then 

(3.0.1) (1/2) YJ W ( £ ) W ) + 1) = h\E) - 1 = yiy + 3)/2 

where fij(E) denotes the multiplicity of E at Xj. 

Remark 3.0.2. If 2 ^ t{ ^ • • • ̂  rs then /iy(£) ^ 1 and (3.0.1) becomes 

(3.0.3) Y Vj(E)^y(y + D/2 
y=i, . . . ,5 

which means that there are no more than two points on a line, no more than 
five points on a conic, no more than nine points on a cubic, etc. 

LEMMA 3.1. Let x\,..., JC5 be in general position with respect to L. Let 

E=yr- ] T ocjPje% 
7=1,..,5 

be such that y ^ (d + 2)/2 a/id a7 ^ (fy- + l)/2J = 1 , . . . , 5. TTzeft 

(3.1.1) (1/2) J ] a y ( a y + l ) ^ ( y + 3)/2. 
7 = l v . . , 5 

fVoo/. If y = 0 then 

5 3 aj = - 1 and a,- ^ 0,y = 1 , . . . , s, 
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hence (3.1.1) holds. Assume that E — E\ + • • • + Ek, where Et11 = 1, . . . , £ are 
all the irreducible and reduced components of E. Since Eht = 1 , . . . , k satisfies 
(3.1.1) we can assume k^2. We claim that also E verifies (3.1.1). In fact if E 
does not satisfies (3.1.1) we get a contradiction since 

0 > y ( y + 3 ) - ] T ay(ay + l ) = £ Et (Et - Kx) 
y=i,...,5 y=i , - ,* 

+ ] T Et-(E-Et)^(k- 1)(2 + /) ^ 2 +1. 
y=i,...,* 

Atote. (3.1.1) is equivalent to 

(3.1.2) £ • ( £ - * * ) ^ 0 . 

PROPOSITION 3.2. Let M2 ^ 5+4/ and let that x\,...,xs be in general position 
with respect to L. Consider 

E=yr- ] T OLjPje<EiCiVM 

such that g(E) ^ 1. / / E • (M - E) ^ 1 + / f/œ« either g{E) = 1,£2 = 0 a/iûf 
1 ^ M £ ^ \+iori = \,g(E)^2,E2 = 1 and M = 3E. 

Proof. Since (3.1.2) and g(E)^ 1 imply that 

3.2.1. E2 ^ g(E)- 1 =t0 

the statement follows easily from (2.1.2). 

LEMMA (3.2.2) Let M2 è 5 + 4/ and let x\,..., xs be in general position with 
respect to L. If there is an E G % Pi (DM such that g(E) = 1,£2 = 0 and 
1 è M - E ^ 1 + /, //z£A2 L /s not i-very ample. 

Proof We have 

ME = (M-E)E = LE- 2g(E) + 2 = LE. 

Thus when / = 1 the statement follows from (1.3.2). Assume that / = 0. Then 
M E —LE = 1. Moreover if there is F G %H Œ)M with g (F) = 0 then, since 
x\,..., xs are in general position with respect to L, F2 ^ — 1. So the statement 
follows from (1.4.8). 

THEOREM 3.3. Let: 

1) M2 ^ 5 + 4/ 
2) j t i , . . . ,Jty tfr^ />/ general position with respect to L 
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3) for any E E %, Pi £W such that g(E) = 2 then either E2 ^ 1 or M ^ 3E. 
Then L is i-very ample if and only if for any E G %Ç~\(DM such that 0 ^ g(E) Û 1 
we have L • E ^ 2g(£) + /. 

/V00/. The statement follows from (1.3.2), (3.2) and (3.2.2). 

THEOREM 3.4. Assume that: 
1) x\,..., JC5 are m general position with respect to L 
2) M2 è 5 + 4/,/ = 0,1 
3) /or awy £ G Î ; H DM SWC/J f/zar g(£) = 2 either E2 ^ 1 or M^3E. 

Then L is i-very ample ifd^3t\ + l. 

Proof Assume that d ^ 3t\ + 1 and that there is 

E=yr- J ] ajPjE^D'DM 

such that g(£) = 0,1 and 

(3.4.1) L-EÛ2g(E)-l + i. 

Then y è 1. Moreover by the general position hypothesis on x\,..., xs it follows 
that 

(3.4.2) EKX ^g(E)- 1 ^E2. 

Therefore 

{L.E + txE.Kx) = y(d-3tx)+ ^ «,-(/, - /)) ^ y(d - 3/i). 
7 = 1 , . . . , . 

Combining (3.4.1) and (3.4.2) we get that 

(L-E + txE-Kx)£(2 + ti)(g(E)-\)+l+L 

Hence 

d£3tx+(A/y) 

where 

A = (2 + t{)(g(E)-\)+l+L 

If g(£) = o then A < 0. If g(£) = 1 then y ^ 3 and A = 1 + /. In both cases 
we get d ^ 3t\ which gives a contradiction. 
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/ d 

0,1 1 

0,1 2 

0,1 3 

1 4 

0 4 

1 5 

0,1 6 

Remark 3.4.1. Let X,L and M be as in Theorem (3.4). Assume that t\ S 2. 
Then L is /-very ample if d ^ 7. If 1 ^ d ^ 6 a direct computation shows that 
L is /-very ample if it satisfies the conditions in the following table I: 

L is /-very ample if 

p — 0 and q ^ 1 — / 

p ^ 1 - / , 1 û l - i ifp= 1 - / 

/? ^ 1, q ^ / — 1 if p — 2 — / 

P ^ I 

/7^4,<7 = 0if/? = 4 

p ^ 4 

p ^ 8 - / , < ? ^ / if/7 = 8 - 1 

where p,q € Z+ are such that p + q — s and ^ — • • • = ^ = 2, rp+i — • • • = 
ts — 1. Conversely if L is not as in table I, L is not /-very ample. (Remember 
that we are supposing M2 S 5 + 4/). For example, consider 

U• = 6r - 2 ^ P,- - (2 - /)/>8 - F9, / = 0, 1 
y=l, . . . ,7 

and let 

£ = 3 r - ^ P y G ^ . 
y=i,...,9 

Then g(E) — 1,L • £ = 1 + / ,£ 2 = 0. Therefore, from (3.3) it follows that L, is 
not /-very ample. 

Note. After this paper was written, R. Weinfurtner, a student of K. Hulek, has 
generalized our results to the case of infinitesimally near points. 
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