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1. Introduction

We will assume throughout this paper that polynomials are nonconstant. Let P be
any complex polynomial and let JfP denote the near-ring of all continuous selfmaps of
the complex plane where addition of functions is pointwise and multiplication is defined
by fg = f°P°g for all f,ge^VP. The near-ring JfP is referred to as a laminated near-ring
and P is referred to as the laminating element or laminator. In [1] the problem was
posed of determining Aut JfP the automorphism group of JfP. It was shown that exactly
three infinite groups occur as automorphism groups of the laminated near-rings J/~P and
for each of the three groups those polynomials P were characterized such that Aut JfP is
isomorphic to that particular group. The infinite groups turn out to be GL(2), the full
linear group of all 2 x 2 nonsingular real matrices and two of its subgroups.

In [2], as the title of that paper indicates, finite automorphism groups of the near-
rings JfP were investigated and the results obtained there, combined with the results
obtained in [1], yielded a description of Aut^Tp when P has real coefficients and
DegP^4. In this paper, we complete the solution of the problem. That is, the main
result of this paper, together with a result from [1] allows us to completely describe
Aut JfP with no restrictions whatsoever on the polynomial P. In Section 2 we recall
some notation and state the main results. Proofs are given in Section 3.

2. Statements of main results

As we mentioned previously, GL(2) denotes the full linear group of all real 2 x 2
nonsingular matrices. G, denotes the subgroup of GUI) consisting of all matrices of the
form

l' " ' where

and Gc denotes the subgroup of GL(2) consisting of all matrices of the form

[a, -I

: i] -
185
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where a2 + b2=f=0. Let GRm (m a positive integer) denote that subgroup of Gc where
a = cos(2/c7t/m) and b = sin(2kn/m), l^fc^m. Finally, we denote by Zm the cyclic group
of order m. The groups GUI), G, and Gc are all infinite while GRm is finite of order 2m.
Of course, GR, is isomorphic to Z2 and GR2 is isomorphic to 1K4 the Klein group of
order four. These are the only instances in which GRm is abelian.

In all that follows, we let P(z)=Yj=oajz"~i where each a, is a complex number and
ao=fc0. We now state two theorems which, together, completely describe AutJ^ for all
complex polynomials P. The first result appears in [1] as Theorem 4.4. We restate it
here (without proof) for the sake of completeness.

Theorem 2.1. Let P be any complex polynomial. Then:

Aut JfP is isomorphic to GL(2) if and only if Deg P = 1 or Deg P = 2
andat=0, (2.1.1)

is isomorphic to Gt if and only i /DegP = 2 and ax ^ 0 , (2.1.2)

Aut J/], is isomorphic to Gc if and only if Deg P ̂  3 and a, = 0 for
lgjgn-1. (2.1.3)

It is evident from the previous result that it remains for us to consider the case where
D e g P ^ 3 and a,=/=0 for some j such that l g y ^ n — 1. We do this in the next theorem
which is the main result of the paper. In the statement we require a0 = 1. At first glance
this may appear to be a restriction but it really is not for Lemma 3.2 of [1] assures us
that A u t ^ and A u t ^ are isomorphic where <2(z)=(l/ao)P(z). In the statements of the
following three results, we let A = {j:l^j^n—l and a^Qi).

Theorem 2.2. Let D e g P ^ 3 and ao = l. Suppose A=£0 and let m = gcdA. Then there
exist integers b} such that m = Y,jeAJbj and we define

c=n M»/'- (2-2.1)

If there exists an mth root a of c such that

aj=djaJ for each je A, (2.2.2)

then Aut J/p is isomorphic to GRm. If no mth root of c satisfies (2.2.2), then Aut Jfr is
isomorphic to Zm the cyclic group of order m.

Corollary 2.3. Let D e g P ^ 3 and let ao = l. Suppose A±0 and a,- is real for each
j e A. Then Aut JfP is isomorphic to GRm where m = gcd A.

Corollary 2.4. Let D e g P ^ 3 , let ao = l, suppose A^0 and suppose a3 is a pure
imaginary number for each j e A. Suppose further that the least element me A divides every
other element in A. Then:

A\itjVP is isomorphic to GRm ifj/m is odd for eachjeA. (2.4.1)
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and

Aut JfP is isomorphic to Zm ifj/m is even for at least one j e A. (2.4.2)

3. Supporting lemmas and proofs

Lemma 3.1. Let P(z) be any complex polynomial and let any real number r > 0 be given.
Then there exists an R>0 such that if \zo\>R, then z0 is the only zero of P(z) — P(z0)
in the interior of the curve C = {z:\z- zo\ = r}.

Proof. Let Q(z) = P(z) - P(z0). We then have

e( )f^(_2oy.t^»(j_2o), (3.u,

According to Lemma 3.4 of [1], we can choose Rt large enough so that if I Z Q ^ / ? ! , then
Q(z) has no multiple roots. Thus, Q'(z0) = P'(z0) =/= 0 for I Z Q ^ / I J and from this fact and
(3.1.1) we get

Q(z) = P'(zo)(z-zo)[l+R(z)l (3.1.2)

where

Now let e be any number such that 0 < e < l and choose R2^Rt so that |i?(z)|<e when
|zo|>/?2 and z is any point on the curve C. From this and (3.1.2) we get

\Q(z)\Zr\P'(zo)\(l-s) (3.1.4)

for any z on C. Since P'(z0)^ 0, this means, among other things, that Q(z) does not
vanish on C.

In a similar manner,

Q'(z) = P'(zQ)\;i + T(zft (3.1.5)

where

Now choose R^R2 so that if |zo|> J? and z is any point on C, then |T(z)|<£. It follows
from (3.1.5) that

https://doi.org/10.1017/S0013091500003308 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003308


188 D. K. BLEVINS et al.

From (3.1.4) and (3.1.7) we then get

rd6
2ni c Q(z)

± l £ l
2n I \Q(z)\

(3.1.8)
^1 2

f" \P'(zo)\(l+e) 1+e
= 271 I r |P ' (zo) | ( l -£) l - £ -

The number e can be chosen small enough so that ( l+e)/( l—e)<2 and it then follows
from the Principle of the Argument that z0 is the only zero of Q(z) = P(z) — P(z0) within
the curve C when |zo |>/?.

We next recall a result of J. L. Walsh [3, p. 21] which we will need in the proof of a
subsequent lemma.

Theorem 3.2 (Walsh). Let P(z) = ( z - a 1 ) ( z - a 2 ) . . . ( z - a n ) and let a o = (a 1 + a 2 + - -
+ an)/n. For each e>0 there exists an Me such that if\A\>Me then every zero z0 of the
polynomial P(z) — A satisfies an inequality

| £ (3.2.1)

where A11" is a suitably chosen nth root of A.

Any polynomial P decomposes the complex plane # into mutually disjoint subsets.
Specifically, we define

Next, we regard <€ as a two-dimensional vector space over the reals and we denote by
LA(P) the group of all linear automorphisms t of ^ which satisfy the condition
t [ / l ] e n ( P ) for each AeIl(P). Corollary (2.3) of [1] tells us that A u t ^ is isomorphic
to LA{P) so our efforts in this section will be directed toward determining LA(P) for
each complex polynomial P. There is another result we need to recall from [1]. It was
stated there as Lemma 3.1.

Lemma 3.3. A linear automorphism t of ^ belongs to LA(P) if and only if for all
zl,z2e'&, the following two statements are equivalent:

(3.3.1)

) = P(t(z2)). (3.3.2)

And now we are in a position to prove

Lemma 3.4. Let P(z) = z" + a1z
n~1+a2z"~2 + ---+an, let teLA(P) and let 9 be a

primitive nth root of unity. Then the sets

(62),...,t(d"-1)} (3.4.1)
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and

{t(l),Ot(l),d2t(l),...,d»-1t(l)} (3.4.2)

coincide.

Proof. According to Lemma 3.1 we can choose Ro>0 so that if |zo|>.Ro then z0 is
the only zero of P(z) — P(z0) within the curve |z—zo| = l. Next let e be given subject to
the conditions 0<e<%. According to Walsh's Theorem 3.2, there exists an Me such
that if
suP|«ISJ«o
conditions are satisfied.

\P(zo)\>M + Me (3.4.3)

\P(t(zo))\>M, (3.4.4)

P(z)-P(z0) has n distinct zeros. (3.4.5)

It is evident that the first two conditions can be satisfied and it follows from Lemma 3.4
of [1] that the third condition can be satisfied as well.

Now let l>Re, let |P(/)|1/n be the positive nth root of \P(l)\ and let Zj be any zero of
P(z)-P([). It follows from (3.4.3) and Walsh's Theorem that

flO^e (3A6)

where l^j^n. Let z2 be a zero of P(z) — P(l) distinct from z1. As in the case for zx we
have

where l ^ i ^ n and we claim that i±j. Suppose, to the contrary, that i=j. It follows
from (3.4.6) and (3.4.7) that

| z 1 -z 2 |<2e<l . (3.4.8)

Thus, P(z)-P{zl) = P(z)-P{l) has at least two zeros within I z - z ^ l . But from (3.4.3)
we see that |P(z1)| = |P(/)|>M which implies Iz!^/?,,. This, in turn, implies that
P(z) — P(zl) has only one zero within \z — Zj| = l and we have reached a contradiction.
Consequently, i^j as we asserted. According to (3.4.5), P(z) — P(I) has n distinct zeros
and it follows from all this that for each integer) such that l^j^n, there exists a zero
z,j of P(z)-P(l) such that

e0|<c (3.4.9)
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for each ;. This implies
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|
!->oo

lim
l-ao

(3.4.10)

= 0.

But

/ /

ta_, solha« !,„
1-.00 ' l - o o '

(3.4.11)

This, together with (3.4.11) implies

l i m ^ = 0J for
I->00 '

(3.4.12)

Since t is continuous, we also have

lim ^ - = 400 for l^j^n.
| - > Q 0

(3.4.13)

It follows from Lemma 3.3 that {t(zij)}?= i is the collection of zeros for the polynomial
P(z)-P(r(/)). Choose any t{zl}). Since l>Rt, |P(t(z(j))| = |P(t(/))|>Mc and it follows from
Walsh's Theorem that

(3.4.14)

(3.4.15)

where P(t(/))1/n is a suitable nth root of P(t(l)). This implies

=0.lim

Thus, (3.4.13) and (3.4.15) together imply that

,. p(t(o)i/n m

But we have

(3.4.16)

https://doi.org/10.1017/S0013091500003308 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003308


MORE ON AUTOMORPHISM GROUPS OF LAMINATED NEAR-RINGS 191

so that [t(0OA(l)]"=l. T h a t »s, t(dJ)/t(l) = 9i for some i such that l ^ i g n . Thus,
t{8>) = 0it(l)e{t(l),0t(l),...,dn-1t(l)} for l g ; ^ « . Consequently, the sets (3.4.1) and (3.4.2)
coincide as we asserted.

Lemma 3.5. Let P(z) = zn + alz"~1 + a2z"'2 + • • • + an with DegP ̂  3 and let teLA{P).
Then there exists a nonzero complex number v such that either t(z) = vz for all z e f or
t(z) = vzfor all

Proof. We first consider the case where Deg P = 4. Then, by Lemma (3.4) we have

If t(i) = t(l), then O = t(i)-t(l) = t(i-l) which is a contradiction. Thus, t(i)£t(l) and for
similar reasons, t(i)^ —t(l). Consequently, either t(i) = it(l) or t(i) = — it(l). In the former
case,

t(x + yi) = t(x) + t(yi) = xt( 1) + yt(i)

and one shows in the same manner that t(x + yi) = t(l)(x+yi) in the latter case.
Now suppose Deg P =f= 4 and let 9 = x + yi be a primitive nth root of unity where n =

Deg P. Then x±Q±y (since DegP^3 and DegP=£4) and x2£l. The vectors 1, 6 and
B all have absolute value 1 and by Lemma 3.4, 1(1), t(9) and t(0) all have absolute value
\t(l)\. It now follows from Lemma 4.1 of [1] that there exists a nonzero complex
number v such that either t(z) = vz for each ze# or t(z) = vz for each

Notation. Let v be a nonzero complex number. In all that follows tv is the linear
automorphism of <& which is defined by tv(z) = vz and tv is defined by tv(z) = vz. As
before, we let A = {7: l^j^n—l and a,- ̂  0} and we assume A ̂  0. Furthermore, we
assume without further mention that DegP^3 and ao= 1.

Lemma 3.6. {„ e L/4(P) 1/ and on/_y if vJ = 1 /or each j e A

Proof. Suppose tveLA(P) and choose Zj so that P '^P^ i ) ) consists of n distinct
points {Zj}"=l. Then we have

P(z)-P(z1) = (z-zl)(z-z2)...(z-zn). (3.6.1)

Now {zj;= 1en(P) so {t>z,};=1en(P) since rDeLX(P). It follows that P"1(P(^1)) =
{fZj}"=i and this implies

P(z) - P(vZl)=(2 - »2,)(z - »z2)... (z - w j . (3.6.2)

From (3.6.1) and (3.6.2), we get

P(vz) - P(vZl) = v"lP(z) - P(zJ]. (3.6.3)
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Choose je A. The coefficient of z"~J in P{vz)—P{oz^) is \f~'a} and the coefficient of zn~i

in t/'[P(z)-P(zi)] is v"aj. It follows from (3.6.3) that \f~iai=\fai for each jeA and this
implies v*=l for each _/ e A.

Conversely, suppose that vJ= 1 for each ye A Then we have

JeA

- a n - \ . (3.6.4)

It readily follows from (3.6.4) that for any z1,z2e'£, we have P(zl) = P(z2) if and only if
P(vz1) = P(vz2). Thus, tveLA(P) by Lemma 3.3.

Lemma 3.7. tv e LA(P) if and only if aijai=v} for each jeA.

Proof. Suppose tveLA(P). Again choose zt so that P~1(P{z1)) consists of n distinct
elements {zi}"=1. As before, we have

(z-z1)(z-z2)...(z-z1I) (3.7.1)

and this time {uz(}?= t e II(P) which implies

P(z) - P(vzt)=(z - vzJiz - vz2)... (z - vz-n). (3.7.2)

From (3.7.1) and (3.7.2), we get

P{vz) - PivzJ = v"lP(z) - P{zj]. (3.7.3)

For each jeA, the coefficient of z"~J in P(uz) —/"(uz,) is apn~i while the coefficient of
z"~J in t;"[P(z)-P(z1)] is t)"ay. Thus, aiv

n~i = v"ai by (3.7.3) and it follows that aj/dj=vJ

for each ye A
Suppose, conversely, that (aj/dj) = vJ for each _/ G A. We then have

= an + t)"z" + v" X a/""J' (3.7.4)

It readily follows from (3.7.4) that for any zu z2e
c€ we have P(zx) = P(z2) if and only if

P(vz1) = P(vz2) and we appeal to Lemma 3.3 once again to conclude that tveLA(P).

Notation. We let B(P) = {ve<8:tveLA{P)} and B(P) = {ve<£:tveLA(P)}.

Lemma 3.8. Let m = gcd A and let 6 be a primitive mth root of unity. Then B(P) =
{0'}
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Proof. Suppose v e B(P). Then tv e LA(P) and vJ = 1 for each j e A by Lemma 3.6.
Furthermore, there exist integers {bj}jeA so that m = YjeA jbj and we have

n
eA

That is, v is an mth root of unity. Since 8 is a primitive mth root, we have 6k = v for
some k where l^k^m. On the other hand, it is immediate from Lemma 3.6 that for
each such k, we have 0* e B(P).

Lemma 3.9. Let m = gcd A Then there exist integers bj such that m=^JeAjbj and we
define

n
js A

If there exists an mth root a of c such that

aj=dj(7
i for all je A, (3.9.2)

then

B(P) = {<r9i}T=l (3.9.3)

where 6 is a primitive mth root of unity. If no mth root of c satisfies (3.9.2), then

0. (3.9.4)

Proof. Suppose a satisfies (3.9.2). Then &= 1 for each jeA and we get {odi) = aj/dj

for each jeA which, by Lemma 3.7, means a9leB{P). On the other hand, suppose
veB(P). Then aildj = vi for each jeA. We use (3.9.1) and get

v = 11 yp1)'
jeA jeA

That is, v is an mth root of c and it follows that v = o6' for some i such that 1 ^igm.
To prove the last assertion of the lemma, deny it and suppose veB(P). Then aJ/dJ=vi

for each jeA by Lemma 3.7. From (3.9.1) we get vm = c just as before. But this is a
contradiction since we now have an mth root of c which satisfies (3.9.2). Therefore, we
conclude that B(P) = 0 when no mth roots of c satisfy (3.9.2).

Our next result shows that the two sets B(P) and B(P) do not intersect except under
very special circumstances.

Corollary 3.10. The following statements are equivalent:

B(P)nB(P)±0 (3.10.1)

B(P) = B(P). (3.10.2)
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All the coefficients of P are real with the possible exception of an. (3.10.3)

Proof. We show (3.10.1) implies (3.10.3). Suppose veB(P)r\B(P). Then a, /a ;=l for
each ye >1 by Lemmas 3.6 and 3.7. Thus, as is real for eachje/4 and, of course, ao=l. It
is only an that may possibly not be a real number.

Next, we show that (3.10.3) implies (3.10.2). We appeal to Lemma 3.9. In that lemma,
c = l and we take <r=l. Then (3.9.2) is satisfied and B(P) = {9i}T=1 by (3.9.3). It now
follows from Lemma 3.8 that B(P) = B(P). It is evident (since B(P)=/=0) that (3.10.2)
implies (3.10.1) and the proof is complete.

Notation. Let 6 be a primitive wth root of unity. We let Gm(0) = {tv,tv:v = 6',
l ^ i ^ m } . Gm(6) is, of course, a finite subgroup of the group of linear automorphisms
oftf.

Lemma 3.11. Let m = gcdA. Then there exist integers bj such that m^YjeAJbj and we
define

c=X[iaJa#». (3.11.1)
JeA

Suppose there exists an wth root a of c such that

aj = dj(TJ for all je A. (3.11.2)

Then LA(P) is isomorphic to Gm(9).

Proof. Since aj/dj==aJ, we have djlaj = di which implies (ad)J=l. Now ad is a
positive real number so we must have aa= 1. According to Lemmas 3.5, 3.8 and 3.9,

Since «TCT=1, one easily verifies that the mapping <f> homLA(P) to Gm(6) defined by
</>(O = £i> and <P(tw) = tu where u = 9' whenever w = od\ is an isomorphism.

It is now an easy matter to complete the proof of Theorem 2.2 and to derive its
corollaries. Suppose first that there exists an mth root of c satisfying condition (2.2.2) of
Theorem 2.2. According to Lemma 3.11, LA(P) is isomorphic to Gm(6) and one easily
verifies that if v = 0*, 1 ^ k ̂  m, the map which sends tv to

[cos (2kn/m), — sin (2kn/m) "1 ^ ["cos (2kn/m), sin (2kn/m) ~j

sin (2kn/m), cos (2kn/m) J " [_sin (2kn/m), —cos(2kn/m)j
is an isomorphism from Gm(0) onto Gi?m. It now follows from Corollary 2.3 of [1] that
in this particular case, Aut ^ip is isomorphic to G/?m.

Now consider the remaining case where no mth root of c satisfies (2.2.2). It follows
from Lemmas 3.5, 3.8 and 3.9 that LA(P) = {tv:v = 9\ l^i^m} which is cyclic of order
m. Consequently, in this case Aut JfP is isomorphic to Zm.
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Corollary 2.3 follows easily from Theorem 2.2. One has only to observe that if ai is
real for every j e A, then c = 1 and one can then choose a = 1 and (2.2.2) is satisfied. As
for Corollary 2.4, we take bm = \ and b,=0 for all jeA — {m}. Then c, as defined by
(2.2.1), is — 1. Choose any with root a of — 1. Condition (2.2.2) will be satisfied if and
only if j/m is odd for each j eA. Consequently, it follows from Theorem 2.2 that Aut̂ VJ.
is isomorphic to GRm if j/m is odd for each jeA and A u t ^ is isomorphic to Zm if j/m is
even for at least one j e A.
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