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A GEOMETRIC APPROACH TO THE 
HEINE-BOREL THEOREM 

R. B. KILLGROVE, JASON FRAND, WILLIAM GILES, AND H E N R Y BRAY 

1. Introduction. In a topological plane with strong enough topological 
properties one can use [6] open triangular regions to define a base for the 
topology. Similarly, one can use these regions to define boundedness of a set. 
In this setting we show that in the absolute plane geometry, the holding of 
the Heine-Borel theorem is equivalent to every four points being contained 
in some such region and that this second condition is equivalent to the parallel 
postulate. Thus we give two new conditions equivalent to the parallel 
postulate. 

2. Preliminaries 

Definition. If /3 is a base for a topological space (X, r ) , then we say a set 5* is 
/3-bounded if and only if S is contained in some member of /3. 

THEOREM (Heine-Borel). / / (X, r) is a topological space with base /3 such that: 
(1) the space is Hausdorff; 
(2) the closure of each member of 13 is compact; 
(3) every finite union of members of /5 is contained in an element of f!l; 

then a set S is compact if and only if S is closed and ^-bounded. 

The proof follows readily from standard properties (see [5, pp. 140-141]). 
(This observation was made by Dr. Bray.) 

There are two approaches which give us what we want for our geometry, 
but some readers may prefer one to the other. Needless to say we leave out 
much of the detail of these approaches. 

A flat plane [6] is a set of points and lines such that the following conditions 
hold. 

I Each two distinct points are joined by a line. 
II No two distinct lines join the same pair of distinct points. 

III The set of points and set of lines each has a Hausdorff topology. 
IV The operations of join and intersection are continuous. 
V The set of points with the topology is a two-dimensional manifold. 

Furthermore, it is known [7] that the basic open triangular regions may not 
be well-defined, so as an additional condition we add the requirement that the 
flat plane does have uniquely defined open triangular regions for each triple of 
non-collinear points. 
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Another approach is from [4] or the equivalent systems in [3] or in [1]. In 
only the last reference is topology mentioned ; so much has to be done to obtain 
the conditions above. It was this latter approach, essentially using the axioms 
of connection and order of Hilbert with Pasch as the closure axiom to two 
dimensions and a Dedekind cut axiom for each line which the first two authors 
originally used. 

From either approach we obtain that the open triangular regions are convex 
and form a base for the point topology, which is Hausdorff, and that the closure 
of such regions, the closed triangular regions, add only the closed line segments 
joining their vertices. Furthermore, these closed regions are compact (see 
[6, p. 15] for the former approach; the details for the latter approach are 
contained in Fraud's Master's Thesis.) Thus we see that only one of the con
ditions for the Heine-Borel theorem remains to be considered. 

3. The four point condition. In any topological space any set of four 
points is compact. Therefore, a necessary condition for our Heine-Borel 
theorem to hold is for any set of four distinct points to lie in some open tri
angular region. On the other hand, suppose that any four points lie in some 
open triangular region; then, by induction and convexity of these regions, it 
is clear that any n points lie in some open triangular region. But by convexity, 
a triangular region contains n such regions if and only if it contains their 3n 
vertices. Therefore, we have: 

THEOREM 1. A necessary and sufficient condition for the Heine-Borel theorem 
to hold for open triangular regions bounding sets in a flat plane is that every four 
points are contained in some open triangular region. 

THEOREM 2 (Giles). If S is any non-empty open convex subset of a flat affine 
plane such that every four points are contained in some open triangular region, 
then there are at most three vertices and the boundary, if non-empty, consists of 
line segments and rays. 

Proof. Let 7\ be a closed triangular region contained in the region and 
let 2, a countable dense subset of the region, be ordered. Let T2 contain 7\ 
and the first (in the ordering) element of 2 be not in 7\, etc. Thus we have a 
sequence Tn of closed triangular regions, so Tn C Tn+\ for all n ^ 1 and 

Let P be an interior point of T\ and let k be any ray with P as endpoint. 
If k Pi S is bounded, then let Qk be the unique point not in k C\ S but in its 
closure. Let h be a line of support for S at Qk. Construct a triangular neigh
bourhood A\B\C\ as follows: A\ is between P and Qk while B\C\ is parallel 
to h and contains a point Di where Qk is between Di and A\. We can form a 
nest of triangular neighbourhoods A^Bid of Qk such that for each point of 5 
there is at least one such neighbourhood not containing it and such that 
AiBi\\A fi,, BidWBfi^ AiCtWA fi, lor all ij. 
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Now for a particular ray k, one of two things happen: either there is a 
neighbourhood AmBmCm which contains no vertex of any of the Tn\ or there is 
a neighbourhood AmBmCm containing an infinite number of vertices. In either 
event, the lines joining the vertices of Tn intersects AmBm in points Ln and 
AmCm in points Rn. Let L and R be the limits of Ln and Rn, respectively. It is 
clear that no vertex contained in the neighbourhood forces L and R to lie on h. 
Moreover, if L and R lie on h (angles of vertices converging to a straight angle 
is also a possibility), then it is clear that in this neighbourhood, the boundary 
of 5 is a straight line. 

On the other hand, L, R, and Qk may not be collinear. In this case there is 
some vertex Vs of Ts in open triangular region L, R and Qk. Then it follows 
that for all n ^ 5 there is a vertex Vn of Tn in AmBmCm, since any line joining 
Ln and Rn with n > s would intersect LSVS as well as RSVS. By the pigeon-hole 
principle, there are at most three such. This completes the proof of the theorem. 

COROLLARY. The geometries obtained as open convex subsets of E2 for which 
the Heine-Borel theorem holds in our sense are: E2, half-plane, strip, solid angle, 
triangular region, and half-strip (not necessarily rectangular). 

Proof. This follows from inspection of the possible regions given in the 
theorem. 

THEOREM 3. Four points in an absolute plane geometry lie in some triangular 
region if and only if there is a unique parallel. 

Proof. Using Klein's model for a hyperbolic plane it follows from the 
corollary above that the four point condition fails in the hyperbolic case. Also 
it is clear that the four point condition holds in E2. From [2, p. 186], we note 
that there are just these two absolute plane geometries. 

THEOREM 4. In any affine flat plane any four points always lie in some tri
angular region. 

Proof. The technique for surrounding three non-collinear points is found 
from several iterations of the following. From triangle ABC on BC find D so 
that C is between B and D; then closed triangular region ABD contains closed 
triangular region ABC. We now consider the case when three of the four points 
lie in some triangular region ABC and the fourth lies in one of the six exterior 
open regions bounded by the sides of the triangle, since all other cases can be 
resolved by the above technique. These six open regions can be placed in two 
classes: if the vertex V (one of A,B,C) is between a point of X the region and 
the point F obtained as the intersection of VX and the side opposite vertex V 
then we say it is a "near-vertex" region; it is a "far-vertex" region otherwise. 
The near vertex case is resolved thus: region XBC contains region ABC. The 
far vertex case uses the parallel postulate. The line through X parallel to BC 
intersects AB in D and AC in E, so region ADE contains ABC. The rest 
follows as before. 
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COROLLARY. In any affine flat plane our Heine-Borel theorem holds. 

Note that the corollary to Theorem 2 shows that having a unique parallel 
is not a necessary condition. It is the presence of congruence in the absolute 
geometry which forces the equivalence. 
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