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A NOTE ON BLASCHKE PRODUCTS WITH ZEROES IN
A NONTANGENTIAL REGION

BY
MIROLJUB JEVTIC

ABSTRACT. We show that if B is a Blaschke product with non-
tangential zero set {z;} and 0 < p < 1, 1/2 < ap < 1, then the
condition supg<,<;(1 — r) M(r, D'*®B) < oo is equivalent to
the condition { (1 — |z, ] )"~ %"} € ¢

1. Introduction. Let f be holomorphic in the open unit disc U (abbreviated
f € H(U)). For any p, 0 < p = oo, we define

1 2a ” 1/p
M(r,f)=(-——f Ifre’)lpdb?) , 0=r<1,0<p<oo
P 27 /0

M_(r, f) = sup If(reia) , 0=r<1.
0

The Hardy space H?, 0 < p = oo consists of all functions f € H(U) for
which

£, = sup M, /)
0=r<li
is finite.
If fz) = X akzk is holomorphic in U and a > 0, following Flett ([4] ), we
define the fractional derivative of order a by

(Df)z) = Sk + 1) a2

If 0 < p < coand a > 0, then a function f € H(U) is said to belong to the
space A" if

WS llpe = ,sup (1 = rM,(r, D' %) < oo.

If {z,} is a sequence of complex numbers in U for which 2(1 — [z, |) < oo,
then the Blaschke product

oz |z, — z
B(z) = [I ===
k=1 Zk 1 — Zkz
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converges uniformly on compact subsets of U and has {z,} as its zero set.
See [3].

In this note we deal with Blaschke products whose zeroes {z, } lie in a fixed
nontangential region G = {z € U: |l — z| < C(1 — |z]| )} for some C > 1.
The class of all such infinite Blaschke products will be denoted by %.

In [6], Theorem 3, J. Verbitski proved that if B € % with zeroes {z, } then the
condition B € A?*is equlvalent to the condition { (1 — |z, )" ™%*} € ¢*,
under the assumptions 1 = p < 0o, 1/2 < ap < 1. In this note we extend this
result to the case 0 < p < 1.

In [7] J. Verbitski showed that if 1 = p < oo then & C A”!"%. We improve
this by showing that

H® N APY?® c H® n A%Y24 forall p = g,
and B ¢ A"V forall 0 < p < co.
2. As stated in the Introduction we want to extend the results of [6] and [7] to

the case 0 < p < 1. Here and elsewhere the quantity 1 — |z, | will be denoted
by d,.

THEOREM 2.1. Let B € B, with zeroes {z;}. If 0 < p < land 1/2 < ap < 1
then {d\"P"°k*} € ¢* if and only if B € AP*.

ProOF. Let n be the positive integer such that 1/(n + 1) = p < 1/(n). Note
that a« < l/p = 1/(1 — np) and hence the condition M, (r, D'tep) =
0((1 — r)~ Y is equivalent to the condition M (1, D' temrp)
0((1 — r)~!7ew*®) ([4], Theorem 6). Since B is bounded

|(D'TB)z) | = €1 — lz]) T
Thus,

1 27 . n
Ml/n(r’ DH-aan) _ (2_ /0 l(Dl+a11pB)(re1t) |l/"dt
T

= c( - r)*(l+omp)(l*np)M;p(r, p'terp)
=ci1-nr"!
Then the successive application of the above argument proves that
My(r, D'*B) = 0((1 — r)™").
By a result of J. Verbitski cited in the introduction
d, = k@@=,
To prove the converse, we may suppose that

dy = k@D fork =1,2,... .
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Let n = 2 be the positive integer such that 1/n < p = 1/(n — 1). An easy
calculation shows that
M,(r, D"B) = CM,(r, B"™).
In [4] it is proved that the condition
M,(r, D"B) = 0((1 — r)*"")
is equivalent to
M,(r, D' "By = 0((1 — r)"")
(Note that @« < 1/p < n). So the theorem will be proved if we show that
M,(r, B") = 0((1 — r)*~").

Since B is bounded,

2.1 IB"(z) | = 0((1 = Iz[)™").

From Lemma 3.4 of [5] and Lemma 3 of [1] (see also [2] ) it follows that
n+1

22) B"(z)| = C X H2 (g(2))"
j=

where the sum is over the (finite) set of all n-tuples (a,,...,a, ) of
non-negative integers such that

h
> J&p =n
j=1

and

(e o)

1 — 5 P
gi(z) = 2 24

k=111 — 1Zk‘2|j.

(Here we have used the fact that {z,} C G.) Using (2.1) and (2.2) we find
that

27 n+1
2.3) My, B") = C f 0 mi“{“ 7, 3 1 (g e )“’p} a
j=2

o
=C ./l;lé(l—r)"‘” (1 r) "Pdt
n+1
ity \Q
+ C (1>(1—r)® (2 /:1_12 (g_,'(re’ )) /I’)dl
n+1 _
SCA=n""+CE | e (/_H2 (g;(re") )"/p)dt.
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We will show that each term of the finite sum on the right hand side of (2.3)
is also O((1 — r)* ™). Forj = 2,3,...,n + 1 welet §; = n/(j — Da,
Then 277, iy B; = 1 so it follows from Holder’s inequality that

n+l ‘ nt1 8
I_Iz (gj(re”) )a"p)dt = II (./!;I>(l o (gj(re")) B”dt) )

(2.4) |t|>(l~r)"p (j: 1:2

Next we estimate the factors of the product on the right hand side of (2.4).

(2.5) ( fm>(, —pyw (g;(re") ) det)

178,

e A (8 ot )
= “Vnsa-n7 & @2+ 27
d d afip \1/B
= C([>1~ “”(Z Eron T 2 sz/z)“ dt) j
=Y \EQ) (dy + 1) E) (dy + 1)
where
E(t) = {k: k is an integer, \j — 1 = tk""’/“_"”)}
and

Ej(t) = {k: k is an integer, \j — 1 > thep! (1= op)y,
To deal with the sum over E(r) we note that the function fj (x) = x/(x* + )
is increasing in the interval [0, t/V/j — 1].

(2.6) 2 = 2 kap/(ap—l)(k2ap/(ap—1) 4 )"J/2< P 2 Ko/ (ep—1)
E(z)(d2 + S T E 1)

j72

-t 2 k=1 < 7y jn(l 2ap)/(l—ap)
k= n;

where n; = min E, i(1). (Here we have used the fact that ap > 1/2). From

ap/(1—= ap) (1—2ap)/(1 —ap) (Lap— l)/ap
Vi—1=m; we see that n; = (Ct Combining
this with (2.6) we obtain

4y 2—j—(1/ap)
(2.7) EJ% Y = Ct )
Now we deal with the sum over Ej’-(t).
d
(2.8) ——Hk—— = max f(x) X1
E1) (di + tz)J/2 0<x<oo E|(1)

IA

' D 1= Ve,
Ej(r)
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Now we substitute (2.7) and (2.8) into (2.5) to get

i I/,B/
(29) (,/|;|>(]vr}ﬂp (g/_(relt) )ajﬁfpdt)

1
C / t(z *.l'_(l/ap))ujﬁ,-l’dl
t>(1—r)¥
I

=c1 — r)ap[(l—j—(l/ap))ajﬁ,p"rI]BI )

/B

lIA

Using (2.9) and (2.4) we find that

n+1 .
v/|;|>(|*r)"" (H (gj(re”) )a/p)dt
j=2

= C(] _ r)ap'Z/"z’zl[Q~_j—(l/ap))u/B,p+”'B/ﬂ
= (1 — py? PYL NG Daple

=ca — ,.)‘XP*P'E,"Qzl(,/—l)U, = C(1 — r)» ",
This finishes the proof of the theorem.
LEMMA 2.2. If 0 < p = g < oo, then H® N APV < H® n A#V%,

PROOF. Suppose f € H® N A”'?_First assume (1/2p) — (1/2g) < 1. Since
f is bounded,

(2.10) | (D' 202y | = c(1 — |z
From f € A"V it follows
2.11) M, (r, D'T2Of) = 0((1 — )~ T2 7A20) (4], Theorem 6).
Using (2.10) and (2.11) we find that
MZ("’ Dl+(l/2q)f) = C(] _ r)(fl~(l/2q))(q—p)Mpp(r? DI+(I/2(1)f)
=c—-r7Y

ie., f € A®!29 Then the successive application of the above argument proves
the lemma.

THEOREM 2.3. B € A"V for all 0 < p < co.
ProOOF. Let B € 4. In view of Lemma 2.2 it is sufficient to show that
(2.12) M, (r, D' T2y — o((1 — r)—l)

for a sequence p, going to zero. We take p, = 1/2(n — 1), n = 3.
Then (2.12) becomes M, (r, D'B) = 0((1 — r)~ 1. So the theorem will be
proved if we show that
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(2.13) M, (r, B") = 0((1 = r)7 ).
The proof is similar to that of Theorem 2.1.

(214) MZ:(", B(n)) é C (1 — r)_"pndt

=V T=r
n+1 ‘
€ s = (2 ,=Hz (g;(re) )a/p")dt
n+1 _
sci-n"+C3 | (I=H2 (g,(re") Y7 dt.

We estimate

< d
(réh = C Tk
gj(re ) k§| (d% + 1‘2)’1/2

= C(z‘f( > dk) + X d}.‘-/’) =t

d =t di>t
Using this we find that
n+1
, ap”
(2.15) ./|z|>\/l_—7 (11;12 (g_,(re' )Y )dt
'(2",' I_[’(X )p"
=C r>w——7’ 5 =21% Pnlt
—2np, — ) Pn
=C r>\/ﬁt dt = C(1 ry “n.

Combining (2.14) and (2.15) we obtain (2.13).
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