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Let k be an algebraically closed field. By an algebra is meant an associative finite
dimensional ^-algebra A with an identity. We are interested in studying the representa-
tion theory of A, that is, in describing the category mod A of finitely generated right
A-modules. Thus we may, without loss of generality, assume that A is basic and
connected. For our purpose, one strategy consists in using covering techniques to reduce
the problem to the case where the algebra is simply connected, then in solving the
problem in this latter case. This strategy was proved efficient for representation-finite
algebras (that is, algebras having only finitely many isomorphism classes of indecom-
posable modules) and representation-finite simply connected algebras are by now
well-understood: see, for instance [5], [7], [8]. While little is known about covering
techniques in the representation-infinite case, it is clearly an interesting problem to
describe the representation-infinite simply connected algebras. The objective of this paper
is to give a criterion for the simple connectedness of a class of (mostly representation-
infinite) algebras.

Let A be a representation-finite algebra, and {Mu...,Md} a complete set of
representatives of the isomorphism classes of indecomposable A-modules. The algebra

d
A = EndA((BMj) is called the Auslander algebra of A (see [4]). Auslander algebras,

/=i

introduced first in [3], are characterised by their homological properties, which were
useful, for instance, in the development of covering theory [7]. We are interested in the
simple connectedness of the Auslander algebra A of A. A related question is the study of
the first Hochschild cohomology group H\A) of A with coefficients in the bimodule AAA

(see [9]). The connection between the simple connectedness of an algebra and the
vanishing of its first Hochschild cohomology group was explored in [10], [15], [2]. In
particular, Skowronski considers in [15] the class of strongly simply connected algebras,
that is, the algebras A with the property that each full convex subcategory C of A is
simply connected (where A is viewed, as in [7], as a locally bounded ^-linear category).
He proves that A is strongly simply connected if and only if, for each full convex
subcategory C of A, we have // '(C) = 0. Further, Happel showed in [11] that a
representation-finite algebra A is simply connected if and only if H\A) = 0 where A
denotes, as above, the Auslander algebra of A. Our main result characterises the (strong)
simple connectedness of Auslander algebras, and generalises the aforementioned result of
Happel.

THEOREM. Let A be a representation-finite algebra, and let A be its Auslander algebra.
The following statements are equivalent:

(a) A is simply connected;
(b) A is simply connected;
(c) A is strongly simply connected;
(d) H](A) = 0;
(e) H](C) = 0 for each full convex subcategory C of A.
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The results of Happel and Skowroriski imply respectively the equivalence of (a) and
(d), and of (c) and (e). Since (c) clearly implies (b), we just have to show that (a) implies
(c), and that (b) implies (a).

This paper is organised as follows. In Section 1, we show that simple modules over a
full convex subcategory C of the Auslander algebra A of a representation-directed algebra
have projective resolutions similar to those of the simple A -modules. Section 2 is devoted
to the proof of our main result. We shall use freely, and without further reference, results
about the Auslander-Reiten quiver F(mod A) of an algebra A, and the Auslander-Reiten
translations T = DTr, and T~=TrD as can be found, for instance, in [4], [14]. For the
basic facts about simply connected algebras, we refer the reader to [1], [2], [15].

1. The Auslander algebra of a representation-directed algebra. We shall need the
following general considerations. Let A be an algebra, considered as a locally bounded
^-linear category [7], and C be a full convex subcategory of A. For any a in the set of
objects Ao of A, we denote by Sa and Pa, respectively, the corresponding simple and the
corresponding projective j4-modules. If, actually, a e Co, we denote by S'a, and P'a the
corresponding simple and the corresponding projective C-modules.

PROPOSITION 1.1. Let A be an algebra, C be a full convex subcategory of A, and
P = © Pc. Then, for any c e CQ, a minimal projective resolution

ceC0

of Sc in mod A induces a projective resolution

of S'c in mod C. In particular, gl.dim. C ^ gl. dim. A.

Proof. Since the functor HomA(P,—) is exact, and, clearly, HomA(P,Sc) = S'c, we
just have to show that, for each a e Ao such that Pa is a summand of one of the Pt above,
the C-module Hom/,(P, Pa) is projective.

First, if a e Co, then, by [4, II.2.1], HomA(P, Pa) = P'a. Next, assume a g Co. We claim
that, if Pa is a summand of one of the Pt above, then \iomA(P, Pa) = 0. Indeed, if this is
not the case, there exists d e Co such that HomA(Pd,Po)¥'0. Hence, we have a path
a - » . . . - • d in A. However, Pa being a summand of one of the Pt implies the existence of a
sequence of morphisms Pa —>... - • Pc = Po, hence a path c -> . . . -» a in A. Thus, we have
a path c - » . . . - » a - » . . . - » d in A, with cd e Co. The convexity of C implies a e Co, a
contradiction.

We shall apply this proposition to the following situation. Let A be an algebra. A

cycle in mod A is a sequence of non-zero non-isomorphisms X = XQ-1* X^-3*.. .-^X, = X
where / ^ 1 and the X( are indecomposable A-modules. An algebra A is called
representation-directed if mod A contains no cycle. For instance, a representation-finite
simply connected algebra is always representation-directed. By [14, p. 78] a
representation-directed algebra is always representation-finite. Moreover, it is clearly
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triangular (that is, its ordinary quiver contains no oriented cycle), and its Auslander-
Reiten quiver T(mod A) is postprojective as a translation quiver (hence, by [14, p. 63], is
standard).

Let A be the Auslander algebra of a representation-directed algebra A, and C a full
convex subcategory of A. Since T(mod A) is standard, then, as locally bounded &-linear
categories, A and the mesh category of F(mod A) are equivalent. In particular, C can be
identified with a full convex subcategory of F(mod A). Let N be the direct sum of a
complete set of representatives of the isomorphism classes of the indecomposables lying
in C. Then C = EndA N. If X e Co, then the corresponding projective C-module is
P'x = HomA(jV, X). Since EndAA^ = k, the corresponding simple C-module is S'x =
End A X, and a projective cover is given by the morphism Hom A ( / ' ,X):Hom A (N, X)^>
End A X, where j:X—*N is the canonical section. The following statement is a
straightforward generalisation of the well-known description of projective resolutions over
Auslander algebras [3, III.4].

COROLLARY 1.2. With the above notation, let (g,g'):Y®Y' —>X be a right minimal
almost split morphism in mod A where X and the indecomposable summands of Y are in
C, but the indecomposable summands of Y' are not in C. Let j:X —>N be the canonical
section.

(a) / / xX g C0 ) then the sequence

0 * HomA(JV, Y) Hom(jVg)>HomA(yV, X) H o m ( / ; n > EndA X > 0

0 *P'Y *P'x *S'X *0

is a minimal projective resolution of S'x in mod C.
(b) / / TX e Co, then Y' =0, and the almost split sequence 0^>rX-

induces an exact sequence

0 * HomA(JV, xX) H o m<^)> Hom A (N, Y) Hom<N*\ HomA(N, X) Hom<'*>> EndA X

* P'rx > P'y * P'x

which is a minimal projective resolution of S'x in mod C.

Proof, (a) Consider the simple /4-module 5A-. By [3, III.4], if X is not a projective

A-module, and the almost split sequence ending at X is 0-> rX -̂ —> Y® Y' k''g ' >
^—•0, then Sx has a minimal projective resolution in mod A of the form

0-» HomA(M, xX) H o m("(/)) , H o m A ( M ) Y)

® HomA(M, Y') Hom<M-<*•«'», HomA(M, X)^Sx^0
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We apply the functor Hom/4(HomA(M, N),—) and obtain, by (1.1), a projective
resolution of S'x in mod C. Since the hypothesis implies that HomA(/V, xX) =
HomA(N, Y') = 0, this gives, by [4, II.2.1], the required projective resolution. Clearly, it is
minimal. The proof is similar if A" is a projective A-module.

(b) Since X and zX belong to C, which is convex, it follows that Y' = 0. The proof
then proceeds as in (a).

We now show that if X is an indecomposable A -module in C such that rX is also in
C, then the C-module rad Px is indecomposable.

LEMMA 1.3. / / X and rX are in C, and 0—^rX-^Z^X—^O is an almost split
sequence, then

Endc(rad Px) = {u e EndA Y | guf = 0} = k.

In particular, rad Px is indecomposable.

Proof. By (1.2)(b), we have a short exact sequence 0->/\y Hom(A/'r> >

Py
 Hom(A''s> > rad Px -> 0. By applying respectively the exact functor Homc(/), —) and the

left exact functor Homc(—, rad Px), we obtain the exact sequences

0-» Homc(Py, PrX)-+ Homc(/V, Py) Hom<pr-Hon*N-*»i Homc(Py, rad Px)-* 0

and

0-» Homc(rad Px, rad Px)^>

Homc(Py, rad Px)
 Homc(Hom'(N/)-rad^) > Homc(PtY, rad Px).

In the first exact sequence, we have Homc(PY,PzX) = HomA(Y,TX) = 0, where the
isomorphism follows from the hypotheses that A is representation-directed and
HomA(rX,Y)^0. Thus Homc(/V, HomA(/V,g)) is an isomorphism, and
Homc(/V, rad Px) = Homc(Py, PY) = EndA V. The image of u in EndA V under this
isomorphism is easily checked to be HomA(7V,gu):PY—»rad Px. From the second exact
sequence above, we deduce

Endc(rad Px) = Ker Homc(HomA(A', g), rad Px)

= {v:Py^rad Px \ v HomA(/V,/) = 0}

= {u e EndA 71 HomA(/V,gu)HomA(7V,/) = 0}

= {ue EndA Y | Hom(N, guf) = 0}

It remains to show that Endc(rad Px) = k. For this purpose, we shall show that every
non-zero u e EndA Y satisfying guf = 0 is an isomorphism. We first note that these
hypotheses imply gu ¥= 0. For, if gu = 0, there exists, by the universal property of kernels,
a morphism u'.Y^rX such that u=fu'. Since A is representation-directed and
HomA(rA\ Y)¥=0, we have u' = 0, hence u = 0 , a contradiction. Thus, gu/ = 0 with
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gu 5̂  0 implies, by the universal property of cokernels, the existence of a non-zero
morphism w.X-^X such that wg = gu. Since A is representation-directed, we have
EndA X = k and hence w must be an isomorphism. Since w~]g: Y —> X is not a retraction,
there exists u' :Y—*Y such that the following diagram is commutative.

0 > xX f > Y g > X *0

II L U

Consequently, g(uu') - (gu)u' = (wg)«' = w(w }g) = g. Since g is right minimal, uu' is an
isomorphism. Similarly, u'u is also an isomorphism. Therefore, so is u. Thus,
Endc(rad Px) is a division ring which is finite dimentional over the algebraically closed
field k. Hence Endc(rad Px) = k.

2. Proof of the main theorem. As pointed out in the introduction, we only need to
show that (a) implies (c), and that (b) implies (a).

In order to show that (a) implies (c), we use the following strategy. We first recall
that, by [15, (4.1)], a triangular algebra A is strongly simply connected if each full convex
subcategory C of A satisfies the separation condition of [5]. Let thus A be a simply
connected representation-finite algebra. Then A is representation-directed. By (1.3), if C
is a full convex subcategory of the Auslander algebra A of A, and X is an indecompos-
able module in C such that TX is also in C, then rad Px is indecomposable. That is, in this
case, rad Px is trivially separated. Thus, in order to show that A is strongly simply
connected, it suffices to check that rad Px is separated whenever X is in C and TX is not in
C.

For this purpose, we need the orbit quiver 6A of A (see [5] or [14, p. 49]. Recall that,
if A is representation-directed, then 6A is a quiver defined as follows; a point in 0A is the
T-orbit 0(X) of an indecomposable A-module X, and there is an arrow 0(X)—»6(Y) if
and only if there is an arrow t"X—*P in F(mod A), where m >0, and P is the unique
indecomposable projective A-module in the T-orbit of Y. It is well known that A is simply
connected if and only if GA is a tree (see [7, (6.5)] or [12, (4.13)] and [5, (2.2]).

LEMMA 2.1. Let A be a representation-finite simply connected algebra, and A the
Auslander algebra of A. Then A is strongly simply connected.

Proof. Let C be a full convex subcategory of A. It follows from the above discussion
that we only need to show that rad Px is separated whenever X is in C, while rX is not in
C. By (1.2)(a), rad Px is projective. Let Pv and P^ be distinct indecomposable summands
of \&6PX. Since A is representation-finite, we have dim^Ir^L/, X) = d\mk\rx{U', X) = 1,
where ln(XuX2) denotes the space of irreducible morphisms from Xx to X2- Therefore
U and U' are not isomorphic. Assume Pv lies in the support of Pa, and Pv- lies in the
support of / V Then HomA(U,V) = Homc(Pu,Pv)^0, and HomA(U',V') =
Homc(/V,Pv)T^0, so that we have paths in C of the forms U-*...-*V and
£y ' -» . . . -»V. These paths correspond to walks of the forms 0(U)—...—0(V) and
O(U')—...—O(V) in OA. If radPx is not separated, there is a walk V—W]—W2—.. .—
W,—V" in C such that no point on the walk is the source of a path ending at X. If some
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point V̂  on this walk were in the T-orbit of X, we would have a path in the quiver of C of
the form

" " ' 1 / U

with m > l , and this would imply by convexity that rX lies in C, a contradiction. Hence
no W; lies in the r-orbit of X. Now, we have a walk in 0A of the form

<XU)—C{X)— tW)

— G(W2)— — C(W.)

which is a non-trivial cyclic walk in 0A. This contradicts the fact that 0A is a tree and
shows that rad Px is separated. Consequently, C is separated and A is strongly simply
connected.

In order to show that (b) implies (a), we shall use the fact that, by [13, (4.3)], a
representation-finite algebra A is simply connected if and only if the fundamental group of
the Auslander-Reiten quiver I\mod A), as defined in [7], is trivial. The following lemma
completes the proof of the main theorem.

LEMMA 2.2. Let A. be a representation-finite algebra such that its Auslander algebra A
is simply connected. Then A is simply connected.

Proof. Clearly, the simple connectedness of A implies that A is representation-
directed. As pointed out before, this implies that F(mod A) is standard. That is, we have a
bound quiver presentation A = AT(mod A)/M, where /cr(modA) is the path algebra of
r(mod A), and M is the ideal of /cF(mod A) generated by the mesh relations. Now it is
easily seen that the homotopy relations defining the fundamental groups of the
Auslander-Reiten quiver F(mod A), as defined in [7], and of the bound quiver
presentation (r(modA),Jf) of A coincide. Since A is simply connected, the latter
vanishes. Hence, so does the first, that is, A is simply connected.

We conclude this paper with the following corollary.

COROLLARY 2.3. Let A be a representation-finite simply connected algebra, and C a
full convex subcategory of the Auslander algebra of A. Then C has a postprojective
component.

Proof. Indeed, this follows from the fact that C satisfies the separation condition (by
our theorem) hence, by [6], has a postprojective component.
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