
2

Polytopes

Convex polytopes can be equivalently defined as bounded intersections of
finitely many halfspaces in some Rd , and as convex hulls of finitely many
points in Rd . A halfspace is defined by a linear inequality, and each nonempty
closed convex set in Rd is the set of solutions of a system of possibly infinitely
many linear inequalities. If we have a finite number of inequalities, then
the set is a polyhedron. Polyhedra are therefore generalisations of polytopes
and polyhedral cones. Many assertions in this chapter, for instance the facial
structure of polytopes, are derived from analogous assertions about polyhedra.

In this chapter, we learn how to preprocess objects via projective transforma-
tions to simplify problem-solving. We then discuss common examples of poly-
topes such as pyramids, prisms, simple polytopes, and simplicial polytopes.
Section 2.10 considers a construction method for polytopes that inductively
adds a vertex at each step. For visualising low-dimensional polytopes, we study
Schlegel diagrams, a special type of polytopal complex. We also examine key
results in polytope theory such as the Euler–Poincaré–Schläfli equation, the
1971 theorem of Bruggesser and Mani on the existence of shellings (orderings
of the facets of a polytope with very useful properties), and the Dehn–
Sommerville equations for simplicial polytopes. The chapter ends with Gale
transforms, a useful device to study polytopes with a small number of vertices.

2.1 Polyhedra

Polyhedra are convex sets that generalise polytopes and polyhedral cones;
the latter are defined later in this section. Polyhedra come in two formats:
H -polyhedra and V -polyhedra.

An H -polyhedron P is the set of solutions of a system of finitely many linear
inequalities. Notationally,
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P =

$

’

&

’

%

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α1,1x1 + ¨ ¨ ¨ + α1,dxd ď b1
...

αn,1x1 + ¨ ¨ ¨ + αn,dxd ď bn

,

/

.

/

-

, or alternatively,

P =

$

’

&

’

%

x P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Mx ď b, with M =

⎛
⎜⎝

α1,1 ¨ ¨ ¨ α1,d
...

αn,1 ¨ ¨ ¨ αn,d

⎞
⎟⎠ , b =

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠
,

/

.

/

-

=: P(M,b).

We always assume that no two inequalities in the system are the same. For the
polyhedron P , we say that an inequality is redundant if its elimination does not
alter P ; otherwise it is irredundant. An H -description of the polyhedron is a
definition of it as an H -polyhedron. When defining H -descriptions, we favour
irredundant ones, which include only irredundant inequalities; otherwise the
H -description is redundant.

The definition of an H -polyhedron yields the following at once.

Proposition 2.1.1 An H -polyhedron in Rd is a closed convex set.

Proof Each closed halfspace in Rd is a closed convex set (see Section 1.6).
Besides, the intersection of an arbitrary family of convex sets is a convex set
(Theorem 1.6.7), and the intersection of an arbitrary family of closed sets is a
closed set. Since an H -polyhedron is the intersection of closed halfspaces, the
result follows.

We next characterise the nonempty H -polyhedra that are cones. Let Rnˆd

denote the linear space of n ˆ d matrices with entries in R.

Proposition 2.1.2 Let M P Rnˆd . A nonempty H -polyhedron P(M,b) in Rd

is a cone if and only if b = 0n. It is pointed if and only if rank M = d.

Proof Suppose P := P(M,0n); we show that P is a cone. Take a1,a2 P P

and α1,α2 ě 0. From Ma1 ď 0n, Ma2 ď 0n, and α1,α2 ě 0, it follows that

M(α1a1 + α2a2) = α1Ma1 + α2Ma2 ď 0n.

Hence α1a1 + α2a2 P P , implying that P is a cone.
Suppose that P := P(M,b) is a cone and X := tx P Rd | Mx ď 0nu; we

show that P = X. The point 0d is in P , and so b ě 0n. It then follows that
X Ď P . By way of contradiction, suppose that there exists y P P zX. Then
r i ¨ y ą 0 for some row vector r t

i of M . For the corresponding entry bi of b,
we find that r i ¨ y ď bi . Since P is a cone, we have that αy P P for every
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α ě 0, and consequently that r i ¨ (αy) ď bi for every α ě 0. But the term
αr i ¨y cannot be bounded by bi for every α ě 0. This contradiction shows that
such a point y does not exist, which implies that P = X.

We now prove the second part of the theorem. Let P = P(M,0n). Suppose
rank M ă d; we show that P contains a line. The columns c1, . . . ,cd of M are
linearly dependent:

a1c1 + ¨ ¨ ¨ + adcd = 0n for some a = (a1, . . . ,ad)t P Rd with a ‰ 0d .

Therefore, Ma = 0n. This implies that the line tαa | α P Ru is in P . Now
suppose that P contains the line � := ta1 + αa2 | α P Ru, for some a1 P Rd

and a2 ‰ 0d ; we show that Ma2 = 0n, which would imply that rank M ă d.
Suppose that Ma2 ‰ 0n. This implies that r i ¨ a2 ‰ 0 for some row r t

i of M .
Then we can find β P R for which

r i (a1 + βa2) = r i ¨ a1 + βr i ¨ a2 ą 0.

This gives that � Ę P , a contradiction that settles the part. This completes the
proof of the proposition.

In view of Proposition 2.1.2 we call a set of the form P(M,0) an H -cone.
Orthogonally projecting an H -polyhedron onto an affine space produces

another H -polyhedron; we present a particular instance of this statement, a
geometric interpretation of the so-called Fourier–Motzkin elimination (Fourier,
1827; Motzkin, 1936).

Proposition 2.1.3 (Fourier–Motzkin elimination)1 Let P be an H -polyhedron
in Rd and let π be the orthogonal projection

(x1, . . . ,xd)t ÞÑ (x1, . . . ,xd´1)
t .

Then π(P ) is another H -polyhedron.

We now introduce another type of polyhedra. A V-polyhedron P is the
sum of a convex hull of finitely many points and a finitely generated cone.
Notationally,

P = conv X + cone Y for some finite subsets X,Y of Rd . (2.1.4)

This definition implies that V -cones are V -polyhedra (where X = t0du). A
convex cone is polyhedral if it is a V-cone or an H -cone.

Definition (2.1.4) also yields that a V-polyhedron is a polytope if and only
if cone Y = t0u. We show next that cone Y = t0u amounts to saying that the
V-polyhedron is bounded.

1 A proof is available in Ziegler (1995, sec. 1.2).
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Theorem 2.1.5 A V-polyhedron is a polytope if and only if it is bounded.

Proof Let P := conv X + cone Y in Rd for some finite subsets X,Y of Rd .
We show that P is bounded if and only if cone Y = t0u.

Suppose that P is bounded. Then cone Y = t0u: if there were a nonzero
point z P cone Y , then αz P cone Y for each α ě 0, which would violate the
boundedness of P .

Suppose that cone Y = t0u. We show that conv X is bounded. Let X =
tx1, . . . ,xru and take z P conv X. Then z can be written as z = α1x1 + ¨ ¨ ¨ +
αrxr with αi ě 0 and

řr
i=1 αi = 1. It follows that

‖z‖ = ‖α1x1 + ¨ ¨ ¨ + αrxr‖
ď ‖α1x1‖ + ¨ ¨ ¨ + ‖αrxr‖ (by the triangle inequality)

= α1‖x1‖ + ¨ ¨ ¨ + αr‖xr‖ (as αi ě 0 for each i P [1 . . . r])

ď ‖x1‖ + ¨ ¨ ¨ + ‖xr‖ (as αi P [0,1] for each i P [1 . . . r]).

Hence P is bounded.

Example 2.1.6 (d-cube) We present a d-dimensional cube or simply a d-cube
Q(d) as an H -polyhedron and as a V-polyhedron. Figure 2.1.1 shows cubes in
R3.

Consider the standard basis of Rd , namely

e1 = (1,0, . . . ,0)t, . . . ,ed = (0, . . . ,0,1)t .

Let M be the 2d ˆ d matrix with rows et
1, ´ et

1, . . . ,e
t
d, ´ et

d . Then

Q(d) =

$

’

’

’

’

’

&

’

’

’

’

’

%

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

⎛
⎜⎜⎜⎜⎜⎝

et
1

´et
1

...
et
d

´et
d

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ ď

⎛
⎜⎝

1
...
1

⎞
⎟⎠
,

/

/

/

/

/

.

/

/

/

/

/

-

=

$

’

&

’

%

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|x1| ď 1, . . . ,|xd | ď 1

,

/

.

/

-

.

Let X be the set of 2d vectors (˘1, . . . , ˘ 1)t in Rd . A d-cube can be
alternatively defined as the convex hull of X:

Q(d) = conv X.
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(b) (c)(a)

Figure 2.1.1 Cubes in R3. (a) A 1-cube. (b) A 2-cube. (c) A 3-cube.

Lineality Spaces and Recession Cones

We can readily recover the recession cone, and thus the lineality space, of
a polyhedron from its description (see (1.10.5)); these details and the link
between the recession cone and the homogenisation cone of a polyhedron
ensue.

Definition 2.1.7 (Homogenisation cone) The homogenisation cone pP of a
polyhedron P is a cone in Rd+1 whose description is as follows. If P =
P(M,b) Ď Rd for some M P Rnˆd and b P Rn, then

pP :=
"(

x

y

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

x P Rd, y P R,

(
M ´b

0t
d ´1

) (
x

y

)
ď 0n+1

*

; (2.1.7.1)

and if P = conv X + cone Y Ď Rd with X := ta1, . . . ,aru and Y :=
tc1, . . . ,csu, then

pP := cone

"(
a1

1

)
, . . . ,

(
ar

1

)
,

(
c1

0

)
, . . . ,

(
cs

0

)*
. (2.1.7.2)

Figure 2.1.2 sketches the homogenisation cone of a polytope. Compare this
terminology with the homogenisation of affine spaces presented in Section 1.2.

Remark 2.1.8 From the definition of a polyhedron P Ď Rd and its
homogenisation cone pP Ď Rd+1, it follows that

x P P if and only if

(
x

1

)
P pP .

Theorem 2.1.9 Let P be a polyhedron in Rd . Then the following hold:

(i) If P = P(M,b) with M P Rnˆd and b P Rn, then

rec P =
!

y P Rd
ˇ

ˇ

ˇ
My ď 0n

)

and lineal P =
!

y P Rd
ˇ

ˇ

ˇ
My = 0n

)

.
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(a) (b)

A
2

P
3

A
2

P
2

Figure 2.1.2 An affine polytope in A2 and its homogenisation cone in P3. (a) A
polygon in A2. (b) The homogenisation cone of the polygon in P3.

(ii) If P = conv X + cone Y for some finite subsets X,Y of Rd , then rec P =
cone Y .

(iii) pP =
"

α

(
x

1

)ˇ
ˇ

ˇ

ˇ

x P P,α ą 0

*

+
"(

y

0

)ˇ
ˇ

ˇ

ˇ

y P rec P

*

Proof (i) We prove the equality related to rec P ; the one related to lineal P
would then follow from (1.10.5).

Suppose that y P rec P . Then x + αy P P for each x P P and each α ě 0.
In particular, for a fixed x1 P P and every α ě 0, we have that M(x1+αy) ď b

or, equivalently, that

αMy ď b ´ Mx1. (2.1.9.1)

Since the right hand side of (2.1.9.1) is a fixed vector, the inequality wouldn’t
hold for every α ě 0 in case that My ą 0. As a consequence, My ď 0, and
rec P Ď ty P Rd | My ď 0u.

Suppose that y P Rd satisfies My ď 0. Then αMy ď 0 for each α ě 0.
It follows, for every x P P , that M(x + αy) ď b; that is, x + αy P P and
ty P Rd | My ď 0u Ď rec P . This proves (i).

(ii) Suppose that y P rec P . Then, for a fixed x1 P conv X and each α ě 0,
we have that x1 + αy P conv X + cone Y . The set conv X is bounded, and so
y P cone Y . Hence rec P Ď cone Y .

Suppose that y P cone Y . Then, for each α ě 0, we have that αy P cone Y .
It follows that x + αy P conv X + cone Y , for each α ě 0 and each x P P .
Hence cone Y Ď rec P .

(iii) This follows easily from the definitions of a recession cone, given in
(1.10.4) and a homogenisation cone (Definition 2.1.7).
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Combining Theorem 2.1.5 and Theorem 2.1.9 gives another characterisation
of polytopes.

Theorem 2.1.10 A polyhedron P in Rd is a polytope if and only if rec P =
t0u.

2.2 Representation Theorems

Example 2.1.6 describes a d-cube as an H -polyhedron and as a V-polyhedron.
This is not a coincidence; H -polyhedra and V-polyhedra are two independent
mathematical representations of the same objects.

It has become standard practice to resort to the representation theorem
for cones (2.2.1) to prove the representation theorem for polyhedra (2.2.2)
and then obtain the representation theorem for polytopes (2.2.4) as
a particular case of the one for polyhedra. We follow this approach
as well.

Theorem 2.2.1 (Representation theorem for cones)2 A subset of Rd is a V-cone
if and only if it is an H -cone.

Theorem 2.2.2 (Representation theorem for polyhedra) A subset of Rd is a
V-polyhedron if and only if it is an H -polyhedron.

Proof In both directions of the proof, given a polyhedron P in Rd , we
construct its homogenisation cone pP in Rd+1 (Definition 2.1.7), which has
the property that

x P P if and only if

(
x

1

)
P pP (2.2.2.1)

(see Remark 2.1.8) and then resort to the representation theorem for
cones (2.2.1).

Suppose P = P(M,b) is an H -polyhedron in Rd for some n ˆ d matrix
M and some vector b P Rn; we represent P as a V-polyhedron. The
homogenisation cone pP has the form

pP =
"(

x

y

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

x P Rd, y P R, y ě 0, Mx ď yb

*

=
"(

x

y

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

x P Rd, y P R,

(
M ´b

0t
d ´1

)(
x

y

)
ď 0n+1

*

.

2 A proof is available in Ziegler (1995, sec. 1.3).
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The representation theorem for cones (2.2.1) ensures that pP can be repre-
sented as a V-cone in Rd+1, say

pP = cone

"(
a1

α1

)
, . . . ,

(
am

αm

)*
. (2.2.2.2)

Since y ě 0 and the elements of pP are positive combinations of the generators
of pP , we may assume that αi = 0 or 1 for each i P [1 . . . m]. Without loss
of generality, we further assume that αi = 1 for i P [1 . . . r] and αj = 0 for
j P [r + 1 . . . m]. We then partition the set ta1, . . . ,ar,ar+1, . . . ,amu into
subsets X and Y according to the sign of αi :

X = ta1, . . . ,aru and Y = tar+1, . . . ,amu .

By (2.2.2.1) and (2.2.2.2), P can be expressed as

P = conv X + cone Y,

which is a representation of it as a V-polyhedron.
Now suppose that P = conv X + cone Y is a V-polyhedron in Rd where

X := ta1, . . . ,aru and Y := tc1, . . . ,csu. The homogenisation cone of P has
the form

pP = cone

"(
a1

1

)
, . . . ,

(
ar

1

)
,

(
c1

0

)
, . . . ,

(
cs

0

)*
.

By the representation theorem for cones, pP can be written as an H -cone
P(N,0n) for some n ˆ (d + 1) matrix N . Let M be the n ˆ d matrix formed
by the first d columns of N and let ´b be the last column of N . It follows that

pP =
"(

x

y

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

x P Rd, y P R, N

(
x

y

)
ď 0n

*

=
"(

x

y

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

x P Rd, y P R, Mx ď yb

*

.

From (2.2.2.1) we now find that

P =
!

x P Rd
ˇ

ˇ

ˇ
Mx ď b

)

,

which is a representation of P as an H -polyhedron. This completes the proof
of the theorem.

By the representation theorem for polyhedra (2.2.2), a set is a bounded V-
polyhedron if and only if it is a bounded H -polyhedron. Combining this with
Theorem 2.1.5, we get at once a characterisation of polytopes.
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Theorem 2.2.3 (Polytopes as bounded polyhedra) A subset of Rd is a polytope
if and only if it is a bounded polyhedron.

Thanks to Theorem 2.2.3, we now have two alternative ways of describing
polytopes. An H -polytope is a bounded H -polyhedron and a V-polytope is a
bounded V-polyhedron. Moreover, since polytopes are bounded polyhedra, the
representation theorem for polyhedra yields that H -polytopes and V-polytopes
are equivalent from a mathematical point of view.

Theorem 2.2.4 (Representation theorem for polytopes) A subset of Rd is a
V-polytope if and only if it is an H -polytope.

From a computational point of view, a V-polytope is, however, different
from an H -polytope. It is trivial to decide whether a given point is in an H -
polytope: saying yes if the point satisfies each inequality and no otherwise. It is
also trivial to compute the maximum of a linear functional over a V-polytope:
evaluate the function at each point in V and return a maximum value. But the
standard method to decide whether a point is in a V-polytope is polynomially
equivalent to the basic problem from linear programming (Fukuda, 2022), the
problem of maximising a linear objective function subject to a finite set of
linear inequalities. And maximising a linear functional over an H -polytope is
essentially the basic problem of linear programming when the intersection of
the inequalities is bounded. While linear programming problems, also called
linear programs, can be solved in polynomial time (Khachiyan, 1979), solving
them is certainly not trivial.

2.3 Faces

Convex sets are structured around their faces and these faces can be very
heterogeneous: there are convex sets with both exposed and unexposed faces,
convex sets with bounded and unbounded faces, and convex sets with a
finite number of faces of some dimension and an infinite number of faces of
another dimension (Section 1.9). In contrast, the facial structure of polyhedra
possesses many attractive properties that are not shared by general convex sets
(Theorem 2.3.1). In this section, our focus narrows to explore the faces of
polyhedra.

Every proper face of a polyhedron is exposed and is contained in a facet of
the polyhedron, a face whose dimension is one less than that of the polyhedron.
It is also the case that every face of the polyhedron is another polyhedron. We
offer the facial structure of polyhedra thereafter.
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For a polyhedron P := tx P Rd | Mx ď 1u, we say that an inequality is
active at a subset Y of P if the inequality is satisfied with equality for all points
of Y .

Theorem 2.3.1 (Facial structure of polyhedra) Let r1, . . . ,rn be nonzero
vectors in Rd , and let P be a d-dimensional polyhedron in Rd with the H -
description

P =
n
č

i=1

!

x P Rd
| r i ¨ x ď 1

)

=
!

x P Rd
ˇ

ˇ

ˇ
Mx ď 1n

)

,

where M is the matrix with the rows r t
1, . . . ,r

t
n. Then the following hold:

(i) The interior and boundary of P can be expressed as follows:

int P =
!

x P Rd
ˇ

ˇ

ˇ
Mx ă 1n

)

,

bd P =
n
ď

i=1

(
P X

!

x P Rd
ˇ

ˇ

ˇ
r i ¨ x = 1

))
.

(ii) Every facet of P is exposed, and of the form P X tx P Rd | rj ¨ x = 1u

for some j P [1 . . . n].
(iii) Every set P X tx P Rd | rj ¨ x = 1u is a facet of P if and only if the

H -description of P is irredundant.
(iv) Every proper face F of P is the intersection of the facets of P that contain

it. Thus, if there are t facets containing F and we let M 1x ď 1t be the
subsystem of Mx ď 1n formed by the t inequalities of Mx ď 1n active
at F , then F has the form tx P P | M 1x = 1tu.

(v) Every proper face of P is exposed and polyhedral.
(vi) The number of faces of P is finite.

(vii) The faces of a face F of P are precisely the faces of P that are contained
in F .

(viii) For any two proper faces F,K of P , with K not contained in F , there is
a facet containing K but not F , and vice versa. In particular, for any two
distinct vertices, there is a facet containing one but not the other.

(ix) For every proper face F of P , it holds that lineal F = lineal P .

Proof Let Hi := tx P Rd | r i ¨ x = 1u and H
´
i := tx P Rd | r i ¨ x ď 1u,

for each i P [1 . . . n].
(i) The proof of (i) is simple. The interior of P is the intersection of the

interiors of the supporting halfspaces of P (Theorem 1.8.3), which can be
found among the halfspaces H

´
1 , . . . ,H´

n . Furthermore, the interior of H
´
i

is H
´
i zHi . Thus, it follows that
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int P =
n
č

i=1

H
´
i zHi =

!

x P Rd
ˇ

ˇ

ˇ
Mx ă 1n

)

. (2.3.1.1)

Since P is a closed set, the other part follows from (2.3.1.1) and the assertion
that bd P = P z int P (Proposition 1.7.8).

(ii) Let F be a facet of P . Take z P rint F . Since F Ď bd P (Theorem 1.9.9),
Part (i) gives that z P (P X Hj) for some j P [1 . . . n]. Furthermore,
Theorem 1.9.6(iii) yields that P X Hj is a proper face of P . According to
Theorem 1.9.10, F is the smallest face of P containing z and so F Ď P X Hj .
This implies that F = P X Hj as d ´ 1 = dim F ď dim(P X Hj) ď d ´ 1.
Hence F is exposed.

(iii) If the H -description of P is redundant, then there is an index j P

[1 . . . n] such that

P =
n
č

i=1
i‰j

H
´
i . (2.3.1.2)

We show that P X Hj is not a facet of P . Suppose otherwise. Let z P rint(P X

Hj). From (i) and (2.3.1.2) follows the existence of an index � P [1 . . . n] with
� ‰ j such that z P (P XH�). Since P XH� is a face of P and since P XHj is
a facet and is the smallest face of P containing z (Theorem 1.9.10), we get that
P X Hj = P X H�. This implies that H

´
j = H

´
� , contradicting our running

assumption that no two closed halfspaces in the description of a polyhedron
are identical. This shows that P X Hj is not a facet.

Suppose that the H -description of P is irredundant. Then, for each i P

[1 . . . n], every hyperplane Hi supports P , and so every set Fi := P X Hi

is a proper face of P by Theorem 1.9.6(iii). Pick j P [1 . . . n]; we show that
Fj is a facet of P .

Because the H -description of P is irredundant, there is a point yj P Rd

such that

rj ¨ yj ą 1 and r i ¨ yj ď 1 for each i P [1 . . . n] with i ‰ j . (2.3.1.3)

Now choose a point z P int P (which exists by Theorem 1.7.3). Then

r i ¨ z ă 1 for each i P [1 . . . n]. (2.3.1.4)

Because of (2.3.1.3) and (2.3.1.4), we can find a number αj P (0,1) such that
the point uj := αjyj + (1 ´ αj )z of the segment [yj,z] satisfies

rj ¨ uj = 1 and r i ¨ uj ă 1 for each i P [1 . . . n] with i ‰ j, (2.3.1.5)
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yjz

uj
yjz

uj

wj

vj

(a) (b)

P P

Hj Hj

Figure 2.3.1 Auxiliary figure for Theorem 2.3.1. Depicted is a polyhedron P , a
hyperplane Hj supporting P , a point zj in the interior of P , and a point yj outside
P . (a) A point uj in the segment [yj,z] satisfying (2.3.1.5). (b) A point vj lying
in a line between the points uj and wj of Fj .

namely αj = (1 ´ rj ¨ z){(rj ¨ yj ´ rj ¨ z); see Fig. 2.3.1(a). From Condition
(2.3.1.5) it follows that uj is in Fj . We show that

aff Fj = Hj . (2.3.1.6)

Because Fj = P X Hj , it is clear that aff Fj Ď Hj ; we prove the other
direction. Let vj P Hj . Choose βj ą 0 so that

βj (r i ¨ vj ´ r i ¨ uj ) ď 1 ´ r i ¨ uj for each i P [1 . . . n] with i ‰ j,

which is possible because of Condition (2.3.1.5). The choice of βj ensures that
the point wj := βjvj + (1 ´ βj )uj satisfies the conditions rj ¨ wj = 1 and
r i ¨ wj ď 1 for each i ‰ j :

rj ¨ wj = rj ¨ (βjvj + (1 ´ βj )uj ) = βj rj ¨ vj + (1 ´ βj )rj ¨ uj

= βj + (1 ´ βj ) = 1,(since vj,uj P Hj)

r i ¨ wj = r i ¨ (βjvj + (1 ´ βj )uj ) = βj r i ¨ vj + (1 ´ βj )r i ¨ uj

= βj (r i ¨ vj ´ r i ¨ uj ) + r i ¨ uj ď 1.

As a consequence, we have that wj P Fj and

vj = 1

βj

wj +
(

1 ´
1

βj

)
uj,

and so vj is in the line between wj and uj , two points of Fj ; see Fig. 2.3.1(b).
Hence vj P aff Fj . This proves (2.3.1.6) and, with it, that Fj is a facet of P .

(iv) Without loss of generality, we assume that the H -description of P is
irredundant. Let F be a proper face of P and let z P rint F . Since F Ď rbd P

(Theorem 1.9.9), part (i) yields that F Ď P X H� for some � P [1 . . . n], and
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so z P P X H�. Let Fr := P X Hr for each r P [1 . . . n]. Then Fr is a facet for
each r P [1 . . . n], by (iii).

Partition the set [1 . . . n] into the subindices I of the facets Fi of P that
contain z, namely those satisfying r i ¨ z = 1 and the subindices J of the facets
Fj of P that do not contain z, namely those satisfying rj ¨ z ă 1. Let

K :=
č

iPI

Fi .

The face F is the smallest face containing z, which gives that F Ď Fi for each
i P I and therefore that F Ď K . Thus K is a face of P that contains F . We
show that z P rint K , which gives us F = K .

Because rj ¨ z ă 1 for each j P J , we can choose a radius r ą 0 small
enough that the open ball B(z,r) satisfies

B(z,r) Ď
č

jPJ

!

x P Rd
ˇ

ˇ

ˇ
rj ¨ x ă 1

)

. (2.3.1.7)

The definition of K ensures that

aff K Ď
č

iPI

!

x P Rd
ˇ

ˇ

ˇ
r i ¨ x = 1

)

. (2.3.1.8)

By combining (2.3.1.7) and (2.3.1.8) we finally get that

B(z,r) X aff K Ď K,

and therefore we conclude that z P rint K (see (1.7.2)). Hence F = K and
F is the intersection of the facets that contain it. From (iii), it follows that if
t := |I |, then

F = tx P P | M 1x = 1tu

for the subsystem M 1x ď 1t of Mx ď 1n formed by the t inequalities of
Mx ď 1n active at F .

(v) From (ii) we get that every facet of P is exposed, and from (iv) that every
proper face F of P is the intersection of the facets that contain it. That F is
exposed now follows from Proposition 1.9.8, which states that the intersection
of exposed faces is also exposed.

The assertion of F being polyhedral is an immediate consequence of (iv) as

F = tx P P | M 1x = 11
u

for the subsystem M 1x ď 1t of Mx ď 1n formed by the t inequalities of
Mx ď 1n active at F .

(vi) This is an easy consequence of (iv). There is a finite number of facets in
P and every face of P is the intersection of the facets that contain it.
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(vii) Let K Ď F . If K is a face of P , then the definition of a face (see
(1.9.1)) yields that K is a face of the face F . Moreover, since F is a face of P ,
the transitivity of the relation ‘is a face of’ on the faces of P (Proposition 1.9.3)
ensures that K is a face of P .

(viii) This is a direct consequence of (iv).
(ix) Suppose that tx P Rd | Mx ď 1u is an irredundant description of P .

Let
!

x P Rd
ˇ

ˇ

ˇ
M 1x ď 11

)

be the subsystem of Mx ď 1 comprising all the inequalities of P active at the
face F and let

!

x P Rd
ˇ

ˇ

ˇ
M2x ď 12

)

be the remaining inequalities of Mx ď 1. Then according to (iv),

F =
!

x P Rd
ˇ

ˇ

ˇ
M 1x = 11 and M2x ď 12

)

. (2.3.1.9)

It is now clear from (2.3.1.9) and Theorem 2.1.9 that

lineal F =
!

x P Rd
ˇ

ˇ

ˇ
M 1x = 01 and M2x = 02

)

=
!

x P Rd
ˇ

ˇ

ˇ
Mx = 0

)

= lineal P .

This settles the part and, with it, the theorem.

One of the consequences of Theorem 2.3.1 is that a face F of an
H -polyhedron P is the intersection of P with the solution of a system of
linear equations. This gives rise to an expression for the dimension of F

thanks to Proposition 1.1.8.

Proposition 2.3.2 Let M P Rnˆd and let P := P(M,1n) be an irredundant
H -description of a nonempty d-dimensional polyhedron in Rd . Suppose that
a proper face F of P is the solution of the subsystem M 1x ď 11 of Mx ď 1n

formed by the inequalities of Mx ď 1n active at F :

F = �

x P P
ˇ

ˇ M 1x = 11
(

.

Then

aff F =
!

x P Rd
ˇ

ˇ

ˇ
M 1x = 11

)

,

dim F = d ´ rank M 1.
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Proof It suffices to prove the expression for aff F ; once this is given, the
expression for dim F follows at once from Proposition 1.1.8.

Let A := tx P Rd | M 1x = 11
u, let

#—
A := tx P Rd | M 1x = 01

u be the
direction of A, and let tx P Rd | M2x ď 12

u be the subsystem of Mx ď 1n

comprising all the inequalities of P not active at F . From the definition of F ,
we have that F Ď A and

F =
!

x P Rd
ˇ

ˇ

ˇ
M 1x = 11 and M2x ď 12

)

. (2.3.2.1)

Let r := d ´ rank M 1. Then, according to Proposition 1.1.8, dim A = dim
#—
A = r . We find r + 1 affinely independent points in F , which will show that
aff F = A.

We first choose a basis l1, . . . ,lr of
#—
A. Then M 1li = 01 for each i P [1 . . . r].

Let z P rint F . Then F is the smallest face containing z (Theorem 1.9.10),
which implies that M2z ă 12 and z R

#—
A. Then for a sufficiently small ε ą 0,

the points z,z + εl1, . . . ,z + εlr are affinely independent. Additionally, by
choosing ε appropriately, we can ensure that all these points are contained
within F , with each satisfying (2.3.2.1):

M 1(z + εli ) = M 1z + εM 1li = 11,

M2(z + εli ) = M2z + εM2li

ď 12 + εM2li ď 12.

Thus dim F = r , concluding that aff F = A.

In the realm of polyhedra, it is customary to call extreme points vertices
and 1-faces edges. We follow the same convention from now on, and for a
polyhedron P we denote by V(P ) the set of its vertices and by v(P ) the
number of elements in V(P ). We also denote by E(P ) the set of edges of P and
by e(P ) the number of elements in E(P ). The undirected graph formed by the
vertices and edges of P , denoted by G(C), is the graph of the polyhedron P .

A polyhedron P(M,1) in Rd is pointed if and only if rank M = d

(Proposition 2.1.2). An alternative characterisation involves the existence of
minimal faces. A minimal face of a polyhedron P is a proper face that contains
no other face of P .

Theorem 2.3.3 (Hoffman and Kruskal 1956) 3Let P be a d-dimensional
polyhedron in Rd with the irredundant H -description

P =
!

x P Rd
ˇ

ˇ

ˇ
Mx ď 1

)

for some M P Rnˆd .

3 A proof is available in Conforti et al. (2014, Thm. 3.3).
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Then the following hold:

(i) A proper face F of P is minimal if and only if

F =
!

x P Rd
ˇ

ˇ

ˇ
M 1x = 11

)

for some subsystem M 1x ď 11 of Mx ď 1.

That is, M 1x ď 11 is formed by the inequalities of Mx ď 1n active at F .
(ii) rank M 1 = rank M .

(iii) A minimal face of P is a translate of the lineality space of P .

A consequence of Theorem 2.3.3 is that a nonempty polyhedron is pointed
if and only if its minimal faces are vertices; this is the origin of the term
“pointed”: the minimal faces are points. And if the polyhedron has a vertex,
then its lineality space must be t0u.

Corollary 2.3.4 A nonempty polyhedron is pointed if and only if it has a vertex.

A polytope of dimension d is refer to as a d-polytope. A flag of a d-polytope
is a sequence of faces such that each face is a proper face of the next face in
the sequence: a sequence

F1 Ă ¨ ¨ ¨ Ă F�

of faces such that ´1 ď dim F1 ă ¨ ¨ ¨ ă dim F� ď d. A flag is complete if it
includes faces of every dimension from ´1 to d.

Theorem 2.3.5 Let P be a d-polytope in Rd . For every i-face Fi and every
j -face Fj of P such that ´1 ď i ă j ´ 1 and Fi Ă Fj , there is a flag in P

such that

Fi Ă Fi+1 Ă ¨ ¨ ¨ Ă Fj´1 Ă Fj,

and F� is a facet of F�+1 for each � P [i . . . j ´ 1].

Proof First suppose that ´1 ă i, so that Fi ‰ H. Then the face Fi is a
proper face of Fj by Theorem 2.3.1(v). Since Fj is a polytope there exists a
facet Fj´1 of Fj containing Fi (Theorem 2.3.1). In the case i = j ´ 2 we are
done. Otherwise, we argue as before, replacing Fj by Fj´1, and this argument
is repeated j ´ i ´ 2 times. In this way, we get the desired flag

Fi Ă Fi+1 Ă ¨ ¨ ¨ Ă Fj´1 Ă Fj .

Now assume that i = ´1, so that Fi = H. Since Fj is a nonempty polytope,
we can find a vertex Fi+1 in Fj . If j = 1 we are home; otherwise we reason as
in the previous case for the faces Fi+1 and Fj , and again obtain the desired flag.
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The proof of Theorem 2.3.5 works for a polyhedron whenever 0 ď i ă j´1.
The case i = ´1 requires the polyhedron to have a vertex, i.e., to be pointed
(Corollary 2.3.4), which is not always possible as affine subspaces attest.

A consequence of Theorem 2.3.5 is that if a d-polytope P has a face
of dimension k, then P has faces of all dimensions from k to d. More-
over, P contains a vertex (Corollary 2.3.4). We have just established the
following.

Corollary 2.3.6 A d-polytope contains faces of every dimension from 0 to
d ´ 1.

We denote by fk the number of k-faces in a d-polytope P . By virtue of
Corollary 2.3.6, fk(P ) ě 1 for each k P [0 . . . d ´ 1] and f´1(P ) =
fd(P ) = 1. The sequence (f0, . . . ,fd´1) is the f -vector of P . The f -vector
of a polytope plays a central role in the combinatorial theory of polytopes; see,
for instance, Chapter 8.

Theorem 1.9.4 characterises faces of convex sets. We refine it next.

Theorem 2.3.7 Let P be a d-polytope in Rd with vertex set V and let W Ď V .
Then conv W is a face of P if and only if conv(V zW) X aff W = H.

Proof Let conv W be a face of P . For each vertex u P V zW , the set P ztuu is
convex (Theorem 1.9.4) and contains W , which yields that conv W Ď P ztuu.
Thus V zW Ď P z conv W . Additionally, since conv W is a face of P we have
that P z conv W is convex (Theorem 1.9.4), which in turn yields that

conv(V zW) Ď P z conv W .

Combining this inclusion with aff W X P = conv W gives that

conv(V zW) X aff W = H,

the necessity of the condition.
Suppose that V = tv1, . . . ,vnu and W = tv1, . . . ,vmu with 1 ď m ă n

and that the subset W satisfies conv(V zW)Xaff W = H. If W = H or V then
conv W is an improper face of P . Suppose otherwise.

Take w P conv W , and suppose that w = αx + (1 ´ α)y for α P [0,1] and
x,y P P . Write x and y as a convex combination of V ; that is, find scalars
β1, . . . ,βn,γ1, . . . ,γn ě 0 such that

n
ÿ

i=1

βi =
n
ÿ

i=1

γi = 1
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and

x = β1v1 + ¨ ¨ ¨ + βnvn and y = γ1v1 + ¨ ¨ ¨ + γnvn.

Let ζi := αβi + (1 ´ α)γi for each i P [1 . . . n]. Then we have that, for each
i P [1 . . . n], ζi ě 0 and

řn
i=1 ζi = 1. From these expressions of x and y we

get that

w = ζ1v1 + ¨ ¨ ¨ + ζmvm + ζm+1vm+1 + ¨ ¨ ¨ + ζnvn. (2.3.7.1)

Let λ := ζm+1 + ¨ ¨ ¨+ζn. Suppose that λ ą 0. Then rearranging (2.3.7.1) gives
that

1

λ
w ´

ζ1

λ
v1 ´ ¨ ¨ ¨ ´

ζm

λ
vm = ζm+1

λ
vm+1 + ¨ ¨ ¨ + ζm+1

λ
vn.

The right-hand side is a point in conv V zW (call it z) and the left-hand side
expresses z as a point in aff W ; note that 1{λ ´ ζ1{λ ´ ¨ ¨ ¨ ´ ζm{λ = 1. This
contradicts the hypothesis conv(V zW) X aff W = H. Thus λ = 0, which
yields that ζi = 0 for each i P [m + 1 . . . n]. The equalities ζi = 0 for each i P

[m+1 . . . n] imply the equalities βi = 0 and γi = 0, for each i P [m+1 . . . n].
Hence x and y are both in conv W , and so conv W is a face of P by (1.9.1).

Face Lattices

A relation ď on a nonempty set L is a partial order if it is reflexive: for every
x P L,x ď x; antisymmetric: for every x,y P L, x ď y; and y ď x imply
that x = y; and transitive: for every x,y,z P L, x ď y and y ď z imply that
x ď z. A partially ordered set, or just poset, is a pair (L, ď) consisting of
a nonempty set L and a partial order ď; we write just L instead of (L, ď)

when the relation is clear from the context. Two elements x and y are said to
be related or comparable if x ď y or y ď x; otherwise they are unrelated or
incomparable.

A poset (L, ď) is finite if the set L is finite. The Boolean poset Bn, for some
n, is a basic example of a finite poset; it consists of all subsets of a set of n

elements, an n-set for short, ordered by inclusion.
A poset under which every two elements are comparable is a linear order.

Any subset of a poset L is itself a poset, with the partial order induced from
L. A linearly ordered subset of L is a chain, whose length is the number of
elements minus one. An antichain is a set of pairwise incomparable elements
in L.

Two posets L and L1 are isomorphic if there is an order-preserving bijection
σ from L to L1: for all x,y P L, x ď y is in L if and only if σ(x) ď σ(y) is
in L1.
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A poset is bounded if it contains both a unique maximal element 1 and a
unique minimal element 0. It is graded if it is bounded and every maximal
chain has the same length. A poset is a lattice L if (i) it is bounded, (ii) every
pair of elements x and y has a unique minimal upper bound, called the join of
x and y, and (iii) every pair of elements has a unique maximal lower bound,
called the meet of x and y. In a graded lattice L, the minimal elements in
Lz t0u are called atoms while the maximal elements in Lz t1u are coatoms. A
graded lattice is atomic if every element is a join of atoms and is coatomic if
every element is a meet of coatoms.

Our interest in posets and lattices stems from the next definition.

Definition 2.3.8 (Face lattice of a polytope) The face lattice of a polytope P

is the lattice L(P ) of all faces of the polytope, partially ordered by inclusion.

We represent a finite poset L by a Hasse diagram. Each element of L is
represented by a distinct point so that whenever x ď y the point representing
x is drawn lower than the point representing y. The face lattice of 3-cube is
depicted in Fig. 2.3.2. The empty face is the minimal element and is placed at

(a)

1 2

3

5 6

7

4

8
5678 2468 1256 3478 1357 1234

68 56 26 78 48 57 15 24 12 37 34 13

6 8 5 2 7 4 1 3

(b)

1 2 3 4 5 6 7 8
1 1 1 1 1 0 0 0 0
2 1 1 0 0 1 1 0 0
3 1 0 1 0 1 0 1 0
4 0 1 0 1 0 1 0 1
5 0 0 1 1 0 0 1 1
6 0 0 0 0 1 1 1 1

(c)

P

∅

Figure 2.3.2 The face lattice of a 3-cube. (a) A 3-cube with the vertices labelled.
The label of each face consists of the vertices contained in it. (b) A Hasse diagram
encoding the face lattice of the 3-cube P . (c) A facet-vertex incidence matrix
encoding the face lattice of the 3-cube.
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(a)

567824681256347813571234

685626784857152412373413

68527413

P

12341357
5678

1256

3478

2468

(b)

15

Figure 2.3.3 The face lattice of a 3-crosspolytope. (a) A 3-crosspolytope with the
vertices labelled. The label of each face consists of the facets that contain it. For
example, the vertex 1256 is contained in the facets 1,2,5,6, and the edge 15 is
contained in the facets 1,5 and contains the vertices 1256 and 1357. (b) A Hasse
diagram encoding the face lattice of the 3-crosspolytope P ˚.

level ´1; the vertices are at level 0, the edges at level 1, the 2-faces at level 2,
and the polytope at level 3.

Let (L, ď) be a lattice and let L1 be a nonempty subset of L. Then the partial
order ď on L induces a partial order on L1. The poset (L1, ď) is a sublattice
of (L, ď) if, for every two elements x and y of L1, the join and meet of x

and y are both in L1. The poset L1 := t6,68,56,26,5678,2468,1256,P u in
Fig. 2.3.2(b) with the inherited partial order is a sublattice of the face lattice of
the 3-cube.

The opposite poset L˚ of a poset L is a poset with the same underlying set
L and relation ď, and where x ď y is in L˚ if and only if y ď x is in L. As we
will see in Corollary 2.4.11, the opposite of the face lattice of a polytope P is
the face lattice of the dual polytope P ˚ of P . Figure 2.3.3 shows the face lattice
L(P ˚) of the 3-crosspolytope P ˚ as the opposite of the face lattice L(P ) of
the 3-cube P ; the face lattice L(P ) has been rotated 180˝ to obtain L(P ˚).

An antiisomorphism from a poset (L, ď) to a poset (L1, ď) is an order-
reversing bijection ψ from L to L1: for all x,y P L, x ď y is in L if and
only if ψ(x) ě ψ(y). If there is an antiisomorphism between two posets, we
say that the posets are antiisomorphic. A lattice and its opposite lattice are
antiisomorphic.

A facet-vertex incidence matrix of a polytope encodes its face lattice
in a more efficient way than a Hasse diagram. Each row of the matrix
represents a facet, each column a vertex, and the entry (i,j) has a 1 if
the facet i contains the vertex j and 0 otherwise. Figure 2.3.2(c) depicts a
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facet-vertex incidence matrix, where the facet 1234 has label 1, the facet
1256 has label 2, the facet 1357 has label 3, the facet 2468 has label 4,
the facet 3478 has label 5, and the facet 5678 has label 6. The other faces
of the polytope can be readily determined from this incidence by virtue of
Theorem 2.3.1.

Remark 2.3.9 A set X of vertices of P forms a proper face if and only if
no vertex in V(P )zX is contained in the intersection of all the facets that
contain X.

We illustrate Remark 2.3.9. The set X := t7,8u is a face of the 3-cube; it
is contained in the facets 5678 and 3478 whose intersection is precisely 78.
However, the set X1 := t6,7u is not a face; it is contained only in the facet
5678, but there are other vertices in the facet.

Next we gather the main properties of face lattices of polytopes.

Theorem 2.3.10 Let L be the face lattice of a polytope.

(i) The elements 0 and 1 correspond to the empty face and the polytope,
respectively.

(ii) The minimal elements in Lz t0u, the atoms of the lattice, are the vertices
of the polytope.

(iii) Every face of the polytope is a join of vertices.
(iv) The maximal elements in Lz t1u, the coatoms of the lattice, are the facets

of the polytope.
(v) Every face of the polytope is the intersection of facets.

(vi) The lattice L is finite, graded, atomic, and coatomic.

Two polytopes P and P 1 are combinatorially isomorphic if their face lattices
are isomorphic. We may also say that the polytopes P and P 1 are of the same
combinatorial type. Unless otherwise stated we do not distinguish between
combinatorially isomorphic polytopes and thus write P = P 1.

We often need to embed or ‘realise’ a polytope or a combinatorial type in
some space Rd . A realisation of a polytope P with vertices v1, . . . ,vn is a
polytope P 1 := convtu1, . . . ,unu where for each i P [i . . . n] ui is a point
in Rd and the mapping v1 ÞÑ u1, . . . ,vn ÞÑ un is an isomorphism of the
face lattices of P and P 1. In this way, the polytope P 1 is an embedding in Rd

of the combinatorial type of P . Researchers are often interested in the set of
all realisations of a combinatorial type, which is formalised by the realisation
space of a polytope. Realisation spaces of polytopes are the central topic of
Richter-Gebert (2006).
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2.4 Dual Polytopes

In the case of polyhedra, the definition of dual set gives rise to the dual
polyhedron P ˚ of a polyhedron P . If the polyhedron happens to be a cone
we will use the equivalent definition of the dual cone for the dual polyhedron.
There is a recipe to go from a polyhedron that contains the origin to its dual.

Theorem 2.4.1 The dual of a V-polyhedron in Rd that contains the origin is an
H -polyhedron in Rd that contains the origin, and vice versa. More precisely,
let X := tx1, . . . ,xru Ď Rd and Y := ty1, . . . ,ysu Ď Rd , let M be the matrix
with rows xt

1, . . . ,x
t
r , and let N be the matrix with rows yt

1, . . . ,y
t
s . Then the

following hold:

(i) If P := conv(X Y t0du) + cone Y then P ˚ = tz P Rd | Mz ď 1r, Nz ď

0su.
(ii) If instead

P :=
"

z P Rd

ˇ

ˇ

ˇ

ˇ

(
M

N

)
z ď

(
1r

0s

)*
=

!

z P Rd
ˇ

ˇ

ˇ
Mz ď 1r, Nz ď 0s

)

,

then P ˚ = conv(X Y t0du) + cone Y .

Proof (i) Suppose that P := conv(X Y t0du) + cone Y and that w P P ˚.
Additionally, let

Q :=
!

z P Rd
ˇ

ˇ

ˇ
Mz ď 1r, Nz ď 0s

)

.

Since x1, . . . ,xr P P we find that w ¨ xi ď 1 for i P [1 . . . r] by
Definition 1.11.1. And since y1, . . . ,ys P P and cone Y Ď P we find that
w ¨ yj ď 0 for j P [1 . . . s] by (1.11.11). Hence w P Q and P ˚ Ď Q.

Suppose that w P Q. Take u P P . Then there exist scalars α1 ě 0, . . . ,αr ě

0 with
řr

i=1 αi = 1 and scalars β1 ě 0, . . . ,βs ě 0 for which

w ¨ u = w ¨ (α1x1 + ¨ ¨ ¨ + αrxr + β1y1 + ¨ ¨ ¨ + βsys)

= α1w ¨ x1 + ¨ ¨ ¨ + αrw ¨ xr + β1w ¨ y1 + ¨ ¨ ¨ + βsw ¨ ys

ď α1 + ¨ ¨ ¨ αr + 0 + ¨ ¨ ¨ + 0 = 1.

The last inequality follows from the definition of Q. Hence w P P ˚ and Q Ď

P ˚. As a consequence, P ˚ = Q.
(ii) Suppose that P is given as in (ii) and that Q := conv(XYt0u)+cone Y .

By (i) we have that Q˚ = P . And from Q˚˚ = Q (Theorem 1.11.7) it follows
that P ˚ = Q˚˚ = Q, as desired.
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In the particular case of cones, Theorem 2.4.1 reduces to the following.

Theorem 2.4.2 The dual cone of a V-cone in Rd is an H -cone in Rd , and vice
versa. More precisely,

(i) if C := conetx1, . . . ,xnu then, letting M P Rnˆd be the matrix with rows
xt

1, . . . ,x
t
n, we have that C˚ = ty P Rd | My ď 0nu; and

(ii) if C := P(M,0n) where M is a n ˆ d matrix with rows xt
1, . . . ,x

t
n, then

C˚ = conetx1, . . . ,xnu.

Polytopes

If a polytope P in Rd contains the origin in its interior then the dual set P ˚ of
P is a polyhedron by Theorem 2.4.1 and is bounded by Theorem 1.11.8. Thus
P ˚ is a polytope (Theorem 2.2.3), and so we call it the dual polytope of P .
The bounded case of Theorem 2.4.1 gives a recipe to go from a polytope that
contains the origin in its interior to its dual; this is summarised next.

Theorem 2.4.3 Let X := tx1, . . . ,xru Ď Rd and let M be the matrix with
rows xt

1, . . . ,x
t
r . Then the following hold:

(i) If P := conv X and P contains the origin in its interior, then

P ˚ =
!

z P Rd
ˇ

ˇ

ˇ
Mz ď 1r

)

and P ˚ contains the origin in its interior.
(ii) If instead P := tz P Rd | Mz ď 1ru and P contains the origin in its

interior then P ˚ = conv X and P ˚ contains the origin in its interior.
(iii) Suppose that P := conv X contains the origin in its interior. Then V(P ) =

X if and only if tz P Rd | Mz ď 1ru is an irredundant H -description of
P ˚.

Proof Parts (i) and (ii) are the bounded case of Theorem 2.4.1. We prove (iii).
Since 0d P int P , we have that #X ě 2. We prove the contrapositive of both
directions.

Suppose that V(P ) Ă X, say x� R V(P ), and let

P� := conv(Xztx�u) and Q� := tz P Rd
| M�z ď 1r´1u,

where M� is obtained from M by removing the row xt
�. Because 0d P int P ,

it follows that 0d P int P�, and so Part (i) yields that P ˚
� = Q�. Besides,

Minkowski–Krein–Milman’s theorem (1.9.11) ensures that P = convV(P ),
and so P = P�. From P = P� it follows that P ˚ = P ˚

� , which implies that the
H -description tz P Rd | Mz ď 1ru of P ˚ is redundant.
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Suppose that the H -description tz P Rd | Mz ď 1ru of P ˚ is redundant, say

P ˚ =
!

z P Rd
ˇ

ˇ

ˇ
M�z ď 1r´1

)

where M� is obtained from M by removing the row xt
�. Then 0d P int P ˚. Let

P� := conv(Xztx�u). Part (ii) yields that P ˚˚ = P�. The polytope P contains
the origin in its interior, which implies that P = P ˚˚ (Corollary 1.11.9); that
is, P = P�. Again by Minkowski–Krein–Milman’s theorem (1.9.11), we have
that P = P� = convV(P ), resulting in V(P ) Ă X.

Example 2.4.4 We find the dual of a d-cube Q(d) that is given as an
H -polytope (Example 2.1.6) in two different ways: (i) reasoning as in Exam-
ple 1.11.4 and (ii) following the recipe of Theorem 2.4.3. An H -description of
Q(d) is as follows:

Q(d) = �

(x1, . . . ,xd)t
ˇ

ˇ |x1| ď 1, . . . ,|xd | ď 1
(

=

$

’

’

’

’

’

&

’

’

’

’

’

%

z P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

⎛
⎜⎜⎜⎜⎜⎝

et
1

´et
1

...
et
d

´et
d

⎞
⎟⎟⎟⎟⎟⎠ z ď 12d

,

/

/

/

/

/

.

/

/

/

/

/

-

.
(2.4.4.1)

(i) Each point y := (y1, . . . ,yd)t of Q(d)˚ satisfies y ¨ x ď 1 for
every point x P Q(d) (Definition 1.11.1), and, in particular, for the point
xy := (sign y1, . . . , sign yd)t of Q(d). Here, sign y denotes the sign function:
sign y = ´1 if y ă 0, sign y = 0 if y = 0, and sign y = 1 if y ą 0.
Then

y ¨ xy = y1 sign y1 + ¨ ¨ ¨ + yd sign yd = |y1| + ¨ ¨ ¨ + |yd | ď 1.

Hence

Q(d)˚
Ď

!

(z1, . . . ,zd)t P Rd
ˇ

ˇ

ˇ
|z1| + ¨ ¨ ¨ + |zd | ď 1

)

.

Take z P Rd such that |z1| + ¨ ¨ ¨ + |zd | ď 1. Then, for every point x in Q(d),
we have that

z ¨ x = z1x1 + ¨ ¨ ¨ + zdxd ď |z1||x1| + ¨ ¨ ¨ + |zd ||xd |

ď |z1| + ¨ ¨ ¨ + |zd | ď 1.
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Hence z P Q(d)˚, and

Q(d)˚ =
!

(z1, . . . ,zd)t P Rd
ˇ

ˇ

ˇ
|z1| + ¨ ¨ ¨ + |zd | ď 1

)

=

$

’

’

&

’

’

%

z P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

⎛
⎜⎜⎝

1 1 ¨ ¨ ¨ 1 1
´1 1 ¨ ¨ ¨ 1 1

¨ ¨ ¨

´1 ´1 ¨ ¨ ¨ ´1 ´1

⎞
⎟⎟⎠ z ď 12d

,

/

/

.

/

/

-

.

(ii) Applying the recipe of Theorem 2.4.3 to (2.4.4.1) we get that

Q(d)˚ = conv te1, ´ e1, . . . ,ed, ´ edu .

The polytope Q(d)˚ is known as a d-crosspolytope and is denoted by I (d).

Dimension of the Dual Polytope

The lineality space of a polyhedron is closely linked to the dimension of the
dual polyhedron. The next proposition gives the relevant result.

Proposition 2.4.5 If P is a polyhedron in Rd that contains the origin, then

(i) aff P ˚ is the orthogonal complement of lineal P ,
(ii) dim P ˚ = d ´ dim(lineal P), and

(iii) dim P = d ´ dim(lineal P ˚).

Proof (i) Suppose that P is given as the H -polyhedron

P =
"

z P Rd

ˇ

ˇ

ˇ

ˇ

(
M

N

)
z ď

(
1r

0s

)*
=

"

z P Rd

ˇ

ˇ

ˇ

ˇ

Az ď

(
1r

0s

)*
,

where M is the matrix in Rrˆd with rows xt
1, . . . ,x

t
r , N is the matrix in

Rsˆd with rows yt
1, . . . ,y

t
s , and A is the matrix in R(r+s)ˆd with rows

xt
1, . . . ,x

t
r,y

t
1, . . . ,y

t
s .

By Theorem 2.4.1, the dual P ˚ of P can be written as

P ˚ = conv(X Y t0du) + cone Y,

where X = tx1, . . . ,xru and Y = ty1, . . . ,ysu. Since 0 P P ˚, we have
that the affine hull of P ˚ coincides with its linear hull. As a consequence, we
further have that aff P ˚ is linearly spanned by X Y Y and coincides with the
row space of A (see Example 1.1.6).

According to Theorem 2.1.9, lineal P = tz P Rd | Az = 0r+su; that
is, lineal P is the nullspace of A. The row space of A is the orthogonal
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complement of its nullspace by the nullity–rank theorem (Problem 1.12.5),
and therefore

aff P ˚ = (lineal P)K,

as desired.
(ii) The nullity–rank theorem applied to (i) gives (ii).
(iii) The polyhedron P contains the origin, and so P ˚˚ = P by Theo-

rem 1.11.7. Moreover, P ˚ is another polyhedron in Rd that contains the origin
(Theorem 2.4.1). Part (iii) is confirmed by applying (ii) to P ˚.

We remark that Proposition 2.4.5 remains true in the more general case of
P being a closed convex set in Rd that contains the origin. The subsequent
corollary of Proposition 2.4.5 follows at once.

Corollary 2.4.6 If P is a pointed, full-dimensional polyhedron in Rd that
contains the origin, then so is the dual of P .

Proof By Theorem 2.4.1, the dual P ˚ of P is a polyhedron that contains the
origin.

If P is pointed, then lineal P = t0u (Section 1.10). By Proposition 2.4.5,
this implies that dim P ˚ = d . Since P is full-dimensional, Proposition 2.4.5
again yields that lineal P ˚ = t0u, which is equivalent to saying that P ˚ is
pointed. Hence P ˚ is pointed and full-dimensional.

Finally, the dual polyhedron contains the origin (Proposition 1.11.3), and so
the corollary follows.

The subsequent statement is a consequence of Theorem 2.4.3 and Corol-
lary 2.4.6.

Proposition 2.4.7 If a d-polytope contains the origin in its interior, then its
dual is also a d-polytope that contains the origin in its interior.

Conjugate Faces

Let P be a polytope that contains the origin in its interior. We next explore the
relationship between the faces of P and the faces of the dual polytope P ˚ of
P . For a face F of P , we define the set

F Ÿ := ty P P ˚
| y ¨ x = 1 for every x P F u =

č

xPF

(
P ˚

X H(x,1)
)

. (2.4.8)

For exposed faces I and F of P , Definition (2.4.8) gives that

if I is a face of F and F is a face of P then IŸ
Ě F Ÿ. (2.4.9)
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The next theorem motivates the definition (2.4.8).

Theorem 2.4.10 Let P Ď Rd be a d-polytope that contains the origin in its
interior. Suppose that F is a proper face of P . Then the following hold:

(i) F Ÿ is a proper face of the dual polytope P ˚.
(ii) A point a is in F if and only if H(a,1) is a hyperplane supporting P ˚ and

containing F Ÿ.
(iii) The point a is in rint F if and only if F Ÿ = P ˚ X H(a,1).
(iv) F Ÿ Ÿ = F .
(v) There exists an antiisomophism ψ from the face lattice L(P ) of P to the

face lattice L(P ˚) of P ˚ that sends each face F of P onto the face F Ÿ

of P ˚.

Proof The proofs of (i)–(iv) follow from Brøndsted (1983, thms. 6.6, 6.7).
Part (v) is a direct consequence of (i), (iv), and (2.4.9).

Let P be a d-polytope that contains the origin in its interior. For an exposed
face F of P , by virtue of Theorem 2.4.10(i) we say that the face F Ÿ of the dual
polytope P ˚ is the conjugate face of F . And by virtue of Theorem 2.4.10(iv),
we have that the conjugate face of F Ÿ is F . We often say that F and F Ÿ are
conjugate.

A direct consequence of Theorem 2.4.10(v) is the following.

Corollary 2.4.11 Let P Ď Rd be a d-polytope that contains the origin in its
interior and let P ˚ be the dual polytope of P . Then the face lattice L(P ˚) of
P ˚ is isomorphic to the opposite lattice L(P )˚ of the face lattice L(P ) of P .

For any d-polytope P in Rd , there is a d-polytope Q in Rd that contains the
origin in its interior and that is combinatorially isomorphic to P ; we can obtain
Q by translating P or changing the coordinates of P . As a consequence, the
face lattice of P is isomorphic to the face lattice of Q and antiisomorphic to the
face lattice of Q˚. The existence of Q allows us to define the ‘dual polytope’
for any polytope, not just for a polytope that contains the origin in its interior.
We say that a polytope P ˚ is the (combinatorial) dual polytope of P if the face
lattice of P ˚ in antiisomorphic to the face lattice of P .

We now present a relation between the dimensions of F and F Ÿ.

Theorem 2.4.12 Let P Ď Rd be a d-polytope that contains the origin in its
interior, and let P ˚ be the dual polytope of P . If F and F Ÿ are conjugate faces
of P and P ˚, respectively, then dim F + dim F Ÿ = d ´ 1.

Proof According to Theorem 2.3.5, every k-face Fk of P is part of a complete
flag
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H = F´1 Ă F0 Ă ¨ ¨ ¨ Fk Ă ¨ ¨ ¨ Ă Fd´1 Ă Fd = P (2.4.12.1)

of faces of P such that dim Fi = i, for each i P [´1 . . . d]. By Theo-
rem 2.4.10(v), computing the conjugate of every face in (2.4.12.1) yields a
new complete flag

H = F Ÿ
d Ă F Ÿ

d´1 Ă ¨ ¨ ¨ F Ÿ
k Ă ¨ ¨ ¨ Ă F Ÿ

0 Ă F Ÿ
´1 = P ˚

of faces of P ˚ such that dim F Ÿ
i ą dim F Ÿ

i+1, for each i P [´1 . . . d ´ 1].
Since P ˚ is also a d-polytope (Proposition 2.4.7), we must have that dim F Ÿ

i =
dim F Ÿ

i+1 + 1, for each i P [´1 . . . d ´ 1], and that dim F Ÿ
d = ´1. It follows

that dim Fi + dim F Ÿ
i = d ´ 1 for each i P [´1 . . . d], as desired.

Some results related to the facial structure of a polytope are easier to prove
if duality is invoked. We give four examples.

Theorem 2.4.13 A d-polytope has at least d + 1 facets.

Proof Without loss of generality, suppose that P is a d-polytope in Rd that
contains the origin in its interior. The dual polytope P ˚ of P is another d-
polytope that contains the origin in its interior (Proposition 2.4.7). Moreover,
P ˚ can be expressed as convV(P ˚) by Minkowski–Krein–Milman’s theo-
rem (1.9.11). Since P ˚ is d-dimensional, the number of affinely independent
points in P ˚ is d +1 and thus v(P ˚) ě d +1. By Corollary 2.4.11, the number
of facets of P is v(P ˚), and is at least d + 1.

Theorem 2.4.14 A vertex of a d-polytope P in Rd is contained in at least d

edges of P .

Proof Without loss of generality, suppose that P contains the origin in its
interior. Let v be a vertex of P and let ψ be an antiisomorphism from L(P )

to L(P ˚). From Theorem 2.4.12 it follows that dim ψ(v) = d ´ 1, and from
Theorem 2.4.13 it follows that the number of (d ´2)-faces in ψ(v) is at least d,
say R1, . . . ,Rd . Hence ψ´1(R1), . . . ,ψ

´1(Rd) are all edges of P containing
v (Corollary 2.4.11), concluding the proof of the theorem.

Theorem 2.4.14 yields a useful inequality between f0 and f1 and, by duality,
between fd´2 and fd´1.

Corollary 2.4.15 If P is a d-polytope, then

2f1(P ) ě df0(P ), 2fd´2(P ) ě dfd´1(P ).

Proof Each edge of P contains precisely two vertices and each vertex is
incident with at least d edges by Theorem 2.4.14. Hence 2f1(P ) ě df0(P ).
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By applying this inequality to the dual polytope P ˚ of P , we get that
2f1(P

˚) ě df0(P
˚). Hence 2fd´2(P ) ě dfd´1(P ).

Theorem 2.4.16 Let P Ď Rd be a d-polytope. For ´1 ď k ă h ď d ´1, each
k-face F of P is the intersection of at least h ´ k + 1 h-faces of P that contain
it. In the particular case k = d ´ 2, F is the intersection of exactly two facets
of P .

Proof The result is true for d = 2 and every ´1 ď k ă h ď 1. Thus, assume
that d ě 3 and the statement is true for every (d ´ 1)-polytope and every pair
of numbers k,h satisfying ´1 ď k ă h ď d ´ 2.

Without loss of generality, suppose that P is a d-polytope that contains the
origin in its interior. We first prove the result for h = d´1 and every ´1 ď k ă

h. Let ψ be an antiisomorphism from L(P ) to L(P ˚). Because dim F = k,
from Theorem 2.4.12 it follows that dim ψ(F) = d ´ 1 ´ k, which amounts to
ψ(F) having at least d ´ k vertices, say v1, . . . ,vd´k; in the case k = d ´ 2,
ψ(F) is an edge and has exactly two vertices. By Theorem 2.4.10, the faces
ψ´1(v1), . . . ,ψ

´1(vd´k) of P are all facets that contain F . We know from
Theorem 2.3.1 that the face F is the intersection of the facets of P containing
it. Therefore, there are at least d´k such facets. This settles the case h = d´1.

We now pick a facet J of P containing F . By the induction hypothesis, F

is the intersection of at least h ´ k + 1 h-faces of J that contain it for every
´1 ď k ă h ď d ´ 2. Each face of J is a face of P and so the statement
follows for h ď d ´ 2 as well.

2.5 Preprocessing

While most of the proofs in this book live entirely in an affine space, it is
sometimes convenient to enlarge the affine space into a real projective space,
preprocess our objects, and then return to the affine world with simpler objects.

We digress temporarily to introduce embeddings of affine spaces into
projective spaces.

Embedding Affine Spaces into Projective Spaces

We slightly vary the model of P(Rd+1) presented in Section 1.3 so that it now
completes a d-dimensional affine space H by adding the points contained in
the direction of H . In this new model we keep the close relation between
P(Rd+1) and Rd+1, which has proven very useful. The main idea has its

https://doi.org/10.1017/9781009257794.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009257794.003


2.5 Preprocessing 73

seeds in the embedding of an affine space into a linear space, as discussed
in Section 1.2.

We first embed the d-dimensional affine space Ad into Rd+1 by associating
Ad with the nonlinear hyperplane

H :=
!

(x1, . . . ,xd+1)
t

P Rd+1
ˇ

ˇ

ˇ
xd+1 = 1

)

.

In the embedding of Ad into Rd+1 described in Section 1.2, the linear
hyperplane

H8 :=
!

(x1, . . . ,xd+1)
t

P Rd+1
ˇ

ˇ

ˇ
xd+1 = 0

)

parallel to H plays the role of the direction of H . In our new model of Pd , the
hyperplane H8 will also play an important role.

To every line p(x) in Rd+1 that is not contained in the linear hyperplane H8

we assign the unique point (α1, . . . ,αd,1)t in the intersection of p(x) with H .
And to every line p(x) in H8 we assign the homogeneous coordinates of p(x),
namely (α1 : ¨ ¨ ¨ : αd : 0); we call the lines p(x) in H8 points at infinity. A
point at infinity in H8 can be thought of as the asymptotic direction of all lines
in H parallel to the point. The hyperplane H8 is often called the hyperplane
at infinity.

The projective points therefore decompose into two types: those represented
by an affine point (α1, . . . ,αd,1)t in H , which can also be seen as a vector of
Rd+1, and those represented by the lines in H8 that pass through the origin, or
equivalently, by homogeneous coordinates of the form (α1 : ¨ ¨ ¨ : αd : 0). The
hyperplane H8 defines a (d ´ 1)-dimensional projective subspace of Pd : it is
the set of lines through the origin in the linear subspace H8. The subsequent
decompositions of Pd follow at once (see Fig. 1.3.1(b)):

Pd = H Y H8 = Ad
Y Pd´1. (2.5.1)

It is instructive to compare Fig. 1.2.1(b) with Fig. 1.3.1(b).
As before, any k-dimensional linear subspace L of Rd+1 defines a (k ´ 1)-

dimensional projective subspace whose projective points are either the affine
points in L X H or the points at infinity in L X H8.

In this embedding of Ad into Pd , the space Pd is the projective closure or
projective completion of Ad . We can naturally complete an affine subspace
A of H . Consider the direction

#—
A of A and the homogenisation pA of A (see

Section 1.2). Then pA is a linear subspace of Rd+1 that contains both A and
#—
A. The projective closure of A is the projective space P( pA); that is, it is the
projective space defined as P(

#—
A) together with the set p(A) of lines that pass

through the origin and are spanned by the points of A. The elements of P(
#—
A)
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are the points of infinity of P( pA). We obtain a decomposition of P( pA) similar
to that in (2.5.1):

P( pA) = A Y P(
#—
A).

If the affine space A is defined by the system of linear equations

$

’

&

’

%

α1,1x1 + ¨ ¨ ¨ + α1,dxd + b1 = 0
...

αn,1x1 + ¨ ¨ ¨ + αn,dxd + bn = 0,

then its closure is defined by the system of homogeneous linear equations

$

’

&

’

%

α1,1x1 + ¨ ¨ ¨ + α1,dxd + b1xd+1 = 0
...

αn,1x1 + ¨ ¨ ¨ + αn,dxd + bnxd+1 = 0.

Scheme for Preprocessing Affine Objects

The idea goes as follows. There is an affine object P (in most instances,
a polytope) embedded in a d-dimensional affine space He. Projectively
complete He by adding the hyperplane at infinity He

8. Consider another
nonlinear hyperplane Hp that is nonparallel to He and denote by H

p
8 its

corresponding hyperplane at infinity. Assume that the object P lies in He,
in the open halfspace defined by H

p
8 and containing Hp; following Ziegler

(1995, sec. 2.6), if P is positioned as described, we say that the hyperplane
Hp is admissible for P . In this case, the hyperplane Hp intersects every line
passing through the origin and a point of P (Fig. 2.5.1).

With the projective completions of He and Hp in place so that the hyper-
plane Hp is admissible for P , we then describe a projective transformation
ζ : P

(
Rd+1

)
Ñ P

(
Rd+1

)
mapping P onto a ‘deformed’ object P 1 in Hp; see

Section 1.4 for information on projective maps. The affine space Hp and the
object P 1 are subsequently used instead of He and P . Essentially, the affine
object P 1 is geometrically realised by the intersection of Hp and a projective
object p(P ) consisting of the lines passing through the origin and through a
point of P . We require that this projective transformation ζ is admissible for
P : no point of P lies in H

p
8.
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Let us make our explanation concrete. Take

He :=
"(

x

xd+1

)ˇ
ˇ

ˇ

ˇ

x P Rd and xd+1 = 1

*

,

He
8 :=

"(
x

xd+1

)ˇ
ˇ

ˇ

ˇ

x P Rd and xd+1 = 0

*

,

Hp :=
"(

x

xd+1

)ˇ
ˇ

ˇ

ˇ

x,a P Rd and a ¨ x + ad+1xd+1 = 1

*

,

H
p
8 :=

"(
x

xd+1

)ˇ
ˇ

ˇ

ˇ

x,a P Rd and a ¨ x + ad+1xd+1 = 0

*

,

so that Hp and He are nonparallel. Then the admissibility of the hyperplane
Hp for P amounts to saying that

a ¨ v + ad+1vd+1 ą 0

for every point (v,vd+1)
t of P .

We let the projective transformation ζ be induced by the identity linear
map in Rd+1 and we associate it with a perspectivity � that goes from
Hez(HeXH

p
8) to Hp and is centred at 0. In this association, if �(z1) = z2 then

ζ(p(z1)) = p(z2). An affine perspectivity centred at 0 is a function between
affine hyperplanes K and K 1 that maps a point z of K to a point z1 of K 1

whenever z, z1, and 0 are collinear; see Fig. 2.5.1(a).
Let the map � fix the points in He X Hp and map each point in Hez(Hp Y

H
p
8) to the point in Hp lying on the same line through the origin. See

Fig. 2.5.1(a). In formulas we get that the map acts as(
x

1

)
P He

ÞÑ
1

ax + ad+1

(
x

1

)
P Hp

provided ax + ad+1 ‰ 0.
We extend the map � via the transformation ζ for the remaining points of

He. Take a point y in He X H
p
8 and consider any line �e in He through y that

is not contained in He X H
p
8. Obtain the line �p in Hp that is the intersection

of Hp and the linear plane in Rd+1 spanned by 0 and the line �e. Then ζ maps
the point y to the line p(y) in H

p
8, which is the asymptotic direction of all

lines in Hp parallel to �p. Irrespective of the line through y and not contained
in He X H

p
8 that one chooses, we always obtain a line parallel to �p, namely

a line with asymptotic direction p(y). It is customary to say that the map ζ

‘sends every object in He X H
p
8 to infinity’. See Fig. 2.5.1(b).

The map ζ so defined is clearly projective: some intersecting lines are
mapped onto parallel lines. As pointed out by Ziegler (1995, sec. 2.6), it is

https://doi.org/10.1017/9781009257794.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009257794.003


76 Polytopes

(b)

�e
1

�e
2

�p
1

�p
2

0
He

∞

He

Hp
∞Hp

(a)

0
He

∞

He

Hp
∞Hp

ζ(y)

y
y

p(y)

Figure 2.5.1 Mapping points in He onto Hp Y H
p
8. (a) Mapping of a point in

Hez(Hp Y H
p
8). (b) Mapping of a point in He X H

p
8.

hardly ever necessary to produce concrete formulas for the projective map.
It suffices to understand how the map treats affine spaces, which is given in
Proposition 2.5.2.

Proposition 2.5.2 Let ζ : P
(
Rd+1

)
Ñ P

(
Rd+1

)
be the projective map

previously defined. Then ζ takes an affine k-space A Ć He X H
p
8 onto an

affine k-space ζ(A) Ď Hp and takes an affine k-space A Ă He X H
p
8 onto a

linear (k + 1)-space ζ(A) Ă H
p
8.

Remark 2.5.3 Most of the time, everything boils down to recognising how the
projective transformation treats lines and their intersections; this is summarised
in (A)–(D) below, although it is an immediate corollary of Proposition 2.5.2.
Figure 2.5.2 depicts the mapping of two lines in He onto Hp.

(A) The map ζ carries a line �e in He into a line �p in Hp, except those contain
in He X H

p
8.

(B) Let �e
1 and �e

2 be two lines of He that are not contained in He X H
p
8

and intersect outside He X H
p
8. Then they are mapped onto intersecting

lines �
p

1 and �
p

2 in Hp. If the lines �e
1 and �e

2 intersect in the positive open
halfspace of H

p
8, then the lines �

p

1 and �
p

2 intersect in the positive open
halfspace of He

8 (Fig. 2.5.2(b)). If in turn the lines �e
1 and �e

2 intersect in
the negative open halfspace of H

p
8, then the lines �

p

1 and �
p

2 intersect in
the negative open halfspace of He

8 (Fig. 2.5.2(d)).
(C) Let �e

1 and �e
2 be two lines of He that are not contained in He X H

p
8 but

intersect inside He X H
p
8. Then they are mapped onto parallel lines �

p

1
and �

p

2 in Hp (Fig. 2.5.2(a)).
(D) Let �e

1 and �e
2 be two parallel lines of He that are not contained in He X

H
p
8. If they are not parallel to a line in He X H

p
8, then they are mapped

onto lines �
p

1 and �
p

2 of Hp that intersect at Hp X He
8; otherwise they are

mapped onto lines parallel to a line in Hp X He
8 (Fig. 2.5.2(c)).
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(a)

�e
1

�e
2

�p
1

�p
2

0
He

∞

He

Hp
∞Hp

(b)

�e
1

�e
2

�p
2

�p
1

0
He

∞

He

Hp
∞Hp

(c)

�e
1

�e
2

�p
1

�p
2

0
He

∞

He

Hp
∞Hp

(d)

�e
1

�e
2

�p
1 �p

2

0
He

∞

He

Hp
∞Hp

Figure 2.5.2 Mapping of two lines of He onto Hp . (a) The lines intersect at He X

H
p
8. (b) The lines intersect inside the positive open halfspace defined by H

p
8 and

containing Hp . (c) The lines are parallel in He. (d) The lines intersect inside the
negative open halfspace defined by H

p
8 and not containing Hp .

2.6 Examples

This section examines particular examples of polytopes, with emphasis on their
combinatorial properties.

Simplices

The d-simplex, denoted T (d), is the d-polytope with the smallest number
of vertices. As we saw in Chapter 1, it is the convex hull of d + 1 affinely
independent points in Rd . Figure 1.6.2 shows simplices in R3. For every
k P [0 . . . d], the k-faces of a d-simplex are simplices of smaller dimension
and every k + 1 vertices yields a k-face. Thus the f -vector of T (d) can be
easily computed.
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Proposition 2.6.1 The number fk of k-faces of a d-simplex T (d) is

fk(T (d)) =
(

d + 1

k + 1

)
, for every k P [´1 . . . d].

It is now obvious that all d-simplices are combinatorially isomorphic, and
so we will talk of the d-simplex. The simplest realisation of T (d) is as the
convex hull of the d + 1 points of the standard basis of Rd+1.

Pyramids

The d-simplex T (d) can be also seen as the convex hull of a facet F of T (d)

and the vertex in T (d)z(aff F). A pyramid generalises this construction.
A d-dimensional pyramid or d-pyramid in Rd is the convex hull of a (d´1)-

polytope F and a point x P Rd not on aff F ; it is denoted by pyr F . The
polytope F is the base of the pyramid, while the point x is the apex of the
pyramid. We will often talk of this pyramid as being on or over F . A face I of
pyr F either is a face of F or contains the apex x. If x P I then aff F X I is
a face J of F that contains the other vertices of I , and so I is a pyramid with
base J and apex x. The next proposition should now be clear.

Proposition 2.6.2 The number fk of k-faces of a d-pyramid pyr F with base
F is given by

fk(pyr F) = fk(F ) + fk´1(F ), for every k P [0 . . . d].

The pyramid construction can be generalised. Every d-polytope P is a
0-fold d-pyramid with P as base. And a 1-fold d-pyramid with base F is
simply a d-pyramid over a (d ´ 1)-polytope F . If P is a pyramid over a
base Q that is itself a (d ´ 1)-pyramid over a (d ´ 2)-polytope F , then
we say that P is two-fold d-pyramid over the base F . In general, an r-
fold d-pyramid P is a pyramid over a base Q that is itself an (r ´ 1)-fold
(d ´ 1)-pyramid and the bases of P and Q coincide. In other words, P is an
r-fold d-pyramid over a (d ´ r)-dimensional base F and is denoted by pyrr F .
An inductive application of Proposition 2.6.2 yields the number of faces of
pyrr F .

Proposition 2.6.3 The number fk of k-faces of an r-fold d-pyramid pyrr F

with base F is given by

fk(pyrr F ) =
r
ÿ

i=0

(
r

i

)
fk´i (F ), for every k P [0 . . . d].
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If the dimension of a d-pyramid or an r-fold d-pyramid is clear from the
context or is nonessential, then we simply write pyramid or r-fold pyramid.

Bipyramids

Let F be a (d ´ 1)-polytope in Rd and let I = [x,y] be a line segment in Rd

such that rint I X rint F is a unique point. Then a d-bipyramid P in Rd is the
convex hull of F and I ; it is denoted by bipyr F . The polytope F is the base of
the bipyramid, while the segment I is the axis of the bipyramid. We will often
talk of a bipyramid on or over F . A face of bipyr F is either a proper face of
F , a pyramid with a base in F and an apex in tx,yu, or a vertex in tx,yu. The
next proposition should now be clear.

Proposition 2.6.4 The number fk of k-faces of a d-bipyramid bipyr F with
base F is given by

fk(bipyr F) =
#

fk(F ) + 2fk´1(F ), if k P [0 . . . d ´ 2];
2fd´2(F ), if k = d ´ 1.

The definition of an r-fold d-bipyramid follows the same idea as that of an
r-fold d-pyramid. Every d-polytope P is a 0-fold d-bipyramid with P as base.
An r-fold d-bipyramid P is a bipyramid over a base Q that is itself an (r ´ 1)-
fold (d ´ 1)-bipyramid, and the bases of P and Q coincide. In other words, P

is an r-fold d-bipyramid over a (d ´ r)-dimensional base F and is denoted by
bipyrr F .

If the dimension of a d-bipyramid or an r-fold d-bipyramid is clear from the
context or is nonessential, then we simply write bipyramid or r-fold bipyramid.

We met a (d ´ 1)-fold d-bipyramid in Chapter 1, the d-crosspolytope I (d).
In Chapter 1, the d-crosspolytope appeared as the dual of the d-cube. As a
(d´1)-fold d-bipyramid, I (d) can be realised as the convex hull of d segments
that are pairwise orthogonal and have a common midpoint. It follows that I (d)

is a bipyramid over I (d ´ 1), wherefrom we get the number fk of k-faces.
Figure 2.6.1 shows crosspolytopes in R3.

Proposition 2.6.5 The number fk of k-faces of a d-crosspolytope I (d) is
given by

fk(I (d)) = 2k+1
(

d

k + 1

)
, for every k P [´1 . . . d ´ 1].
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Prisms

Let F be a (d ´ 1)-polytope in Rd and let I = [0,x] be a line segment in Rd

such that aff I is not parallel to any line in aff F . Then the d-prism P with base
F and axis I , denoted prism F , is the Minkowski sum F + I . This amounts
to saying that prism F = conv(F Y (F + x)). A k-face of prism F is either a
k-face of F , a k-face of F + x, or the sum of I and some (k ´ 1)-face of F .
The next proposition should now be clear.

Proposition 2.6.6 The number fk of k-faces of a d-prism with base F is
given by

fk(prism F) =
#

2fk(F ), if k = 0;
2fk(F ) + fk´1(F ), if k P [1 . . . d].

Continuing with the analogy to both pyramids and bipyramids, we define
r-fold d-prisms. Every d-polytope P is a 0-fold d-prism with P as base. An
r-fold d-prism P is a prism over a base Q that is itself an (r ´ 1)-fold (d ´

1)-prism and the bases of P and Q coincide. In other words, P is an r-fold
d-prism over a (d ´ r)-dimensional base F and is denoted by prismr F .

We have special names for some prisms. A d-prism with a simplex as a base
is a simplicial d-prism. A (d ´1)-fold d-prism, which is also a d-fold d-prism,
is a d-parallelotope; it is the sum of d segments with a common point such
that no segment is in the affine hull of the others.

We met a d-parallelotope in Example 2.1.6, the d-cube Q(d). There, we
realised Q(d) as the convex hull of 2d vectors (˘1, . . . , ˘1)t . Here, we obtain
Q(d) as the sum of d segments that are pairwise orthogonal and have equal
length. It follows that Q(d) is a prism over Q(d ´ 1), wherefrom we get the
number fk of k-faces. Figure 2.1.1 shows cubes in R3.

(c)(b)

(a)

Figure 2.6.1 Crosspolytopes in R3. (a) A 1-crosspolytope. (b) A 2-crosspolytope.
(c) A 3-crosspolytope, usually known as an octahedron.
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Proposition 2.6.7 The number fk of k-faces of a d-cube Q(d) is given by

fk(Q(d)) = 2d´k

(
d

k

)
, for every k P [0 . . . d].

If the dimension of a d-prism or an r-fold d-prism is clear from the context
or is nonessential, then we simply write prism or r-fold prism.

Wedges

Let P be a d-polytope in Rd . Embed P ˆ t0u in the hyperplane

H :=
"(

x

xd+1

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

xd+1 = 0

*

of Rd+1, let F be a proper face of P , and let C be the halfcylinder P ˆ[0,8) Ă

Rd+1. We cut the halfcylinder with a hyperplane H 1 through F ˆ t0u so that
C is partitioned into two parts, one bounded and one unbounded. The wedge
of P at F is the bounded part; it is denoted by WF (P ). The sets P and H 1 XC

define facets of WF (P ) that are combinatorially isomorphic to P and intersect
at the face F ˆ t0u; the facets P and H 1 X C are the bases of WF (P ). See an
example in Fig. 2.6.2.

The wedge W over a d-polytope P ˆ t0u Ď Rd+1 at a face F ˆ t0u of
P ˆ t0u is combinatorially isomorphic to a prism Q over P ˆ t0u where the
face prism(F ˆ t0u) of Q has collapsed into F ˆ t0u. Some proper k-faces of
W will be wedges defined as the wedge of a (k´1)-face J ˆt0u of P ˆt0u at a
proper face (F XJ )ˆt0u. Some proper k-faces of W are k-prims over (k ´1)-
faces of P ˆ t0u disjoint from F ˆ t0u; these prisms are the vertical faces of
W . These descriptions together with Proposition 2.6.6 give the following.

WF (P)
F × {0}P × {0}

P × [0, ∞) ⊂ R
3

(a)

(b)

Figure 2.6.2 The wedge of the pentagon P . (a) The cylinder P ˆR in R3. (b) The
wedge over P at a facet of P .
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Proposition 2.6.8 Let P Ď Rd+1 be a d-polytope and F a proper face of P .
A k-face of the wedge W of P at F is either a k-face of one of the bases of W ,
or the wedge of a (k ´ 1)-face J of P at the proper face F X J , or a vertical
k-face.

Proposition 2.6.9 The number fk of k-faces of the wedge W of a d-polytope
P at a facet F of P is given by

fk(W) =
#

2fk(P ) ´ fk(F ), if k = 0;
2fk(P ) + fk´1(P ) ´ fk(F ) ´ fk´1(F ), if k P [1 . . . d + 1].

Dual Wedges

Let P be a d-polytope in Rd . Embed P ˆ t0u in the hyperplane

H :=
"(

x

xd+1

)
P Rd+1

ˇ

ˇ

ˇ

ˇ

xd+1 = 0

*

of Rd+1 and let v be a vertex of P . The dual wedge of P at v, denoted by
dWv(P ), is the (d + 1)-polytope

dWv(P ) := conv
(
(P ˆ t0u) Y (v ˆ t´1u) Y (v ˆ t1u)

)
.

The facial structure of the dual wedge is plain from its description.

Proposition 2.6.10 Let P ˆ t0u Ď Rd+1 be a d-polytope and v a vertex of P .
A k-face of the dual wedge of P at v is either a k-face of P not containing v,
or the dual wedge of a (k ´1)-face of P at v, or a pyramid with apex v ˆt´1u

or v ˆ t1u over a (k ´ 1)-face of P not containing v.

As the name indicates, the dual wedge is in some sense the dual operation of
a wedge: if we perform the wedge of a polytope P at a facet F of P , then we
are performing the dual wedge of the dual polytope P ˚ at the conjugate vertex
of F in P ˚ (Problem 2.15.11).

Truncation of Faces

Let P be a d-polytope in Rd , let F be a face of P , and let K be a closed
halfspace in Rd such that the vertices of P not in K are the vertices of F . A
polytope P 1 is obtained by truncating the face F of P if P 1 = P X K . The
polytope P 1 retains all the old facets of P , except F if it was a facet, and gains
a new facet.

Truncating faces is a flexible operation. We can see that a simplicial d-prism
is obtained from a d-simplex T by truncating a vertex of T .
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P

F F ′

P ′

P#FP ′

Figure 2.6.3 Connected sum of two polytopes.

Connected Sums

Two polytopes P and P 1 are projectively isomorphic if there is a projective
isomorphism ζ permissible for P such that ζ(P ) = P 1.

Let P and P 1 be two d-polytopes with a facet F of P projectively isomor-
phic to a facet F 1 of P 1. The connected sum P #F Q of P and P 1 is obtained
by ‘gluing’ P and P 1 along F and F 1; if the facet F is of no importance, we
simply write P #P 1. Projective transformations on the polytopes P and P 1 may
be required for the connected sum to be convex. A common method is first to
assume that P and P 1 are realised so that P XP 1 = F = F 1, and then to apply
a projective transformation ζ to P 1 so that ζ fixes F 1 and conv(P Y ζ(P 1))

becomes a realisation of P #F P 1; Problem 2.15.7 asks for the details of this
transformation. The connected sum of two polytopes is depicted in Fig. 2.6.3.
The faces of P #F P 1 are described next.

Proposition 2.6.11 Let P and P 1 be two d-polytopes with a facet F of P

projectively isomorphic to a facet F 1 of P 1. Then the proper faces of P #F P 1

consist of all the proper faces of P and P 1, except for the facets F and F 1.

The connected sum of a d-simplex and a d-polytope with a simplex facet
is called stacking; this sum is always possible (Problem 2.15.9). The stacked
polytopes are the polytopes obtained from a simplex by successive stacking.
The dual operation of stacking is truncating a vertex: if we stack over a facet
F of a polytope P , then the conjugate vertex of F in the dual P ˚ of P

gets truncated (Problem 2.15.10). In particular, the dual of a stacked polytope
is a truncated polytope, a polytope obtained from a simplex by repeatedly
truncating vertices.
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P

P ′

P × P ′

Figure 2.6.4 Cartesian products of two polytopes. The Cartesian product of the
2-cube P := conv

�

(´1, ´ 1)t,(1, ´ 1)t,(´1,1)t,(1,1)t
(

and the segment P 1 :=
convt(1),(2)u.

Cartesian Products

The Cartesian product P ˆ P 1 of a d-polytope P Ă Rd and a d 1-polytope
P 1 Ă Rd1

is the Cartesian product of the sets P and P 1:

P ˆ P 1 =
"(

p

p1

)
P Rd+d1

ˇ

ˇ

ˇ

ˇ

p P P, p1
P P

*

. (2.6.12)

The resulting polytope is (d + d 1)-dimensional. An example is depicted in
Fig. 2.6.4.

The characterisation of the faces of a Cartesian product is presented in
Proposition 2.6.13.

Proposition 2.6.13 Let P Ă Rd be a d-polytope and P 1 Ă Rd1
a d 1-polytope.

The k-faces of the Cartesian product P ˆ P 1 are precisely the Cartesian
products of an i-face F of P and a j -face F 1 of P 1 such that i + j = k,
for each k P [0 . . . d + d 1].

Free Joins

Let P Ă Rd+d1+1 be a d-polytope and P 1 Ă Rd+d1+1 a d 1-polytope such that
their affine hulls are skew; two affine spaces are skew if they do not intersect
and no line from one space is parallel to a line from the other. The free join
P ˚ P 1 of the polytopes P and P 1 is the (d + d 1 + 1)-polytope conv(P Y P 1).
For a concrete setting, let P be a d-polytope and P 1 a d 1-polytope both of
which are embedded in Rd+d1+1 as follows:
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P = conv

$

&

%

⎛
⎝ p

0d1

0

⎞
⎠ P Rd+d1+1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p P P

,

.

-

,

P 1 = conv

$

&

%

⎛
⎝0d

p1

1

⎞
⎠ P Rd+d1+1

ˇ

ˇ

ˇ
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(2.6.14)

A pyramid over a d-polytope P with apex x is the free join of P and the point
x; in this case, we write P ˚ x rather than P ˚ txu.

The characterisation of the faces of a free join is presented in Proposi-
tion 2.6.15.

Proposition 2.6.15 Let P Ă Rd+d1+1 be a d-polytope and P 1 Ă Rd+d1+1 a
d 1-polytope such that aff P and aff P 1 are skew. The k-faces of the free join
P ˚ P 1 are precisely the free joins of an i-face F of P and a j -face F 1 of P 1

such that i + j + 1 = k, for k P [0 . . . d + d 1].

A consequence of Proposition 2.6.15 is a formula for the number of faces of
a free join.

Corollary 2.6.16 Let P Ă Rd+d1+1 be a d-polytope and P 1 Ă Rd+d1+1 a
d 1-polytope such that aff P and aff P 1 are skew. The number fk of k-faces of
P ˚ P 1 is given by

fk(P ˚ P 1) =
k
ÿ

i=´1

fi(P )fk´i´1(P ), for every k P [0 . . . d + d 1].

Direct Sums

The direct sum P ‘ P 1 of a d-polytope P Ă Rd and a d 1-polytope P 1 Ă Rd1

with the origin in their relative interiors is the (d + d 1)-polytope

P ‘ P 1 = conv

("(
p

0d1

)
P Rd+d1

ˇ

ˇ

ˇ

ˇ

p P P

*

ď

"(
0d

p1

)
P Rd+d1

ˇ

ˇ

ˇ

ˇ

p1
P P 1

*)
.

(2.6.17)
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P

P ′

P ⊕ P ′

Figure 2.6.5 Direct sum of two polytopes. The direct sum of the 2-cube
P := conv

�

(´1, ´ 1)t,(1, ´ 1)t,(´1,1)t,(1,1)t
(

and the segment P 1 :=
convt(´1),(1)u.

The resulting polytope lies in Rd+d1
and has f0(P ) + f0(P

1) vertices and
fd´1(P ) ˆ fd1´1(P

1) facets. An example is depicted in Fig. 2.6.5.
From the definition, it is clear that the direct sum P ‘ P 1 is a projection of

the join P ˚ P 1. It is not so clear but true that the direct sum P ‘ P 1 is closely
related to the Cartesian product P ˆ P 1 by duality.

Proposition 2.6.18 If P Ă Rd is a d-polytope and P 1 Ă Rd1
is a d 1-polytope

such that the origin is in their relative interiors, then

P ‘ P 1 = (P ˚
ˆ (P 1)˚)˚.

2.7 Face Figures

Face figures of a d-polytope P are polytopes whose face lattices are formed by
the set of faces F between some i-face Fi and some j -face Fj of P such that
Fi Ď F Ď Fj , for ´1 ď i ă j ď d . The most useful of the face figures is the
vertex figure, the case when i = 0 and j = d , and as such, vertex figures are
the focus of this section.

Vertex figures exist around each of the vertices of a polytope; they contain
information on the facial structure of the polytope and the dual polytope.
Let P be a d-polytope in Rd , let v be a vertex of P , and let H be a
hyperplane in Rd that has v on one side of H and the remaining vertices of
P on the other side. The vertex figure P {v of P at v is the set P X H ; see
Fig. 2.7.1.
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(a) (b)

H

v

v

P

P

Figure 2.7.1 Vertex figures of polytopes. (a) A segment as the vertex figure of a
2-polytope. (b) A triangle as the vertex figure of a 3-polytope.

Theorem 2.7.14 Let P be a d-polytope in Rd and let H be a hyperplane in Rd

such that H intersects the interior of P . Then the following hold:

(i) The polytope P 1 := P X H is (d ´ 1)-dimensional.
(ii) If F is a k-face of P , then the set F 1 := F X H is a k1-face of P 1 with

k1 ď k; in the case of F and F 1 being proper faces and H not being a
supporting hyperplane of F at F 1, we have that k1 = k ´ 1.

(iii) If F 1 is a k1-face of P 1 but not of P , then there is a unique k-face F of P

such that F 1 = H X F and k1 = k ´ 1.

While many choices are possible for a hyperplane that defines a vertex figure
Q of a polytope, all of them produce the same face lattice of Q. In other words,
the combinatorics of Q is independent of the hyperplane.

Theorem 2.7.2 Let P be a d-polytope and let v be a vertex of P . Suppose
that H is a hyperplane in Rd such that H X P is the vertex figure P {v of P

at v. Then there is a bijection σ from the k-faces F of P that contain v to the
(k ´ 1)-faces F 1 of P {v, given by

σ(F ) = H X F =: F 1,

σ´1(F 1) = aff(tvu Y F 1) =: F .

Proof The hyperplane H intersects int P , and so Theorem 2.7.1(i) implies
that P {v is a (d ´ 1)-polytope. If F is a k-face of P that contains v, then H

does not support F , which implies that F 1 := F X H is a k1-face of P {v of
dimension dim F ´ 1 (Theorem 2.7.1(ii)). Moreover, for each k1-face F 1 of
P {v, we have that F 1 is not a face of P . Therefore, Theorem 2.7.1(iii) gives
the existence of a unique k-face F of P that contains v and satisfies k1 = k ´1.
It is now clear that σ is a bijection (by Theorem 2.7.1).

4 A proof is available in Brøndsted (1983, thm. 11.1).
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There is a close link between the vertex figure of a polytope P at a vertex
v P P and the facet of the dual polytope P ˚ that is conjugate to v.

Theorem 2.7.3 Let P and P ˚ be dual polytopes and let ψ be an antiisomor-
phism from L(P ) to L(P ˚). Suppose that v is a vertex of P and that P {v is
the vertex figure of P at v. Then the facet ψ(v) of P ˚ is a dual of P {v.

Proof This is a consequence of Theorem 2.7.2 and the fact that L(P ) is the
opposite of L(P ˚) (Corollary 2.4.11).

From Theorem 2.7.2, it follows that the face lattice L(P {v) of P {v is
isomorphic to the sublattice Lv of L(P ) formed by the faces of P containing
v. And, since L(P ) is the opposite of L(P ˚), Lv is antiisomorphic to the
sublattice L(ψ(v)) of L(P ˚) corresponding to the facet ψ(v) of P ˚. Hence
L(P {v) is antiisomorphic to L(ψ(v)), as desired.

Face figures generalise vertex figures; they can be obtained as an iterated
vertex figure. Let P be a d-polytope, Fi an i-face of P , and Fj a j -face of P

such that ´1 ď i ă j ď d . The set of faces F of P such that Fi Ď F Ď Fj is
a face figure Fj {Fi of P . The vertex figure P {v of P at a vertex v is recovered
when Fi = v and Fj = P . It is useful to consider Fj as a j -polytope and
Fi as a face of Fj , as we will see in Chapter 8. In this way, we can extend
Theorem 2.7.3 to all face figures. If we consider Fj and its dual polytope F ˚

j

as j -polytopes and let ψj be an antiisomorphism from L(Fj ) to L(F ˚
j ), then

the face figure Fj {Fi is combinatorially isomorphic to the dual of the face
ψj (Fi) in F ˚

j .

Theorem 2.7.45 Let P be a d-polytope, Fi an i-face of P , and Fj a j -face of
P such that ´1 ď i ă j ď d . Then the face figure Fj {Fi is combinatorially
isomorphic to a (j ´ 1 ´ i)-polytope Q. Additionally, to each face F of P such
that Fi Ď F Ď Fj there corresponds a face in Q of dimension dim(F )´ 1 ´ i.

This is a good place to introduce some graph-theoretical terminology in
order to streamline our future statements. For an edge e = convtx,yu of a
polytope P , we write e = [x,y] or e = xy, and we say that the vertices x and
y are adjacent or neighbours, and that the edge e is incident with x and y. We
denote the set of neighbours of a vertex x in P by NP (x):

NP (x) = ty P V(P )| xy P E(P )u ; (2.7.5)

we often drop the symbol P if the reference is clear from the context.

5 A proof is available in Brøndsted (1983, thm. 11.4).
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In a polytope, issuing a ray from each edge containing a given vertex
produces a cone that contains the polytope.

Theorem 2.7.6 Let P be a polytope in Rd and let v P V(P ). Then the affine
convex cone based at v and spanned by the neighbours of v in P contains P .
Notationally,

P Ď v + cone tu ´ v| u P NP (v)u .

Proof Let H be a hyperplane in Rd such that P XH defines the vertex figure
P {v of P at v. Take any other vertex y of P . Then the segment [v,y] intersects
H at a point y1, a point of P {v. It follows that y lies in the ray tv +α(y1 ´v) |

α ě 0u, which in turn implies that

P Ď
�

v + α(y1
´ v)

ˇ

ˇ for all y1
P P {v,α ě 0

(

. (2.7.6.1)

Every point y1 P P {v is in the convex hull of V(P {v) and so

�

v + α(y1
´ v)

ˇ

ˇ for all y1
P P {v,α ě 0

(

Ď v + cone tw ´ v| for all w P V(P {v)u . (2.7.6.2)

Additionally, every vertex of P {v lies in a ray from v to a neighbour of v.
Thus

v + cone tw ´ v| for all w P V(P {v)u Ď v + cone tu ´ v| u P NP (v)u .
(2.7.6.3)

Combining (2.7.6.1), (2.7.6.2), and (2.7.6.3), we get that

P Ď v + cone tu ´ v| u P NP (v)u ,

the desired conclusion.

An immediate corollary of Theorem 2.7.6 is the following.

Corollary 2.7.7 Let P be a d-polytope in Rd and let v P V(P ). Then

aff
(
tvu Y NP (v)

) = Rd .

Proof If the the statement were false, then the set tvu Y N (v) would lie in
a hyperplane H in Rd . This would in turn imply that the affine convex cone
C := v + conetu ´ v | u P N (v)u is in H . However, P Ă C (Theorem 2.7.6),
which would lead to the contradictory conclusion that a d-polytope lies in H .
Hence the corollary follows.

Another corollary of Theorem 2.7.6 is the following.
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Corollary 2.7.8 Let P be a d-polytope in Rd and let v P V(P ). Suppose
that H is a hyperplane in Rd and K is a closed halfspace defined by H . If H

contains v and K contains NP (v), then K is a supporting halfspace of P ; that
is, P Ď K .

Proof The vertices tvu Y N (v) of P all lie in K , and so K , being an affine
convex cone itself, contains the affine convex cone C := v + conetu ´ v | u P

N (v)u. By Theorem 2.7.6, P Ď C. Hence P Ď K .

2.8 Simple and Simplicial Polytopes

A polytope is simplicial if every facet is a simplex. And a d-polytope is simple
if every vertex is contained in precisely d facets; otherwise the d-polytope is
nonsimple. It is clear that a simplex is a simple polytope. A face of a polytope
that is itself a simple polytope is a simple face; otherwise the face is nonsimple.
Trivially, every vertex, edge, and 2-polytope is simple. Simplicial and simple
polytopes are closely related by duality.

Theorem 2.8.1 A polytope is simple if and only if its dual polytope is
simplicial.

Proof Let P be a d-polytope, P ˚ the dual polytope of P , and ψ an
antiisomorphism from L(P ) to L(P ˚). Suppose that P is simple. Then every
vertex v of P is contained in precisely d facets. Since L(P ) is the opposite
of L(P ˚), the facet ψ(v) of P ˚ that is conjugate to v contains precisely d

vertices; that is, ψ(v) is a simplex (Problem 2.15.5). Every facet of P ˚ is the
conjugate of some vertex of P ; hence P ˚ is simplicial.

Suppose that P ˚ is simplicial. Then every facet F of P ˚ is a simplex; it
has precisely d vertices. Because L(P ˚) is the opposite of L(P ), the vertex
ψ´1(F ) of P is contained in precisely d facets. Additionally, every vertex of
P is the conjugate of some facet of P ˚. Hence P is simple.

In the same way that we gave special names to the 0-faces, 1-faces, and
(d ´1)-faces of a d-polytope P , we give the name ridge to a (d ´2)-face of P .

We define simple polytopes by the number of facets in which each vertex
is contained. An alternative definition could have considered the number of
edges.

Theorem 2.8.2 A d-polytope is simple if and only if each vertex is incident
with precisely d edges.
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Proof Let P be a d-polytope, P ˚ the dual polytope of P , and ψ an
antiisomorphism from L(P ) to L(P ˚). A vertex v of P is contained in
precisely d edges if and only if the (d ´ 1)-face ψ(v) of P ˚ contains precisely
d ridges of P ˚. And a (d ´ 1)-face has precisely d ridges of P ˚ if and only
if it is a (d ´ 1)-simplex (Problem 2.15.5). Thus, every vertex of P is incident
with precisely d edges if and only if P ˚ is simplicial, and thus the result now
follows from Theorem 2.8.1.

A d-polytope P is k-simplicial if each k-face of P is a simplex; every
polytope is 1-simplicial and simplicial polytopes are (d ´ 1)-simplicial. The
polytope P is said to be k-simple if each (d ´ 1 ´ k)-face is contained in
precisely k + 1 facets; every polytope is 1-simple and simple polytopes are
(d ´ 1)-simple. Theorem 2.8.1 ensures that a polytope P is simple if and only
if P ˚ is simplicial. This generalises to k-simplicial and k-simple polytopes: P

is k-simplicial if and only if P ˚ is k-simple (Problem 2.15.8).
According to Theorem 2.4.16, a k-face F of a d-polytope is contained in at

least d ´ k facets of the polytope. This lower bound is met with equality in the
case of simple polytopes.

Theorem 2.8.3 Let P be a simple d-polytope, k a number in [0 . . . d ´ 1], and
F1, . . . ,Fd´k facets of P . Then

F :=
d´k
č

i=1

Fi

is either H or a k-face of P .

Proof Let P ˚ be the dual polytope of P , and let ψ be an antiisomorphism
from L(P ) to L(P ˚). If F = H there is nothing to prove, so suppose
otherwise. The face F is the largest face of P contained in the facets
F1, . . . ,Fd´k , and so the face ψ(F) is the smallest face of P ˚ containing
the vertices ψ(F1), . . . ,ψ(Fd´k). Since P ˚ is simplicial, each facet of P ˚

is a simplex (Theorem 2.8.1), which implies that every face of P ˚ is simplex.
Thus ψ(F) is a (d ´ k ´ 1)-simplex. Theorem 2.4.12 now ensures that F is a
k-face of P .

Theorem 2.8.3 gives that a j -face of a simple d-polytope is contained in
exactly d ´ j facets. We can give the exact number of k-faces containing the
j -face.

Theorem 2.8.4 Let P be a simple d-polytope and let 0 ď j ď k ď d. Then
there are precisely (

d ´ j

d ´ k

)
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k-faces of P containing a given j -face of P .

Proof Let J be a j -face of P . If k = d then P is the only d-face containing
J . Let P ˚ be the dual polytope of P and let ψ be an antiisomorphism from
L(P ) to L(P ˚). If instead k ă d , then ψ(J ) is a (d ´ 1 ´ j)-face of P ˚

and the number of k-faces of P containing J coincides with the number of
(d ´ 1 ´ k)-faces of ψ(J ). Since ψ(J ) is a (d ´ 1 ´ j)-simplex, it contains(

d ´ j

d ´ k

)
(d ´ 1 ´ k)-faces by Proposition 2.6.1. The proof is now complete.

The application of duality in the proof of Theorem 2.8.4 also gives that each
vertex of a k-face F in a simple polytope is contained in precisely k (k ´ 1)-
faces of F , which ensures that F is also a simple polytope (by definition).

Theorem 2.8.5 Every proper face of a simple polytope is another simple
polytope.

Another important property of simple polytopes is that every k-subset of
edges incident with a vertex defines a k-face. It is easy to find examples
of polytopes that do not satisfy the latter property. For instance, consider a
3-crosspolytope I as a bipyramid over a quadrangle Q. Then no two edges of
Q sharing a vertex define a 2-face of I .

Theorem 2.8.6 Let P be a simple d-polytope and k P [0 . . . d ´ 1]. Suppose
that v is a vertex of P , vv1, . . . ,vvk are k edges of P that are incident with
v, and F is the smallest face of P containing these edges. Then F is a simple
k-face of P .

Proof Let P ˚ be the dual polytope of P and let ψ be an antiisomorphism
from L(P ) to L(P ˚). By duality, the face ψ(F) is the largest face of P ˚

contained in the (d ´ 2)-faces ψ(vv1), . . . ,ψ(vvk) of the facet ψ(v):

ψ(F) =
k
č

i=1

ψ(vvi ).

The facet ψ(v) is a simplex (by Theorem 2.7.3 or Theorem 2.8.1). From
Theorem 2.8.3, it follows that ψ(F) is a (d ´ 1 ´ k)-face of ψ(v). Since ψ(F)

is contained in precisely k (d ´ 2)-faces of ψ(v), the k edges vv1, . . . ,vvk are
the only edges of P that are incident with v and are contained in F .

The face F is the conjugate of ψ(F), and so it is a k-face of P . Thus, by
Theorem 2.8.5 it is a simple polytope.
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The proof of Theorem 2.8.6 also yields a slightly more general result.

Theorem 2.8.7 Let P be a d-polytope and k P [0 . . . d ´ 1]. Suppose that
v is a vertex of P incident with precisely d edges in P . Further suppose that
vv1, . . . ,vvk are k edges of P that are incident with v and that F is the smallest
face of P containing these edges. Then F is a k-face of P and these k edges
are the only edges of F incident with v.

By Theorem 2.8.7, vertices in a d-polytope P that are incident with precisely
d edges behave as vertices of a simple d-polytope. In view of this, we
will say that such a vertex is simple; a vertex in P incident with more
than d edges is nonsimple. Since every vertex is a simple 0-polytope, the
expressions ‘simple vertex’ and ‘nonsimple vertex’ will refer only to the nature
of the vertex in relation to the ambient polytope, and they should cause no
confusion.

A d-simplex is both simple and simplicial, which characterises d-simplices
for d ě 3.

Theorem 2.8.8 A simple and simplicial polytope is a simplex or a 2-polytope.

Proof The case of two dimensions is trivial, so let P be a d-polytope that
is both simple and simplicial for d ě 3. Take a vertex v0 of P . Since P

is simple, the vertex v0 is incident with precisely d edges v0v1, . . . ,v0vd

(Theorem 2.8.2). Let X := tv0,v1, . . . ,vdu and let T := conv X. Because
P is simplicial, every d ´ 1 of these edges defines a simplex facet of P

(Theorem 2.8.6). It follows that, for d ě 3, every pair of vertices in X are
adjacent in P . As a result, every vertex vi in X is adjacent to precisely d other
vertices in X. Hence T Ď P .

Consider any supporting halfspace K of T and let H be a hyperplane
bounding K . Then T X H is a proper face of T and thus it contains a vertex
v� with � P [0 . . . d]. Since H contains v� and K contains all the neighbours
of v� in P , Corollary 2.7.8 ensures that K is a supporting halfspace of P . In
other words, every supporting halfspace of T is a supporting halfspace of P .
A polytope is the intersection of its supporting halfspaces (Theorem 1.8.3).
Hence P Ď T , concluding that P = T .

Similarly, for d ě 3, d-cubes are the only simple and cubical polytopes. A
polytope is cubical if every facet is a cube. A proof for this result follows from
Blind and Blind (1998, sec. 7).

Theorem 2.8.9 (Blind and Blind, 1998) A simple and cubical polytope is a
cube or a 2-polytope.

https://doi.org/10.1017/9781009257794.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009257794.003


94 Polytopes

2.9 Cyclic and Neighbourly Polytopes

Cyclic polytopes are the d-polytopes with the maximum number of k-faces
among the d-polytope with n vertices, for each k P [0 . . . d ´ 1] (Chapter 8).
Because of this, they feature in a number of fundamental results in polytope
theory, in particular in the upper bound theorem of McMullen (1970). This
section studies them.

The moment curve μd in Rd is defined, for x P [a,b], as

μd(x) = (x,x2, . . . ,xd)t . (2.9.1)

We next describe some of the properties of the moment curve.

Proposition 2.9.2 (Properties of the moment curve) The moment curve μd in
Rd has the following properties:

(i) Every d + 1 points on μd are affinely independent.
(ii) If d distinct points on μd lie in a hyperplane H of Rd , then the curve at

each intersection with H passes from one side of H to the other side.

Proof Let H be a hyperplane in Rd defined as

H :=
!

y P Rd
ˇ

ˇ

ˇ
y ¨ (a1, . . . ,ad)t = ´a0

)

.

Then, for some i P [0 . . . d], we have ai ‰ 0. With the numbers a0, . . . ,ad , we
now define a nonzero polynomial pH (x) of degree at most d:

pH (x) = a0 + a1x + ¨ ¨ ¨ + adxd .

It follows that a point μd(xi) is in H if and only if xi is a root of pH . The
polynomial pH has at most d roots, and so no d + 1 points on μd can lie in
H ; this shows (i). Suppose that H contains exactly d distinct points of μd .
Then pH has d simple roots. In a small neighbourhood of a simple root, the
polynomial is either increasing or decreasing, which causes the moment curve
to pass from one side of H to the other side; this proves (ii)

A cyclic d-polytope C(n,d) is the convex hull of n ě d + 1 points
μd(x1), . . . ,μd(xn) on the moment curve satisfying x1 ă ¨ ¨ ¨ ă xn. Properties
of cyclic polytopes are explained from properties of the moment curve.

Proposition 2.9.3 Let P be a cyclic d-polytope on n vertices. Then

(i) P is simplicial; and
(ii) every set of k vertices of P , with 2k ď d , forms a (k ´ 1)-face.

Proof (i) This ensues from Proposition 2.9.2(i).
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(ii) Let P be the convex hull of the n points μd(x1), . . . ,μd(xn) with x1 ă

¨ ¨ ¨ ă xn. Set X := tx1, . . . ,xnu. Among the elements of X, select a k-subset
Xk satisfying x1

1 ă ¨ ¨ ¨ ă x1
k . With these k numbers, we define a polynomial

pk(x) := (x ´ x1
1)

2
¨ ¨ ¨ (x ´ x1

k)
2 = a0 + a1x + ¨ ¨ ¨ + a2kx

2k

of degree 2k ď d. And with the coefficients a0, . . . ,a2k , we define a hyperplane
Hk in Rd

Hk :=
!

y P Rd
ˇ

ˇ

ˇ
y ¨ (a1, . . . ,a2k,0, . . . ,0)t = ´a0

)

.

It follows that all the points μd(x1
i ) with x1

i P Xk are in Hk , and that any other
point μd(xj ) with xj P XzXk lies in the same side of Hk , as the expression

μd(xj ) ¨ (a1, . . . ,a2k,0, . . . ,0)t = ´a0 + pk(xj )

= ´a0 + (xj ´ x1
1)

2
¨ ¨ ¨ (xj ´ x1

k)
2

ą ´a0

attests. Hence Hk supports P at conv
�

μd(x1
1), . . . ,μd(x1

k)
(

, which is a (k´1)-
simplex by (i). This proves (ii).

Gale (1963) provided a criterion to tell which d-subsets of vertices of a
cyclic d-polytope form a facet. The criterion relies on a linear ordering ď on
the vertices μd(x1), . . . ,μd(xn) of a cyclic d-polytope P given by μd(xi) ď

μd(xj ) if and only if xi ď xj . Henceforth, we implicitly assume that a cyclic
polytope is coupled with this vertex ordering.

Theorem 2.9.4 (Gale’s evenness condition) Let P be a cyclic d-polytope. A
d-subset X of V(P ) is the vertex set of a facet of P if and only if, for every
two distinct vertices in V(P )zX, the number of elements of X between them is
even.

We put Gale’s evenness condition into practice.

Example 2.9.5 Consider a cyclic 3-polytope P on seven vertices and the
following sets:

X1 := tμ3(4),μ3(5),μ3(6)u ,

X2 := tμ3(3),μ3(4),μ3(6)u ,

X3 := tμ3(1),μ3(3),μ3(4)u .

See Fig. 2.9.1. Between any two vertices μ3(xi) and μ3(xj ) of P outside X1,
there are zero elements of X1, since xi,xj P [0 . . . 3]; here, we use the linear
ordering of the vertices of P . Thus X1 is the vertex set of a facet of P .
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μ3(0)

μ3(1)

μ3(2) μ3(4)

μ3(5)

μ3(6)

μ3(3)

Figure 2.9.1 A cyclic 3-polytope on seven vertices.

Take any two vertices μ3(xi) and μ3(xj ) of P zX2. If xi,xj P [0 . . . 2], then
there are zero elements of X2 between μ3(xi) and μ3(xj ). So suppose xj = 5.
Then xi P [0 . . . 2], and the vertices μ3(3) and μ3(4) of X2 are between μ3(xi)

and μ3(xj ). Hence X2 is also the vertex set of a facet of P .
Take the vertices μ3(0) and μ3(2) of P zX3. Between μ3(0) and μ3(2), there

is exactly one vertex of X3, namely μ3(1). Hence X3 is not the vertex set of a
facet of P .

Proof of Gale’s evenness condition (Theorem 2.9.4) Let H be a hyperplane
in Rd that is spanned by X. The set X determines a facet of P if and
only if all the vertices in V(P )zX lie in the same side of H . Take any two
distinct vertices μd(xi),μd(xj ) P V(P )zX with xi ă xj . The moment curve
at each intersection with H passes from one side of H to the other side
(Proposition 2.9.2(ii)). Therefore, μd(xi) and μd(xj ) lie in the same side of H

if and only if, while traversing the curve from μd(xi) to μd(xj ), we encounter
an even number of vertices of X.

One consequence of Gale’s evenness condition is that every cyclic d-
polytope on n vertices has the same facet-vertex incidence matrix (Section 2.3).
Thus, every two cyclic d-polytopes on n vertices are combinatorially isomor-
phic, and we can just talk of the cyclic d-polytope on n vertices, namely
C(n,d).

A second consequence of Gale’s evenness condition is that we can talk of
linear orderings of vertices of C(n,d) satisfying the condition. We say that a
linear ordering

u1 ă
1

¨ ¨ ¨ ă
1 un

of the vertices of C(n,d) is cyclic if it satisfies Gale’s evenness condition: a
d-subset X of V(C(n,d)) determines a facet of C(n,d) if and only if, between
any two vertices of V(C(n,d))zX, there is an even number of elements of X in
the vertex ordering ă1. The aforementioned linear ordering ă of the vertices
of C(n,d) given by
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2.9 Cyclic and Neighbourly Polytopes 97

μd(x1) ă ¨ ¨ ¨ ă μd(xn) whenever x1 ă ¨ ¨ ¨ ă xn

is cyclic. The following two assertions are now plain.

Proposition 2.9.6 A simplicial d-polytope P is combinatorially isomorphic to
C(n,d) if and only if some ordering

u1 ă ¨ ¨ ¨ ă un

of the vertices of P is cyclic.

Lemma 2.9.7 Let d be even. If the ordering u1 ă ¨ ¨ ¨ ă un of the vertices of
C(n,d) is cyclic, then so is the ordering

ui ă ¨ ¨ ¨ ă un ă u1 ă ¨ ¨ ¨ ă ui´1,

for each i P [1 . . . n].

Gale’s evenness condition explains the vertex figures of cyclic polytopes.

Theorem 2.9.8 (Vertex figures of cyclic polytopes) Let P be a cyclic
d-polytope with a vertex ordering u1 ă ¨ ¨ ¨ ă un that satisfies Gale’s evenness
condition (2.9.4). Then the following holds:

(i) For odd d, every facet of P contains u1 or un.
(ii) For even d, the vertex figure of P at every vertex is a cyclic (d ´ 1)-

polytope.
(iii) For odd d, the vertex figures P {u1 and P {un of P at vertices u1 and un,

respectively, are cyclic (d ´ 1)-polytopes.
(iv) If all the vertex figures of P are cyclic (d ´ 1)-polytopes on n ´ 1 vertices

then

dfd´1(P ) = nfd´2(C(n ´ 1,d ´ 1)).

(v) For odd d ě 5, we have that

fd´1(P ) = 2fd´2(C(n ´ 1,d ´ 1)) ´ fd´3(C(n ´ 2,d ´ 2)).

(vi) For n ě d + 2 and odd d ě 5, the vertex figure P {ui of P at some other
vertex ui is not a cyclic (d ´ 1)-polytope.

(vii) For odd d ě 3, P is the dual wedge of C(n ´ 1,d ´ 1) at any vertex.

Proof (i) If a facet of P did not contain u1 or un, then there would be an odd
number of vertices between u1 and un, which would violate Gale’s evenness
condition.

(ii) This is true for d = 2 so assume that d ě 4. Let ui be a vertex of P and
X a (d´1)-subset of V(P )z tuiu. Because P is simplicial and the (k´1)-faces
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of P {ui are in one-to-one correspondence with the k-faces of P containing ui

(Theorem 2.7.2), we have the following.

Claim 1 The proper faces of P {ui can be thought of as faces of P . In
particular, the subset X of V(P ) is the vertex set of a (d ´ 2)-face of P {ui

if and only if the d-subset X Y tuiu of V(P ) is the vertex set of a (d ´ 1)-face
F of P .

Since the graph of P is a complete graph (Proposition 2.9.3), this claim
implies the next assertion.

Claim 2 The polytope P {ui is a simplicial (d ´ 1)-polytope with vertex set
V(P )ztuiu.

According to Lemma 2.9.7, the ordering

ui ă ui+1 ă ¨ ¨ ¨ ă un ă u1 ă ¨ ¨ ¨ ă ui´1 (2.9.8.1)

is cyclic. If X Y tuiu is the vertex set of a (d ´ 1)-face of P , then Gale’s
evenness condition on P yields an even number of elements from X Y tuiu

between any two vertices y and z in V(P )z(X Y tuiu), with respect to the
ordering (2.9.8.1). As a consequence, there is an even number of vertices from
X between the same two vertices y and z in V(P )z(X Y tuiu), with respect to
the ordering

ui+1 ă ¨ ¨ ¨ ă un ă u1 ă ¨ ¨ ¨ ă ui´1 (2.9.8.2)

of the vertices of P {ui (Claims 1 and 2). This shows that the ordering (2.9.8.2)
is cyclic, implying that P {ui is combinatorially isomorphic to a cyclic (d ´1)-
polytope on n ´ 1 vertices (Proposition 2.9.6).

(iii) The reasoning is similar to that of (ii). According to (i), every facet of
P contains u1 or un. If X Y tu1u is the vertex set of a (d ´ 1)-face of P ,
then, by Gale’s evenness condition on P , there is an even number of elements
from X Y tu1u between any two vertices y and z in V(P )z(X Y tu1u), with
respect to the the ordering u1 ă ¨ ¨ ¨ ă un. As in (ii), it follows that there is
an even number of vertices from X between the same two vertices y and z in
V(P )z(X Y tu1u), with respect to the ordering

u2 ă ¨ ¨ ¨ ă un

of the vertices of P {u1 (see Claim 1 from the proof of (ii)). This shows that
this ordering is cyclic, implying that P {u1 is combinatorially isomorphic to a
cyclic (d´1)-polytope on n´1 vertices (Proposition 2.9.6). The same analysis
yields that P {un is combinatorially isomorphic to a cyclic (d ´ 1)-polytope on
n ´ 1 vertices.
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(iv) We count the facet–vertex incidences of P in two different ways. A
vertex u of P is contained in fd´2(P {u) facets of P , which is equal to
fd´2(C(n ´ 1,d ´ 1)) by assumption. Additionally, a facet contains d vertices
and P has fd´1(P ) facets. The result is now clear.

(v) Because of (iii), the vertex figures P {u1 and P {un are cyclic (d ´ 1)-
polytopes on n ´ 1 vertices, and so there are fd´2(C(n ´ 1,d ´ 1)) facets
of P containing u1 and fd´2(C(n ´ 1,d ´ 1)) facets of P containing un.
Furthermore, the number of facets of P containing both u1 and un coincides
with the number of ways of selecting d ´ 2 vertices from tu2, . . . ,un´1u such
that the ordering u2 ă ¨ ¨ ¨ ă un´1 is cyclic; this is the same as counting the
number fd´3(C(n ´ 2,d ´ 2)) of (d ´ 3)-faces of a cyclic (d ´ 2)-polytope
on n ´ 2 vertices. The formula now follows.

(vi) Suppose, by way of contradiction, that the vertex figure P {u of P at
every vertex u is a cyclic (d ´ 1)-polytope on n ´ 1 vertices. In this case, an
application of (iv) to P yields that

dfd´1(P ) = nfd´2(C(n ´ 1,d ´ 1)). (2.9.8.3)

Moreover, as d ´ 1 ě 4 is even, Part (ii) gives that all vertex figures of P {u

are cyclic (d ´ 2)-polytopes on n ´ 2 vertices. Another application of (iv) to
P {u gives that

(d ´ 1)fd´2(C(n ´ 1,d ´ 1)) = (n ´ 1)fd´3(C(n ´ 2,d ´ 2)). (2.9.8.4)

We solve (2.9.8.3) for fd´1(P ) and (2.9.8.4) for fd´3(C(n ´ 2,d ´ 2)), and
then we put these expressions for fd´1(P ) and fd´3(C(n ´ 2,d ´ 2)) into (v)
to obtain that

n

d
fd´2(C(n ´ 1,d ´ 1)) = 2fd´2(C(n ´ 1,d ´ 1))

´
d ´ 1

n ´ 1
fd´2(C(n ´ 1,d ´ 1)),

or equivalently that

fd´2(C(n ´ 1,d ´ 1))

(
n

d
´ 2 + d ´ 1

n ´ 1

)
= 0.

Solving this equation amounts to solving

n

d
´ 2 + d ´ 1

n ´ 1
= 0,

which reduces to (d ´n)(1+d ´n) = 0. The solutions are n = d or n = d+1,
violating our assumption of n ě d + 2.

(vii) This can be verified from Gale’s evenness condition (2.9.4) on P , and
so it is left to the reader.
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Cyclic Polytopes and Curves of Order d

Our initial, and the standard, presentation of cyclic polytopes uses the moment
curve to realise the polytopes and unveil their properties. However, other
curves could have been chosen instead, although none would beat the sim-
plicity of the moment curve.

Denote by C[a,b] the space of continuous, real-valued functions defined on
the interval [a,b]. This is a linear space over R with norm

‖ϕ‖ := max
xP[a,b]

|ϕ(x)|. (2.9.9)

The moment curve is defined with the set
�

ϕ1(x) = x, . . . ,ϕd(x) = xd
(

of
functions from C[a,b]. It turns out that polytopes combinatorially isomorphic
to cyclic polytopes can be realised with sets of functions from C[a,b] that
satisfy Haar’s condition on [a,b] (Timan, 1963, sec. 2.3).

Definition 2.9.10 (Haar’s condition) A curve ωd : R Ñ Rd defined by

ωd(x) := (ϕ1(x), . . . ,ϕd(x))t (2.9.10.1)

satisfies Haar’s condition if each ϕi P C[a,b], and for every d + 1 distinct
numbers x1, . . . ,xd+1 in [a,b] satisfying x1 ă ¨ ¨ ¨ ă xd+1, the points
ωd(x1), . . . ,ωd(xd+1) are affinely independent in Rd .

A curve ωd : R Ñ Rd satisfying Haar’s condition is said to be a curve of
order d. Let ωd : R Ñ Rd be a curve of order d defined as

ωd(x) = (ϕ1(x), . . . ,ϕd(x))t .

We define a d-polytope C1(n,d) as the convex hull of n ě d + 1 points

ωd(x1) = (ϕ1(x1), . . . ,ϕd(x1))
t,

...

ωd(xn) = (ϕ1(xn), . . . ,ϕd(xn))
t,

where x1, . . . ,xn P [a,b] and x1 ă ¨ ¨ ¨ ă xn.
A proof similar to that of Gale’s evenness condition (Theorem 2.9.4) applies

to the polytope C1(n,d). As a result, the polytope C1(n,d) has the same facet–
vertex incidence matrix as the cyclic polytope C(n,d), and so both polytopes
are combinatorially isomorphic.

A result of Sturmfels (1987) states that, for every cyclic-d-polytope P of
even dimension d , there exists a curve ωd(x) of order d such that P =
conv tωd(x1), . . . ,ωd(xn)u, for numbers x1 ă ¨ ¨ ¨ ă xn in [a,b]. The situation
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is different for odd dimension d ě 3: there are cyclic d-polytopes on n ě d+3
vertices that do not arise from curves of order d (Cordovil and Duchet, 2000).

Neighbourly Polytopes

One of the most appealing properties of cyclic polytopes is that they are
very ‘neighbourly’: every set of k vertices, k ď td{2u, forms a (k ´ 1)-
face (Proposition 2.9.3(ii)). We have met this notion before. In the context
of graphs, a complete graph is as ‘neighbourly’ as possible: every two
vertices form an edge. Likewise, in the realm of polytopes, a d-simplex is as
‘neighbourly’ as possible: every k vertices form a proper (k ´ 1)-face, for each
k ď d. In this final part, we explore the concept of ‘neighbourliness’.

We say that a d-polytope P is k-neighbourly if every set of at most k vertices
is the vertex set of a proper face of P . Proposition 2.9.3(ii) states that cyclic
d-polytopes are td{2u-neighbourly. We will see that, apart from the d-simplex,
no other d-polytope is k-neighbourly for k ą td{2u, and so td{2u-neighbourly
d-polytopes on n vertices such as C(n,d) are the second best ‘neighbourly’
d-polytopes, and they exist for every n ě d + 1 (Proposition 2.9.3(ii)). For
this reason, we call a td{2u-neighbourly d-polytope simply a neighbourly
d-polytope; equivalently, we may say that a neighbourly d-polytope is a
d-polytope with the (td{2u ´ 1)-skeleton of some n-simplex for n ě d + 1.
Proposition 2.9.11 gathers the main properties of k-neighbourly polytopes.

Proposition 2.9.116 Let P be a k-neighbourly d-polytope. Then

(i) every k vertices of P are affinely independent;
(ii) k ď d;

(iii) P is k1-neighbourly, for each k1 P [1..k];
(iv) if k ą td{2u then P is a d-simplex; and
(v) if k = td{2u then P is (d ´ 2)-simplicial, and if in addition d is even, then

P is simplicial.

2.10 Inductive Constructions of Polytopes

This section focusses on an inductive construction of the convex hull of
a polytope, one in which a vertex is added at each stage. This is the so-
called beneath-beyond algorithm of Grünbaum (1963) and Grünbaum (2003,
sec. 5.2).

6 A proof is available in Grünbaum (2003, sec. 7.1).
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Let P be a d-polytope in Rd and let x be a point in Rd . We say that a
facet F of P is visible from the point x with respect to a polytope P in Rd

if x belongs to the open halfspace determined by aff F that is disjoint from P

(Fig. 2.10.1(a)). If instead x belongs to the open halfspace that contains the
interior of P , we say that the facet F is nonvisible from x (Fig. 2.10.1(a)).
Similarly, a hyperplane H , disjoint from the interior of P , is either visible or
nonvisible from the point x, with respect to P , depending on whether x lies
in the open halfspace determined by H that is disjoint from P or in the open
halfspace of H that contains the interior of P . Moreover, the point x is beyond
a face J of P if the facets of P containing J are precisely those that are visible
from x and the facets of P not containing J are all nonvisible from x.

Our terminology follows that of Ziegler (1995, sec. 8.2), and it differs
from that of Grünbaum (2003, sec. 5.2) in that the definitions of ‘visible’
and ‘nonvisible’ coincide with those of ‘beyond’ and ‘beneath’ in Grünbaum
(2003, sec. 5.2), respectively. In addition, a facet F is visible or nonvisible from
a point x in our sense if and only if x is beyond or beneath aff F , respectively,
in Grünbaum’s sense.

Theorem 2.10.1 (Construction of polytopes; Grünbaum [1963]) Let P and P 1

be two d-polytopes in Rd and let v1 be a vertex of P 1 such that v1 R P and
P 1 = conv(P Y tv1u). Then the following hold:

(i) A face F of P is a face of P 1 if and only if there exists a facet of P

containing F that is nonvisible from v1 with respect to P .
(ii) If F is a face of P with v1 P aff F , then F 1 := conv(F Y tv1u) is a face of

P 1.
(iii) If F is a face of P such that, among the facets of P containing F , there is

at least one that is visible from v1 (with respect to P ) and at least one that
is nonvisible (with respect to P ), then

F 1 := conv(F Y tv1
u)

is a face of P 1.
(iv) For each face F 1 of P 1, there is a face F of P for which (i), (ii), or (iii)

applies. In other words, each face of P 1 falls precisely in one of the above
cases.

Proof The main observation here is that every face of P 1 is either a face of P

or the convex hull of v1 and some face of P , because a hyperplane supporting
P 1 at a face of P 1 other than v1 also supports P .

(i) A facet J of P with supporting hyperplane H is a facet of P 1 with the
same supporting hyperplane H if and only if J is nonvisible from v1 (with
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Figure 2.10.1 Inductive construction of polytopes. (a) The facet R of P is visible
from the point x and nonvisible from the point z. The point x is beyond the
face F but the points y and z are not. (b) Auxiliary figure for the proof of
Theorem 2.10.1(iii). (c) The four cases of the proof of Theorem 2.10.1(iv). All
the facets of P containing F are visible from x (Case (1)). All the facets of P

containing J are nonvisible from x (Case (2)). All the facets of P containing I

are visible from v1 or contain v1 in their affine hull and at least one such facet
contains v1 in their affine hull (Case (3)). All the facets of P containing F are
nonvisible from v1 or contain v1 in their affine hull and at least one such facet
contains v1 in their affine hull (Case (4)). (d) P 1 := conv(P Y tv1u). The polytope
P is highlighted in grey and the polytope P 1 is highlighted in a tiling pattern.

respect to either P or P 1). As a consequence, each face F of P that is in such a
facet J will be a face of P 1. Now consider a face F of P and P 1. Then F does
not contain v1. Since F is the intersection of all the facets of P 1 that contain it,
F is in some facet J 1 of P 1 that does not contain v1. The point v1 is a vertex
of P 1, which implies that J 1 is nonvisible from v1 with respect to P 1. Hence
the facet J 1 is facet of P that is nonvisible from v1 with respect to P . This
proves (i).

(ii)–(iii) Suppose that F is a face of P that satisfies (ii) or (iii). We establish
that F 1 := conv(F Y tv1u) is a face of P 1. First, suppose that F satisfies (ii).
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Then a supporting hyperplane of P at F will be a supporting hyperplane of P 1

at F 1, ensuring that F 1 is a face of P 1. So assume that the condition (iii) holds.
Let Fy be a facet of P that contains F and is visible from v1 and let Fn be

a facet of P that contains F and is nonvisible from v1. Then F Ď Fy X Fn.
Suppose that HF is a supporting hyperplane of P at F , Hy := aff Fy , and
Hn := aff Fn. Rotate Hy and Hn slightly around Hy X HF and Hn X HF ,
respectively, and towards HF (see Fig. 2.10.1(b)) in such a way that the two
resulting hyperplanes H 1

y and H 1
n remain visible and nonvisible from v1 (with

respect to P ) and that H 1
y X P = H 1

n X P = F . The hyperplanes H 1
y and H 1

n

allow us to define a new hyperplane H 1
F := aff(tv1uY(H 1

y XH 1
n)) that contains

v1 and intersects P at F (since H 1
y X P = H 1

n X P = F ). It follows that

H 1
F X P 1 = H 1

F X conv(P Y tv1
u) = conv(F Y tv1

u) = F 1,

which shows that F 1 is a face of P 1.
(iv) Let F 1 be a proper face of P 1 such that none of (i), (ii), or (iii) applies.

Then F 1 = conv(F Y tv1u) for some face F of P , as the case of F 1 being a
face of P is covered in (i). We can further assume that v1 R aff F , as v1 P aff F

is covered in (ii). We (naively) list all the possibilities for the relative position
of v1 and the facets of P containing F (Fig. 2.10.1(c)):

(1) all the facets of P containing F are visible from v1,
(2) all the facets of P containing F are nonvisible from v1,
(3) all the facets of P containing F are visible from v1 or contain v1 in their

affine hull, and at least one such facet contains v1 in their affine hull (see
the face I and vertex v1 on Fig. 2.10.1(c)), and

(4) all the facets of P containing F are nonvisible from v1 or contain v1 in their
affine hull, and at least one such facet contains v1 in their affine hull (see
the face F and vertex v1 on Fig. 2.10.1(c)).

The cases (1), (2), and (3) are not real alternatives, as F 1 is a face of P 1 for
which none of (i), (ii), or (iii) holds; see Fig. 2.10.1(c). Case (4) can certainly
happen. In case (4), for each facet J of P that contains v1 in their affine hull,
we must have that aff J is a supporting hyperplane of P 1 (and of P ). It must
then follow that there is a proper face R of P that contains v1 in the affine hull
and is of the form R = H X P for some supporting hyperplane H of P 1 (and
of P ); see Fig. 2.10.1(d). Hence (ii) applies, and F 1 = conv(R Y tv1u). This
completes the proof of the theorem.

We mention that there was a mistake in the original proof of Grünbaum
(1963, thm. 5.2.1); Case (4) of our proof of Theorem 2.10.1(iv) is overlooked.
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However, Case (4) cannot arise if conv(F Y tv1u) is a facet of P 1; this and
other consequences of Theorem 2.10.1 ensue.

Corollary 2.10.2 (Altshuler and Shemer, 1984) Let P and P 1 be two d-
polytopes in Rd , and let v1 be a vertex of P 1 such that v1 R P and P 1 =
conv(P Y tv1u). Then the following hold:

(i) V(P 1) = V(P ) Y tv1u if and only if every vertex of P is in a facet of P

that is nonvisible from v1.
(ii) A facet F of P is a facet of P 1 if and only if it is nonvisible from v1.

(iii) The set conv(F Y tv1u) is a facet of P 1 if and only if either v1 P aff F

or among the facets of P containing F there is at least one that is visible
from v1 (with respect to P ) and at least one that is nonvisible (with respect
to P ).

We end this section with two applications of Theorem 2.10.1; each describes
an algorithm that changes the combinatorial structure of a polytope.

Let P be a d-polytope in Rd and and let v be a vertex of P . Further, let v1

be a point outside P such that the halfopen segment (v,v1] does not intersect
any hyperplane spanned by the vertices of P . In the case that v belongs to the
interior of P 1 := conv(P Ytv1u), we say that P 1 is obtained from P by pulling
v to v1. The position of v1 ensures that v1 is beyond v. The next result follows
at once from Theorem 2.10.1.

Theorem 2.10.3 (Pulling vertices; Eggleston et al., 1964) Let P 1 be a d-
polytope in Rd obtained from a d-polytope P by pulling a vertex v of P to
a vertex v1 of P 1. Then, for each k P [1 . . . d ´ 1], the k-faces of P 1 are as
follows:

(i) The k-faces of P that do not contain v.
(ii) The pyramid conv(F Y tv1u) for each (k ´ 1)-face F of P that does not

contain v but belongs to a facet of P that contains v.

Moreover, f0(P
1) = f0(P ) and fk(P

1) ě fk(P ) for each k P [1 . . . d ´ 1].

Repeated applications of Theorem 2.10.3 transform any d-polytope P into a
simplicial polytope with the same number of vertices as P and at least as many
faces of higher dimension. We state the result.

Theorem 2.10.4 Let Q be a d-polytope obtained from a d-polytope P by
successively pulling each of the vertices of P . Then the following hold:

(i) The polytope Q is a simplicial d-polytope satisfying f0(Q) = f0(P ), and
fk(Q) ě fk(P ) for each k P [1 . . . d ´ 1].
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(ii) If some i-face of P is not a simplex, then fk(Q) ą fk(P ) for each k P

[i ´ 1 . . . d ´ 1].

‘Pushing’ a vertex into the interior of a polytope yields a similar outcome
to that of pulling the vertex into the exterior of the polytope. Let P be a d-
polytope in Rd and let v be a vertex of P . Further, let Hv be a hyperplane that
separates v from the other vertices of P and let v1 P int P X Hv so that v1 is at
Euclidean distance at most ε from v and no hyperplane spanned by vertices of
P intersects the halfopen segment (v,v1]. In this case, we say that the polytope
P 1 := conv((V(P )ztvu) Y tv1u) is obtained from P by pushing v to v1. The
next theorem is an analogue of Theorem 2.10.3. A proof, however, does not
follow from Theorem 2.10.1, and so we give one.

Theorem 2.10.5 (Pushing vertices; Klee, 1964b, sec. 2) Let P 1 be a d-polytope
in Rd obtained from a d-polytope P by pushing a vertex v of P to a point v1.
Then the following hold:

(i) The k-faces of P that do not contain v are all k-faces of P 1.
(ii) For each pyramidal k-face F of P with apex v, the pyramid

conv
((

F ztvu
)

Y
�

v1
()

is a k-face of P 1.
(iii) V(P 1) = (V(P )ztvu) Y tv1u.
(iv) For each k-face F of P that contains v but is not a pyramid with apex v,

the set conv(F ztvu) is a k-face of P 1.
(v) Each proper face of P 1 containing v1 is a pyramid with apex v1.

Moreover, f0(P
1) = f0(P ) and fk(P

1) ě fk(P ) for each k P [1 . . . d ´ 1].

Proof Let F be a k-face of P and let HF be a hyperplane supporting P at F .
As P 1 Ă P , the hyperplane HF doesn’t meet the interior of P 1. It follows that
F = HF X P = HF X P 1 is a k-face of P 1 if v R F ; this proves (i). So assume
that v P F .

We consider what happens when we continuously move v to v1 along the
segment [v,v1]; at time t = 0 we have v and at time t = 1 we have v1. Let
HF (t) be the hyperplane obtained at time t from moving HF together with v;
here, HF (0) = HF . Similarly define P(t) and F(t) so that P(0) = P , P(1) =
P 1, and F(0) = F . Since F(0) = F is a face of P(0) = P , Theorem 2.3.7
ensures that

affV(F (t)) X conv(V(P (t))zV(F (t))) = H (2.10.5.1)
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at time t = 0. If we move v(t) continuously from t = 0 to t = 1 by a
sufficiently small amount, then affV(F (t)) and HF (t) also move continuously.

(ii) First, suppose that F is a pyramid with apex v and base R. Then
R = conv(F ztvu) is a (k ´ 1)-face of both P and P 1 by (i). Additionally,
v1 R affV(R) by the assumption that no hyperplane spanned by vertices of P

intersects the segment (v,v1]. Therefore, (2.10.5.1) becomes

aff(V(R) Y tv(t)u) X conv(V(P (t))z(V(R) Y tv(t)u)) = H

for each t P [0,1]. Hence conv(V(R) Y tv(t)u) is a k-face of P(t) for each
t P [0,1]. In the particular case t = 1, we have (ii).

(iii) This follows at once from (i) and (ii): every vertex of P other than v is
a vertex of P 1 by (i), while v1 is a vertex of P 1 by (ii).

(iv) Now suppose that F is not a pyramid with apex v. Since F is a face of
P , at time t = 0 (2.10.5.1) becomes

affV(F ) X conv
(
V(P (t))zV(F )

) = H.

We also have that aff(V(F )ztvu) = affV(F ), and so v P aff(V(F )ztvu).
Therefore, using the assumption that no hyperplane spanned by vertices of P

intersects the segment (v,v1] and the fact that v R P(t) for each t P (0,1], we
obtain that

aff(V(F )ztvu) X conv
(
V(P (t))z

(
V(F )ztvu

)) = H, for each t P (0,1].

Hence conv(F ztvu) is a k-face of P(t) for each t P (0,1]. In the particular
case t = 1 we have (iv).

(v) Suppose that F 1 is a proper face of P 1 that contains v1 and yet is not a
pyramid with apex v1. If J 1 is a facet of P 1 containing F 1, then v1 belongs to
aff J 1, which is spanned by V(J 1) X V(P ). This contradicts the definition of
pushing.

A corollary follows at once.

Corollary 2.10.6 Let Q be a d-polytope obtained from a d-polytope P by
successively pushing each of the vertices of P . Then the following hold.

(i) The polytope Q is a simplicial d-polytope satisfying f0(Q) = f0(P ) and
fk(Q) ě fk(P ) for each k P [1 . . . d ´ 1].

(ii) If some k-face of P is not a pyramid, then fk(Q) ą fk(P ).

The same idea behind the proof of Theorem 2.10.5 proves the following
variation by Santos (2012).
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Theorem 2.10.7 (Santos, 2012, lem. 2.2) Let P 1 be a d-polytope in Rd

obtained from a d-polytope P by pushing a vertex v of P to a point v1. Then
there exists a map ϕ from the facets of P 1 to the facets of P that satisfies the
following:

(i) If F 1 is a facet of P 1 such that v1 P F 1, then there is a unique facet ϕ(F 1)

of P such that (V(F 1)ztv1u) Y tvu Ď V(ϕ(F 1)).
(ii) If F 1 is a facet of P 1 such that v1 R F 1, then there is a unique facet ϕ(F 1)

of P such that V(F 1) Ď V(ϕ(F 1)).
(iii) The map ϕ sends two facets F 1

1 and F 1
2 of P 1 that share a ridge either to

the same facet of P or to two facets ϕ(F 1
1) and ϕ(F 1

2) of P that share a
ridge.

Repeatedly pulling the vertices of a polytope transforms it into a simplicial
polytope (Theorem 2.10.4), and so does repeatedly pushing its vertices
(Corollary 2.10.6). Dually, every polytope can be transformed into a simple
polytope by truncating the vertices, then the original edges, and so on up to
ridges (Problem 2.15.12).

2.11 Complexes, Subdivisions, and Schlegel Diagrams

Polytopal complexes, a concept borrowed from algebraic topology, will prove
useful in our study of polytopes. Among other purposes, we will use them to
visualise polytopes via Schlegel diagrams, establish the existence of shellings
of polytopes (Section 2.12), and prove identities such as Euler–Poincaré–
Schläfli’s equation for polytopes (Theorem 2.12.17). We proceed with the basic
definitions related to polytopal complexes.

Definition 2.11.1 (Polytopal complex) A polytopal complex C is a finite,
nonempty collection of polytopes in Rd that satisfies the following three
conditions:

(i) the empty polytope is always in C,
(ii) the faces of each polytope in C all belong to C, and

(iii) polytopes intersect only at faces: if P1 P C and P2 P C then P1 X P2 is a
face of both P1 and P2.

A complex C with members tP1, . . . ,Pnu is said to be a complex on
tP1, . . . ,Pnu. The underlying set of C, denoted set C, is the set of points in
Rd that belong to at least one polytope in C.

https://doi.org/10.1017/9781009257794.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009257794.003


2.11 Complexes, Subdivisions, and Schlegel Diagrams 109

If a polytope is a member of a complex C, we say that the polytope is a
face of the complex. The dimension of a complex C is the largest dimension
of a face in C; if C has dimension d we say that C is a d-complex. The set
of k-faces of a complex C is denoted by Fk(C) and the set of all faces of C
is denoted by F(C). Additionally, the number of k-faces is denoted by fk(C):
fk(C) = #Fk(C). As with the case of polytopes, we denote by V(C) the set of
vertices of C and by E(C) the set of edges of C. Faces of a complex of largest
and second largest dimension are called facets and ridges, respectively. If each
of the faces of a complex is contained in some facet, we say that the complex
is pure.

We mention two important families of polytopal complexes. A simplicial
complex C is a polytopal complex in Rd where all its polytopes are simplices.
A cubical complex C is a polytopal complex in Rd where all its polytopes are
cubes.

A subcomplex of a polytopal complex C is a subset of C that is itself a
polytopal complex. A subcomplex of dimension k is a k-subcomplex. This
book is concerned only with polytopal complexes, and so we often drop the
adjective ‘polytopal’. The undirected graph formed by the vertices and edges
of C, denoted by G(C), is the graph of the complex C.

For two polytonal complexes C and C1, define their intersection C X C1 as
the collection of polytopes in C and C1, and their union C Y C1 as the collection
of polytopes in C or C1. The intersection C X C1 is always a complex, and the
union C Y C1 is a complex if the intersections P X P 1 with P P C and P 1 P C1

are all polytopes in C X C1.
Complexes can be defined from a polytope P . Two basic examples are given

by the complex of all faces of P , called the complex of P and denoted by C(P ),
and the complex of all proper faces of P , called the boundary complex of P

and denoted by B(P ). The k-skeleton Bk of a d-polytope P is the subcomplex
formed by the faces of dimension at most k; the (d´1)-skeleton of P coincides
with the boundary complex of P , while the 1-skeleton of P coincides with the
graph G(P ) of P .

Similarly, a complex can be defined from a set tP1, . . . ,Pnu of polytopes,
where each pair intersects at a common face, by forming the complex the
complex C(P1) Y ¨ ¨ ¨ Y C(Pn). In this case, we say that the complex is induced
by tP1, . . . ,Pnu, and denote it as C(P1 Y ¨ ¨ ¨ Y Pn).

The face poset L(C) of a complex C is the poset formed by the set of faces of
C partially ordered by inclusion. Two complexes C and C1 are combinatorially
isomorphic, or simply isomorphic, if their face posets are isomorphic. For
isomorphic complexes, we write C = C1.
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(a) (b) (c)

Figure 2.11.1 Triangulations of 3-polytopes. (a) A triangulation of a pyramid over
a quadrangle with two 3-simplices. (b) A triangulation of a simplicial 3-prism P

with three 3-simplices: first divide P into a 3-simplex and a pyramid R over a
quadrangle, then triangulate R as in (a). (c) An initial step in a triangulation of
a 3-cube Q with six 3-simplices: first divide Q into two simplicial 3-prims, then
triangulate each prism with three 3-simplices as in (b).

Subdivisions

Polytopal subdivisions are an important kind of polytopal complexes. In
general, they come into play when we want to decompose a geometric
object into simpler pieces, reducing the geometry to a simpler piecewise
geometry. This is the case of Delaunay subdivisions (Goodman et al., 2017,
sec. 16.3, ch. 27) in computational geometry. Triangulations are the most
studied subdivisions. They have found applications in computational geometry
via mesh generations (Goodman et al., 2017, sec. 29.4, 29.5), in commutative
algebra in connection with Gröbner bases (Sturmfels, 1996), in tropical
geometry via tropical hyperplane arrangements (Ardila and Develin, 2009),
and in optimisation in connection with transportation polytopes (De Loera
et al., 2009).

A polytopal subdivision S of a d-polytope P in Rd is a pure polytopal
d-complex with the same underlying set as P . A polytopal subdivision is a
triangulation if all the polytopes in S are simplices; see Fig. 2.11.1. Two poly-
topal subdivisions are combinatorially isomorphic if they are combinatorially
isomorphic as polytopal complexes.

Some subdivisions can be obtained from projecting a polytope in Rd+1 to
Rd ; these are the regular subdivisions. Suppose that a polytope Q in Rd is the
image of a polytope P in Rd+1 under the projection π that deletes the last
coordinate (namely π(x,xd+1) = x). A face F of the polytope P is a lower
face of P if x ´λed+1 R P for each point x P F and each λ ą 0. Equivalently,
F is a lower face of P if, for a vector r := (r1, . . . ,rd+1)

t P Rd+1, we have that

F = tx P P | r ¨ x = γ u, r ¨ x ď γ is valid for P , and rd+1 ă 0.
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P

P

Q

Q

(a) (b)

v1 v2

v3
v4

v5 v6
v7

v8

w1

R
2

w2

w3w4

w5 w6

w8 w7

w1 = (v1, y1)t w2 = (v2, y2)t w3 = (v3, y3)t w4 = (v4, y4)t

w5 = (v5, y5)t w6 = (v6, y6)t w7 = (v7, y7)t w8 = (v8, y8)t

Figure 2.11.2 Regular subdivisions of polytopes. (a) A regular subdivision
of a segment Q that arises from a 2-polytope P . (b) A regular subdivision
of a 2-polytope Q := convtv1, . . . ,v8u that arises from a 3-cube P :=
convtw1, . . . ,w8u; the lift vector y := (y1, . . . ,y8)

t .

This amounts to saying that F can be seen from a point far below, namely
from a point ´αed+1 with sufficiently large α. The set of lower faces of P is
the lower envelope of P . A polytopal subdivision S of the polytope Q in Rd is
regular if it is the set of projections of all the lower faces of P :

S(Q) = tπ(F )| F is a lower face of P u.

See Figure 2.11.2. An equivalent definition of a regular subdivision of Q in Rd

uses a lift vector y = (y1, . . . ,yn)
t P Rn to define the vertex set of P . Suppose

that Q = convtv1, . . . ,vnu, and for each i P [i . . . n] let wi := (vi,yi)
t P

Rd+1. We say that a subdivision of Q is regular if it is combinatorially
isomorphic to the lower envelope of the polytope P := convtw1, . . . ,wnu; see
Fig. 2.11.2(b). Being regular is not a combinatorial property; there are pairs
of subdivisions that are combinatorially isomorphic and yet one is nonregular
and the other is regular, as Fig. 2.11.3 and Example 2.11.2 show.

Every subdivision of a 1-polytope is regular and so are the subdivisions of a
2-polygon without interior points. It is also the case that every subdivision of a
d-polytope that is the convex hull of at most d+3 points, vertices or otherwise,
is regular (Lee, 1991). But there are subdivisions of 2-polygons with six
points, vertices or otherwise, that are not regular (Fig. 2.11.3). Example 2.11.2
explores this situation.
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(c)(a) (b)
v1

v2

v3

v5

v1

v2 v3

v4

v4

v5

v6

v6 v7

v8

v1

v2

v3

v4 v5

v6

Figure 2.11.3 Regular and nonregular subdivisions of 2-polytopes with interior
points. (a) A nonregular triangulation. (b) A regular triangulation that is combi-
natorially isomorphic to the triangulation in (a); it is the Schlegel diagram of the
3-crosspolytope. (c) A regular subdivision that is not a Schlegel diagram.

Example 2.11.2 Consider the three subdivisions of Fig. 2.11.3 and suppose
that they lie in the hyperplane x3 = 0 of R3.

(a) We show that the subdivision Sa of Fig. 2.11.3(a) is nonregular. Suppose
that Sa is regular with vertex set tv1, . . . ,v6u and lift vector y = (y1, . . . ,y6)

t

such that Sa is the set of projections of the lower faces of the 3-polytope Pa :=
convt(v1,y1)

t, . . . ,(v6,y6)
tu. By assumption, the interior triangle v4v5v6 of

Sa is the projection of a triangular face F of Pa that lies in a plane in R3, and
so we may assume that the three components y4,y5,y6 have the same value,
say zero; this may require applying an affine transformation to P , for instance a
rotation, so that aff F becomes parallel to the plane x3 = 0. From Fig. 2.11.3(a)
we see that the segments [v1,v2] and [v4,v5] are parallel. This implies that
if y1 = y2 then the trapezoid v1v2v4v5 of Sa would come from the 2-face
(v1,y1)

t,(v2,y2)
t,(v4,y4)

t,(v5,y5)
t of Pa , which disregards the existence of

the edge [v2,v4]. Because the edge [v2,v4] is present, we must have that y1 ą

y2. Similar reasoning on the trapezoids v2v3v5v6 and v1v3v4v6 yields that
y2 ą y3 and y3 ą y1, respectively. Thus, we have that y1 ą y2 ą y3 ą y1, a
contradiction. Hence Sa is a nonregular subdivision.

(b) The subdivision Sb P R2 of Fig. 2.11.3(a) is combinatorially isomorphic
to the subdivision Sa . That Sb P R2 is regular follows from being a Schlegel
diagram (Proposition 2.11.10).

(c) We show that the subdivision Sc P R2 of Fig. 2.11.3(c) is regular.
Suppose that Sc has vertex set tv1, . . . ,v8u and lift vector y = (y1, . . . ,y8)

t

such that Sc is the set of projections of the lower faces of the 3-polytope
Pc := convt(v1,y1)

t, . . . ,(v8,y8)
tu. The interior quadrangle v5v6v7v8 of Sc

comes from a quadrangular face of Pc and so we may assume that the four
components y5,y6,y7,y8 have the same value, say zero. If we consider the
trapezoid v1v2v5v6 and reason as in the case (a), we have that y1 ą y2.
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Similarly, the trapezoids v2v3v6v7, v3v4v7v8, v1v4v5v8 yield that y3 ą y2,
y3 ą y4, and y1 ą y4, respectively. Meeting these constraints gives a suitable
lift vector, say y1 = 2,y2 = 1,y3 = 2,y4 = 1. The existence of the lift vector
y shows that Sc is regular.

Schlegel Diagrams

Schlegel diagrams are regular subdivisions of a facet of a polytope that capture
the combinatorics of the polytope and, as such, they will help visualise 3-
polytopes and 4-polytopes.

We first define the basic elements of a Schlegel diagram. Let P be a d-
polytope in Rd and let F be a facet of P whose affine hull is defined by the
equation r ¨ x = γ . Choose a point yF P Rd beyond F and consider the
segment �(x) := [yF,x] from yF to every point x P P . We let ϕ(x) be the
intersection of �(x) and F . Then

ϕ(x) = yF + γ ´ r ¨ yF

r ¨ x ´ r ¨ yF

(x ´ yF ). (2.11.3)

We extend the function ϕ(x) to proper faces of P . To do so, for each proper
face J we define an affine cone CJ with apex yF as

CJ := tyF + α(x ´ yF )| for each x P J and each α ě 0u. (2.11.4)

With the cone CJ in place, we have that

ϕ(J ) := CJ X aff F . (2.11.5)

See Fig. 2.11.4 for a depiction of the function ϕ and the cone CJ related to a
face J of a polytope P .

A Schlegel diagram of a polytope P based at the facet F of P , denoted by
D(P,F ), is the image under the aforementioned function ϕ of all the proper
faces of P other than F (see (2.11.5)):

D(P,F ) = tϕ(J )| J P L(P )ztP,F uu. (2.11.6)

For simplicity, we will also refer to D(P,F ) as the Schlegel diagram of P at F .
The Schlegel diagram of P at F is a polytopal subdivision of F that captures
the combinatorics of P , regardless of the point yF that we choose beyond the
facet F , as the following theorem shows.
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yF

P

F

(a)

x

(x)affF

yF

P

F

(b)

affF

J

CJ

(J)

Figure 2.11.4 Definitions of the basic elements in the construction of Schlegel
diagrams. (a) Definition of the function ϕ(x) for each vertex x of a polytope P .
(b) Definition of the cone CJ and image ϕ(J ) for a proper face J of P ; the image
ϕ(J ) is highlighted in bold.

Theorem 2.11.77 Let P be a d-polytope in Rd and F a facet of it. A Schlegel
diagram of P at F is a polytopal subdivision of F that is combinatorially
isomorphic to the complex B(P )ztF u of the proper faces of P other than F .

Theorem 2.11.7 is illustrated in Fig. 2.11.5.
The face lattice L(P ) of a polytope P can be readily reconstructed from the

Schlegel diagram D(P,F ) of P at a facet F of P . From F = setD(P,F )

and Theorem 2.11.7, we have that D(P,F ) is combinatorially isomorphic to
B(P )ztF u. We construct the facet poset L(D(P,F )YtF,P u, ď) whose faces
are partially ordered by inclusion. In the poset L(D(P,F )YtF,P u, ď), a face
R of D(P,F ) satisfies R ď F if and only if R is a face of the facet F . We list
three simple consequences of this discussion and Theorem 2.11.7.

Corollary 2.11.8 Let P be a d-polytope in Rd and F a facet of it. Then the
following hold.

(i) The underlying set of D(P,F ) is F : setD(P,F ) = F .
(ii) For every face R of D(P,F ), R X rbdF is a face of F .

(iii) The face lattice L(P ) of P is combinatorially isomorphic to the face poset
L(D(P,F ) Y tF,P u, ď).

Similar to projective transformations, duality can be applied to produce
combinatorially isomorphic polytopes with prescribed properties. The appli-
cation of duality relies on two observations. First, polytopes P and x + P are
combinatorially isomorphic, and so if they both have zero in their interior then
their duals exist and are combinatorially isomorphic. Second, if the translation

7 A proof is available in Ziegler (1995, prop. 5.6).
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(b)
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yF

D(P, F)

P

F

yF

(e)

D(P, F)

D(P, F)D(P, F)

(a)

yF

D(P, F)

(c)

(f)
D(P, F)
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Figure 2.11.5 Schlegel diagrams of polytopes; the projection facet F has been
highlighted in bold. (a) A quadrangle and one of its Schlegel diagrams. (b) A 3-
cube and one of its Schlegel diagrams. (c) A 3-simplex and one of its Schlegel
diagrams. (d) A Schlegel diagram of a 4-cube; the projection facet is a 3-cube. (e)
A Schlegel diagram of a 4-crosspolytope; the projection facet is a 3-simplex. (f) A
Schlegel diagram of the Cartesian product of a 2-simplex with another 2-simplex;
the projection facet is a simplicial 3-prism.

vector x is chosen so that a vertex in x + P moves closer to 0, then the
corresponding facet F in (x +P)˚ moves farther from the vertices in (x +P)˚

not in F (Fig. 1.11.1).

Theorem 2.11.9 Let P be a d-polytope in Rd and let F be a facet of P .
Then there is a d-polytope P1 combinatorially isomorphic to P such that, for
the facet F1 of P1 corresponding to F under this isomorphism and for every
vertex v of P1 not on F1, the orthogonal projection of v onto F1 lies in the
relative interior of F1.

We offer two proofs of this result, one via projective transformations and
another via duality.
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0

He

Hp
∞Hp

x

ζ(x)

F y

Figure 2.11.6 Projective transformation for Theorem 2.11.9.

Proof via projective transformations We follow the scheme described in Sec-
tion 2.5. Pass to P(Rd+1) and embed the polytope P in a nonlinear hyperplane
He. Projectively complete He by adding the hyperplane at infinity He

8. The
definitions of He and He

8 are irrelevant, but if concrete definitions are desired,
consult Section 2.5.

Choose a point y P He beyond the facet F and a linear hyperplane H
p
8 that

strictly separates y and P ; this latter choice requires invoking the separation
theorem (1.8.5). To finalise our scheme, select a nonlinear hyperplane Hp that
is parallel to H

p
8 and admissible for P , and let ζ be a projective transformation

admissible for P that fixes the points in He X Hp and sends each point in
Hez(Hp Y H

p
8) to the point in Hp lying on the same line through the origin

(Fig. 2.5.1(a)); the transformation ζ maps P onto a polytope P1 on Hp. See
Fig. 2.11.6.

This transformation makes the facet F1 := ζ(F ) of P1 very large and moves
it far away from the vertices of P1 not in F1. Under this transformation, the
polytope P1 is contained in the pyramid conv(tζ(y)u Y F1); see Fig. 2.5.2(d).
It follows that the orthogonal projection of P1 onto aff F1 maps P1zF1 onto
rint F1, as desired.

Proof via duality Assume that 0 P int P . Let v1, . . . ,vn be the vertices of P ˚

and assume that v1 is the vertex of P ˚ conjugate to the facet F of P .
We translate the polytope P ˚ so that the vertex v1 gets closer to 0. Pick a

point y P int P ˚ so that the hyperplane through y with normal v1 ´ y strictly
separates v1 from the other vertices of P ˚. Then, for every i P [2 . . . n], we
have that

(v1 ´ y) ¨ vi ă (v1 ´ y) ¨ y ă (v1 ´ y) ¨ v1. (2.11.9.1)
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Define the polytope P ˚
1 with vertices v1 ´ y, . . . ,vn ´ y; the polytope P ˚

1 is
equal to P ˚ ´ y. We show that like P ˚, P ˚

1 contains zero in its interior. Since
y P int P ˚, by Theorem 1.7.6 we can write it as

y = α1v1 + ¨ ¨ ¨ + αnvn

for positive scalars α1, . . . ,αn such that
řn

i=1 αi = 1, and so

0 = α1(v1 ´ y) + ¨ ¨ ¨ + αn(vn ´ y),

yielding that 0 P int P ˚
1 by Theorem 1.7.6.

Let P1 be the dual of P ˚
1 . Then P1 and P are combinatorially isomorphic;

let σ be an isomorphism from L(P ) to L(P1). For each i P [1 . . . n] and each
facet Fi of P1 conjugate to the vertex vi ´ y of P ˚

1 , it follows that

aff Fi =
!

x P Rd
ˇ

ˇ

ˇ
(vi ´ y) ¨ x = 1

)

. (2.11.9.2)

We show that the facet F1 = σ(F ) of P1 has the desired properties. Because
of (2.11.9.2), for every x P P1 and every i P [1 . . . n], we have that (vi´y)¨x ď

1, and for every point x P P1zF1 we have that (v1 ´ y) ¨ x ă 1. Consider a
point x P P1zF1. Its projection x1 := πaff F1(x) onto aff F1 is given by (1.4.8):

x1 = x ´
(v1 ´ y) ¨ x ´ 1

‖v1 ´ y‖2
(v1 ´ y).

The point x1 is in the interior of
Şn

i=2 H
´
d (vi ´ y,1):

(vi ´ y) ¨ x1 = (vi ´ y) ¨

„

x ´
(v1 ´ y) ¨ x ´ 1

‖v1 ´ y‖2
(v1 ´ y)

j

= (vi ´ y) ¨ x ´
(v1 ´ y) ¨ x ´ 1

‖v1 ´ y‖2
(vi ´ y) ¨ (v1 ´ y)

ď 1 ´
(v1 ´ y) ¨ x ´ 1

‖v1 ´ y‖2
(vi ´ y) ¨ (v1 ´ y)

ă 1.

To see the last step, observe that

(v1 ´ y) ¨ x ´ 1

‖v1 ´ y‖2
ă 0 and that (vi ´ y) ¨ (v1 ´ y) ă 0 by (2.11.9.1).

As x1 P aff F1 X int
(
Şn

i=2 H
´
d (vi ´ y,1)

)
, we conclude that x1 P rint F1, as

desired.

Thanks to Theorem 2.11.9, we can transform a polytope P with a given facet
F into a combinatorially isomorphic polytope P 1 so that, for the facet F 1 of P 1

corresponding to F , the orthogonal projection π of each point x P P 1 onto F 1
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P

D(P, F )

(a) (b)

R
2

P

F
F

Figure 2.11.7 A Schlegel diagram of the 3-cube represented as a regular subdivi-
sion. (a) A 3-cube P with a facet F highlighted. (b) A Schlegel diagram D(P,F )

of 3-cube P at a facet F where D(P,F ) is combinatorially isomorphic to a regular
subdivision of F .

lies in the relative interior of F 1. As a result, the Schlegel diagram D(P,F ) of
P at F is combinatorially isomorphic to the Schlegel diagram D(P 1,F 1) of P 1

at F 1; see Fig. 2.11.7. This construction has an important consequence.

Proposition 2.11.10 Let P be a d-polytope, F a facet of it, and D(P,F ) a
Schlegel diagram of P at F . Then D(P,F ) is combinatorially isomorphic to a
regular subdivision of F .

Proof We first preprocess P so that F is the orthogonal projection of P , as
in Theorem 2.11.9; see also Proposition 2.1.3. It follows that D(P,F ) is the
set of projections of the lower faces of P , giving that D(P,F ) is a regular
subdivision of F .

A Schlegel diagram of a polytope P is clearly not uniquely determined; it
depends on the projection facet F and the point yF beyond F . In view of
Proposition 2.11.10 and Theorem 2.11.9, we can always assume that F is the
orthogonal projection of P (see also Proposition 2.1.3).

While every Schlegel diagram can be realised as a regular subdivision
(Proposition 2.11.10), not every regular subdivision is a Schlegel diagram. We
use Proposition 2.11.10 to show that the regular subdivision of Fig. 2.11.3(c)
is not a Schlegel diagram.

Example 2.11.11 Suppose that the regular subdivision Sc of Fig. 2.11.3(c)
lies in the hyperplane x3 = 0 of R3. Further suppose that Sc has vertex
set tv1, . . . ,v8u and lift vector y = (y1, . . . ,y8)

t such that Sc is the set of
projections of the lower faces of the 3-polytope
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Pc := conv
�

(v1,y1)
t, . . . ,(v8,y8)

t
(

.

Suppose that Sc is a Schlegel diagram of Pc at a facet F with vertex set
(v1,y1)

t,(v2,y2)
t,(v3,y3)

t,(v4,y4)
t . Then F lies in a plane of R3. The analysis

in Example 2.11.2(c) showed that y1 ą y2, y3 ą y2, y3 ą y4, y1 ą y4; this
contradicts the planarity of aff F . Hence, Sc is not a Schlegel diagram.

Stars, Antistars, and Links in complexes

For a polytopal complex C, the star of a face F in C, denoted st(F,C), is the
subcomplex of C formed by all the faces containing F and their faces; the
antistar of a face F of C, denoted ast(F,C), is the subcomplex of C formed by
all the faces disjoint from F ; and the link of a face F , denoted lk(F,C), is the
subcomplex of C formed by all the faces of st(F,C) that are disjoint from F .
For a subset X of V(C), we denote by C´X the subcomplex of C formed by the
faces of C that contain no vertex from X. It follows that ast(F,C) = C ´ V(F )

and lk(F,C) = st(F,C) ´ V(F ). We define stars, antistars, and links in a
polytope always with respect to B(P ); that is why we often write st(F,P ),
ast(F,P ), or lk(F,P ) without explicitly stating B(P ). Furthermore, we may
also write st(F ), ast(F ), or lk(F ) if P is clear from the context.

Figure 2.11.8 depicts the star and link of a vertex in the 4-cube. Let x be a
vertex in a d-cube Q(d) and let xo denote the unique vertex not contained in
the star of x. Then the antistar of x coincides with the star of xo and the link
of x is the subcomplex C(Q(d)) ´ tx,xou.

The star, antistar, and link of a vertex are all pure complexes. But more is
true for the link.

Proposition 2.11.12 Let P be a d-polytope. Then the link of a vertex in B(P )

is combinatorially isomorphic to the boundary complex of a (d ´ 1)-polytope.

(a) (b)
x x

(c)

Figure 2.11.8 Complexes in the 4-cube. (a) The 4-cube with a vertex x high-
lighted. (b) The star of the vertex x. (c) The link of the vertex x.
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(a) (b) (c)
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Figure 2.11.9 The link of a vertex in the 4-cube. (a) The 4-cube with a vertex x

highlighted. (b) The link of the vertex x in the 4-cube. (c) The link of the vertex
x as the boundary complex of the rhombic dodecahedron (Proposition 2.11.12).

In particular, for each d ě 3, the graph of the link of a vertex is isomorphic to
the graph of a (d ´ 1)-polytope.

Proof Let x be a vertex of P and let x1 be a point in RdzP beyond x. Suppose
P 1 := conv(P Y tx1u). We could think of P 1 as being obtained from P by
pulling the vertex x to x1 (Theorem 2.10.3).

The facets in the star of x in B(P ) are precisely those that are visible from
x1, and every other facet of P , which is in the antistar of x, is nonvisible from
x1. The link of x is, by definition, the subcomplex of B(P ) induced by the
ridges of P that are contained in a facet of the star of x, a facet visible from
x1, and a facet of the antistar of x, a facet nonvisible from x1. Consequently,
according to Theorem 2.10.1(i) the ridges in lk(x,B(P )) are all faces of P 1.
Furthermore, for every ridge R P lk(x,B(P )), R1 := conv(R Y tx1u) is a facet
of P 1 (Theorem 2.10.1(iii)), a pyramid over R with apex x1; and every facet in
the star of x1 in B(P 1) is one of these pyramids. Hence, the boundary complex
of the vertex figure of P 1 at x1 is combinatorially isomorphic to the link of x in
P . Since the vertex figure is combinatorially isomorphic to a (d ´ 1)-polytope
(Theorem 2.7.3), the propostion follows.

Proposition 2.11.12 is exemplified in Fig. 2.11.9.

2.12 Shellings and Euler–Poincaré–Schläfli’s Equation

A shelling is a certain linear ordering of the facets of a pure complex. While
not every pure complex has a shelling, the boundary complex of every polytope
has one; this is central to a number of inductive arguments on polytopes.
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x x x x x x

1 1 1 1 1 1
2 2 2 2 2 2

3 3 3 3 3 34 4 4 4 4

5 5 5 5 5

6 6 6 6
7 7 7

Figure 2.12.1 A shelling F1 = x123,F2 = x345,F3 = x156,F4 = 1267,F5 =
2347,F6 = 4567 of the boundary complex of the 3-cube, where the facets of the
star of a vertex x come first. The intersection of the current facet with the union
of the previous ones is highlighted in bold.

F1

F2

F3

F4

Figure 2.12.2 A sequence F1,F2,F3,F4 of facets of the boundary complex of the
3-cube that is not the beginning of any shelling of the 3-cube. The intersection of
the current facet with the union of the previous ones is highlighted in bold. The
intersection F4 X (F1 Y F2 Y F3) is not the beginning of a shelling of F4.

Definition 2.12.1 (Shelling) Let C be a pure complex. A shelling of C is a
linear ordering F1, . . . ,Fs of the facets of the complex such that either dim C =
0, in which case the facets are vertices, or it satisfies the following:

(i) The boundary complex of F1 has a shelling.
(ii) For j P [2 . . . s], the intersection

Fj X

(
j´1
ď

i=1

Fi

)
= R1 Y ¨ ¨ ¨ Y Rr

is nonempty and the beginning R1, . . . ,Rr of a shelling R1, . . . ,Rr ,
Rr+1, . . . ,Rt of the boundary complex of Fj .

A complex is shellable if it is pure and admits a shelling. Figure 2.12.1
depicts an example of a shelling, while Fig. 2.12.2 depicts a sequence of facets
that is not the beginning of any shelling. Abusing terminology, we will refer to
a shelling of the boundary complex of a polytope as a shelling of the polytope.

Shellings of a complex can be rearranged in number of ways.

Lemma 2.12.2 Let C be a shellable complex and let F1, . . . ,Fr,Jr+1, . . . ,

Js be a shelling of C. If F 1
1, . . . ,F

1
r is a different shelling of the subcomplex

C(F1 Y ¨ ¨ ¨ Y Fr) of C then F 1
1, . . . ,F

1
r,Jr+1, . . . ,Js is a different shelling of C.
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In the case of polytopes, we can even obtain a new shelling by reversing the
order of a shelling.

Lemma 2.12.3 Let P be a d-polytope and let F1, . . . ,Fs be a shelling of P .
Then the reverse sequence Fs, . . . ,F1 is also shelling of P .

Proof The lemma is plainly true for d = 1, and so we have the basis of an
induction on d. Assume that d ě 2. Since F1, . . . ,Fs is a shelling of P each
facet Fi for i P [1 . . . s] is shellable (Definition 2.12.1(i)–(ii)); in particular, for
j P [2 . . . s], the intersection

Fj X

(
j´1
ď

i=1

Fi

)
= R1 Y ¨ ¨ ¨ Y Rr

is nonempty and can be extended to a shelling R1, . . . ,Rr,Rr+1, . . . ,Rt of
Fj . By the induction hypothesis, the sequence Rt, . . . ,Rr+1,Rr, . . . ,R1 is a
shelling of Fj . For every (d ´ 2)-face R of Fj , there is a unique facet F� such
that R = F� X Fj , and so the intersection

Fj X

⎛
⎝ s

ď

i=j+1

Fi

⎞
⎠ = Rt Y ¨ ¨ ¨ Y Rr+1

is nonempty and the beginning of a shelling of Fj . Since Fs is shellable, we
obtain the shelling Fs, . . . ,F1 of P , and so the proof of the lemma is complete.

We extend the notion of ‘general position’ given in Section 1.1 from sets in
Rd to points, lines, and line functionals in Rd , with respect to a d-polytope.

Definition 2.12.4 (Point in general position) Let P be a d-polytope in Rd and
let F1, . . . ,Fn be the facets of P . A point x is in general position with respect
to P if it does not lie in any of the hyperplanes aff F1, . . . , aff Fn.

Definition 2.12.5 (Line in general position) Let P be a d-polytope in Rd and
let F1, . . . ,Fn be the facets of P . A line � is in general position with respect
to P if it is not parallel to any of the hyperplanes aff Fi and intersects the
hyperplanes aff Fi at pairwise distinct points.

Definition 2.12.6 (Linear functional in general position) Let P be a d-
polytope in Rd . A linear functional in Rd is in general position with respect to
P if its values on the vertices of P are pairwise distinct.
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We establish the existence of lines and linear functionals in general position
with respect to a polytope. The proofs rely on the fact that finitely many
polynomials in one variable have together only finitely many zeros.

Proposition 2.12.78 Let P be a d-polytope in Rd . Then, every nonzero vector
a in Rd can be perturbed slightly so that the resulting vector a(ε) for some
ε ą 0 defines a line �(ε) := αa(ε) or a linear functional ϕε(x) := a(ε) ¨ x

that is in general position with respect to P .

Shellings in polytopes have many theoretical and computational applica-
tions. We show their existence next.

Theorem 2.12.8 (Existence of line shellings; Bruggesser and Mani, 1971)
Every polytope is shellable.

Proof Let P be a d-polytope in Rd with 0 in its interior. We prove the
existence of a particular kind of shelling of P .

Let x P RdzP be a point in general position with respect to P .
Then there is a shelling of P in which the facets of P that are
visible from x come first and the facets that are nonvisible from
x come last.

(*)

The statement (*) is true for d = 1, and so assume that d ě 2. As part of an
induction argument on d , suppose that (*) holds for d ´ 1.

Take a line � that hits the interior of P , passes through 0 and x (that is,
� = αx for every α P R), and is in general position with respect to P . Orient
� from the interior of P to x; see Fig. 2.12.3. While traversing �, if you reach
infinity then return to the polytope from the opposite side. Label the facets
F1, . . . ,Fn of P as they become visible when traversing �, and let xi be the
intersection of � with aff Fi for each i P [1 . . . n]. By our choice of �, the
points x1, . . . ,xn are all distinct. Further assume that when we traverse the
line � = αx from 0 to x, we encounter the points x1, . . . ,xk , in that order
before reaching infinity, and then encounter the points xk+1, . . . ,xn, again in
that order, when we return to the polytope from the opposite side.

For each i P [1 . . . n], suppose that

aff Fi =
!

y P Rd
ˇ

ˇ

ˇ
ai ¨ y = 1

)

,

in which case each inequality ai ¨ y ď 1 is valid for P . This implies that

xi = x

x ¨ ai

(2.12.8.1)

8 A proof is available in Ziegler (1995, lem. 3.2).
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�
x

F2

F1

F3
F5

F4

F6

x4
x5

x6

x1

x2

x3

0

Figure 2.12.3 A line shelling F1, . . . ,F6 of the boundary complex of a polytope.
The line � is oriented from the interior of the polytope to a point x and, for each
i P [1 . . . 6], the point xi is the intersection of � with aff Fi .

and that

x ¨ a1 ą x ¨ a2 ą ¨ ¨ ¨ ą x ¨ ak ą 0 ą x ¨ ak+1 ą ¨ ¨ ¨ ą x ¨ an, (2.12.8.2)

which in turn yields that

1

x ¨ ak+1
ă ¨ ¨ ¨ ă

1

x ¨ an

ă 0 ă
1

x ¨ a1
ă

1

x ¨ a2
ă ¨ ¨ ¨ ă

1

x ¨ ak

. (2.12.8.3)

By construction, the sequence F1, . . . ,Fn is ordered so that the facets visible
from x come before the facets that are nonvisible from x. See Fig. 2.12.3.

It remaing to show that the sequence F1, . . . ,Fn is a shelling of P . We verify
Definition 2.12.1. The facet F1 is shellable by induction. Each point xj with
j P [2 . . . n] is outside Fj and is in general position with respect to Fj . Suppose
the facet Fj appears before reaching infinity. The intersection

Fj X

(
j´1
ď

i=1

Fi

)

is precisely the union of the facets R1, . . . ,Rr of Fj that are visible from xj :
aj ¨xj = 1 and ai ¨xj ą 1 for each i P [1 . . . j´1], by (2.12.8.1) and (2.12.8.2).
Therefore, the induction hypothesis ensures that R1, . . . ,Rr is the beginning of
a shelling of Fj , which also implies that the other facets of Fj , those nonvisible
from xj , are the end of the shelling. Thus, Definition 2.12.1(ii) holds for this
facet Fj . Further, suppose that the facet Fj appears after we passed infinity.
The intersection

Fj X

(
j´1
ď

i=1

Fi

)

consists precisely of the facets R1, . . . ,Rr of Fj that are nonvisible from xj :
aj ¨ xj = 1 and ai ¨ xj ă 1 for each i P [1 . . . .j ´ 1], by (2.12.8.1) and
(2.12.8.2). Therefore the induction hypothesis ensures that R1, . . . ,Rr are the
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end of a shelling S of Fj . According to Lemma 2.12.3, the faces R1, . . . ,Rr

is the beginning of another shelling of Fj , the shelling obtained by reversing
S. Thus, Definition 2.12.1(ii) holds for this facet Fj as well. Consequently, the
two conditions of Definition 2.12.1 are met and so the order F1, . . . ,Fn is a
shelling of P . This completes the proof of (*), and with it, the proof of the
theorem.

Remark 2.12.9 In the proof of Theorem 2.12.8, the point x in (*) need not
be in general position with respect to P . For the proof of Theorem 2.12.8 to
work, what matters is that the line � = αx intersects the interior of P and
is in general position with respect to P (Definition 2.12.5), namely the points
x1, . . . ,xn are all distinct. If x is in general condition with respect to P , these
two conditions on � are satisfied.

Line shellings provide a mechanism to shell a polytope in a number of ways.

Proposition 2.12.10 A polytope P admits a shelling with any of the following
prescribed conditions:

(i) any two facets F and F 1 of P can be chosen so that F is the first facet and
F 1 is the last facet of the shelling;

(ii) for every vertex z of P , the star of z is the beginning of the shelling.

Proof The two proofs are very similar; they both rely on using two points to
define the line that induces the shelling.

(i) Choose a point yF beyond the facet F and a point yF 1 beyond the facet
F 1, and let � be the line determined by yF and yF 1 so that � hits the interior
of P and is in general position with respect to P . It follows that the points yF

and yF 1 are in general position with respect to P . The selection of yF , yF 1 ,
and � can be done in two steps. First, place yF on the relative interior of F

and yF 1 on the relative interior of F 1 so that if they move along � then they
land outside P with yF beyond the facet F and yF 1 beyond the facet F 1; this
guarantees that the line � hits the interior of P . Second, slightly perturb � so
that it becomes in general position with respect to P (Proposition 2.12.7).

Traversing the line � from yF 1 to yF gives the desired line shelling
(Theorem 2.12.8): the facet F will be the first facet visible from yF , while
if we traverse the line ‘backwards’, in the reverse direction, the facet F 1 will
be the first to be visible from yF 1 .

(ii) Choose a point x beyond the vertex z and a line � that passes through
x and the interior of P . The point x is in general position with respect to
P . If necessary, perturb � so that it is in general position with respect to P

(Proposition 2.12.7). Traversing the line � from the interior of P to x gives a
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line shelling where the facets in the star of z, all visible from x, are the first
facets encountered by the line � (Theorem 2.12.8).

The link of a vertex in a polytope is combinatorially isomorphic to the
boundary complex of a (d ´ 1)-polytope (Proposition 2.11.12), and so it is
shellable by Theorem 2.12.8.

Proposition 2.12.11 Let P be a polytope and let x be a vertex of P . Then the
link of x in P is shellable.

Shellings of a polytopal complex induce shellings of the star of a vertex.

Proposition 2.12.12 Let C be a shellable (d ´ 1)-complex and let x be a
vertex of C. Then the star of x in C is shellable. Moreover, the restriction of
every shelling of C to the facets in the star of x is a shelling of the star of x.

Proof The proposition is true for d = 1, since the star of x is 0-dimensional
and thus shellable by Definition 2.12.1. Assume d ě 2. The proof proceeds
by induction on d . Let F1, . . . ,Fn be a shelling S of C, and let Fi1, . . . ,Fit

be the restriction of S to st(x,C). Each facet in S is a (d ´ 1)-polytope and,
thus, it is shellable by Theorem 2.12.8; in particular, Fi1 is shellable. In view
of Definition 2.12.1, it remains to show that, for each p P [2 . . . t],

Fip X
(
Fi1 Y ¨ ¨ ¨ Y Fip´1

)
(2.12.12.1)

is the beginning of a shelling Sip of Fip . Observe that (2.12.12.1) is a subset of
st(x,Fip ).

Because F1, . . . ,Fn is a shelling of P , there is a sequence R1, . . . ,Rr of
(d ´ 2)-faces of Fip such that

Fip X
(
F1 Y F2 Y ¨ ¨ ¨ Y Fip´1

) = R1 Y ¨ ¨ ¨ Y Rr (2.12.12.2)

is nonempty and can be extended to a shelling S1
ip

:= R1, . . . ,Rr,Rr+1, . . . ,Rs

of Fip . It follows that
�

Fi1, . . . ,Fip´1

(

Ď
�

F1,F2, . . . ,Fip´1

(

.

The shelling S1
ip

is that of a shellable (d ´ 2)-complex. Hence, the induction

hypothesis on B(Fip ) and S1
ip

implies that the restriction Rj1, . . . ,Rjq of S1
ip

to
the (d ´ 2)-faces in the star of x in Fip is a shelling of st(x,Fip ). Let � be the
largest integer in [1 . . . q] such that j� ď r; see (2.12.12.2). Then Rj1, . . . ,Rjq

is a shelling of st(x,Fip ) that begins with the sequence Rj1, . . . ,Rj�
:

st(x,Fip ) = Rj1 Y ¨ ¨ ¨ Y Rj�
Y Rj�+1 Y ¨ ¨ ¨ Y Rjq . (2.12.12.3)
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Furthermore, the (d ´ 2)-faces Rj1, . . . ,Rj�
are precisely the (d ´ 2)-faces of

Fip in (2.12.12.1):

Fip X
(
Fi1 Y ¨ ¨ ¨ Y Fip´1

) = Rj1 Y ¨ ¨ ¨ Y Rj�
. (2.12.12.4)

Finally, there is a shelling S2
ip

of Fip that begins with the (d ´ 2)-faces of

st(x,Fip ) by Proposition 2.12.10(ii); that is, S2
ip

can be written as

S2
ip

= Rk1, . . . ,Rkq

st(x,Fip )

,Rkq+1, . . . ,Rks,

where Rk1, . . . ,Rkq are the (d ´ 2)-faces of st(x,Fip ). As a consequence of
Lemma 2.12.2 and of Rj1, . . . ,Rjq being a shelling of st(x,Fip ), the shelling
S2

ip
can be rearranged to obtain the desired shelling Sip of Fip , which begins

with the shelling of st(x,Fip ) in (2.12.12.3). That is,

Sip = Rj1, . . . ,Rj�
,Rj�+1, . . . ,Rjq

st(x,Fip )

,Rkq+1, . . . ,Rks .

This establishes that (2.12.12.1) is the beginning of the shelling Sip of Fip ; see
also (2.12.12.4). This proves the statement of the proposition.

With the help of Lemma 2.12.2 and Proposition 2.12.12, more involved
shellings of a polytope can be produced.

Proposition 2.12.13 Let P be a polytope, x a vertex of P , and F a facet that
is not in the star of x in P . Then there is a shelling of P where the facets in the
star of x come first and the facet F comes last. Furthermore, any two facets F 1

and F 2 in the star of x can be taken as the first and last facets of the shelling
of the star of x.

Proof The proof is similar to that of Proposition 2.12.10. Choose a point yx

beyond the vertex x and a point yF beyond the facet F , and let � be the line
determined by yx and yF . Again, if necessary, perturb � so that it becomes in
general position with respect to P . Traversing the line � from yF to yx gives
a line shelling S where the facets in the star of x come first, inducing a line
shelling Si of st(x,P ), and the facet F come last. Let Sf be the sequence of
facets in S that follows Si ; that is, S = SiSf .

We now use Lemma 2.12.2 to modify the shelling S; we provide a different
shelling S1

i of the star of x that begins with the facet F 1 and ends with
the facet F 2. This new shelling S1

i exists for the following reasons: (1) by
Proposition 2.12.10(i) there exists a shelling of P that begins with the facet F 1

and ends with the facet F 2, and (2) the restriction of this shelling of P to the
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star of x is a shelling of st(x,P ) that begins with the facet F 1 and ends with
the facet F 2 (Proposition 2.12.12); we let S1

i be this shelling of st(x,P ). The
shelling S1

iSf is the desired shelling of P .

The same approach in the proof of Proposition 2.12.13 gives the following.

Proposition 2.12.14 Let P be a polytope, x a vertex of P , and F a facet in
the star of x in P . Then there is a shelling of P where the facets in the star of
x come last and the facet F is the last facet of the shelling.

Euler–Poincaré–Schläfli’s Equation

The polyhedral equation of Euler (1758b) is one of the earliest contributions
to polytope theory. The equation relates the number of vertices, edges, and
faces of a 3-polytope. According to Francese and Richeson (2007), Euler’s
original proof had mistakes. Schläfli (1850–52) generalised the equation to all
dimensions, but his proof relied on the existence of shellings in polytopes,
which was assumed but not proved at the time. As we know, the existence
of shellings of polytopes was established much later by Bruggesser and Mani
(1971). Poincaré (1893) attempted another proof of Schläfli’s generalisation,
but his proof was also erroneous, as claimed by Gruber (2007, sec. 15.2).
Hence, it is fitting to call the generalisation of Euler’s equation to all
dimensions ‘Euler–Poincaré–Schläfli’s equation’.

For a complex C of dimension d ´ 1, let fi := fi(C) and define the Euler
characteristic χ as

χ(C) := f0 ´ f1 + ¨ ¨ ¨ + (´1)d´1fd´1. (2.12.15)

The Euler characteristic of the union C Y C1 of complexes C and C1, in case
it is a complex, satisfies an attractive additivity property (can you prove it?).

Lemma 2.12.16 Let C and C1 be polytonal complexes such that C Y C1 is a
complex too. Then

χ(C Y C1) = χ(C) + χ(C1) ´ χ(C X C1).

Theorem 2.12.17 (Euler–Poincaré–Schläfli’s equation) Let P be a d-polytope.
Then

χ(B(P )) = f0 ´ f1 + ¨ ¨ ¨ + (´1)d´1fd´1 = 1 ´ (´1)d,

χ(C(P )) = χ(B(P )) + (´1)d = 1.
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Proof Let S := F1, . . . ,Fs be a shelling of P and let

Cj := C(F1 Y ¨ ¨ ¨ Y Fj ), for each j P [1 . . . s].

We show that

χ(Cj ) =
#

1, for j P [1 . . . s ´ 1];
1 ´ (´1)d, for j = s.

(2.12.17.1)

The veracity of (2.12.17.1) implies the theorem, as χ(C(P )) = χ(B(P )) +
(´1)d = 1 by (2.12.15), and Cs = B(P ). We prove (2.12.17.1) by induction
on d for every j .

It is clear that (2.12.17.1) is true for d = 1 and every j P [1 . . . s]. And so we
assume that d ě 2 and that (2.12.17.1) is true for every shelling of a polytope
of dimension less than d and at every step of the shelling.

For each j P [1 . . . s], (2.12.15) gives that

χ(C(Fj )) = χ(B(Fj )) + (´1)d´1,

and the induction hypothesis on d ´ 1 gives that

χ(B(Fj )) = 1 ´ (´1)d´1 and χ(C(Fj )) = 1. (2.12.17.2)

In particular, (2.12.17.1) holds for d and j = 1, as

χ(C1) = χ(C(F1)) = 1.

Consider j P [1 . . . s]. Since Cj = Cj´1 Y C(Fj ) and Cj´1 X C(Fj ) =
C(Fj X (F1 Y ¨ ¨ ¨ Y Fj´1)), Lemma 2.12.16 together with (2.12.17.2) yields
the equality

χ(Cj ) = χ(Cj´1 Y C(Fj )) = χ(Cj´1) + χ(C(Fj )) ´ χ(Cj´1 X C(Fj ))

= χ(Cj´1) + 1 ´ χ(C(Fj X (F1 Y ¨ ¨ ¨ Fj´1))). (2.12.17.3)

Because S is a shelling of P , the intersection

Fj X (F1 Y ¨ ¨ ¨ Y Fj´1) = R1 Y ¨ ¨ ¨ Y Rr

is the beginning of a shelling R1, ¨ ¨ ¨ ,Rr,Rr+1, . . . ,Rt of Fj . As a result, we
rewrite (2.12.17.3) as

χ(Cj ) = χ(Cj´1) + 1 ´ χ(C(R1 Y ¨ ¨ ¨ Y Rr)). (2.12.17.4)

From the induction hypothesis on d ´ 1, for every r P [1 . . . t] it follows that

χ(C(R1 Y ¨ ¨ ¨ Y Rr)) =
#

1, for r P [1 . . . t ´ 1];
1 ´ (´1)d´1, for r = t .

(2.12.17.5)
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If j ă s, then r ă t in (2.12.17.5). And as a consequence of (2.12.17.5), for
each j P [1 . . . s ´ 1] (2.12.17.4) becomes

χ(Cj ) = χ(Cj´1) + 1 ´ 1 = χ(Cj´1);
that is, for every j P [1 . . . s ´ 1], because χ(C1) = 1 we get that

χ(Cs´1) = ¨ ¨ ¨ = χ(C1) = 1. (2.12.17.6)

If instead j = s, then r = t in (2.12.17.5), in which case, C(R1 Y ¨ ¨ ¨ Y

Rr) = B(Fs). As a result of (2.12.17.2) and (2.12.17.5), Equation (2.12.17.4)
becomes

χ(Cs) = χ(Cs´1)+1´

(
1 ´ (´1)d´1

)
= 1+1´

(
1 ´ (´1)d´1

)
= 1´(´1)d .

(2.12.17.7)
The induction is now complete, as (2.12.17.1) now follows from (2.12.17.6)
and (2.12.17.7). Accordingly, the proof of the theorem is also complete.

The case d = 3 of Euler–Poincaré–Schläfli’s equation (2.12.17) is the
famous relation of Euler (1758b,a).

Euler–Poincaré–Schläfli’s equation (Theorem 2.12.17) is the unique linear
equation satisfied by the f -vector of all d-polytopes. The precise meaning of
this assertion ensues.

Theorem 2.12.18 9Let d be a positive integer, and let α0 P R, . . . ,αd P R. If
every d-polytope P satisfies the equation

α0f0(P ) + ¨ ¨ ¨ + αd´1fd´1(P ) = αd,

then α1 = α0(´1), α2 = α0(´1)2, . . . ,αd´1 = α0(´1)d´1, and αd = (1 ´

(´1)d)α0.

If we consider the f -vector (f0, . . . ,fd´1) of a d-polytope P as a point in
Rd , Theorem 2.12.18 implies that the f -vectors of all d-polytopes lie in the
hyperplane

$

’

’

’

&

’

’

’

%

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ P Rd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α0

⎛
⎜⎜⎜⎝

1
´1

...
(´1)d´1

⎞
⎟⎟⎟⎠ ¨

⎛
⎜⎝

x1
...

xd

⎞
⎟⎠ = α0

(
1 ´ (´1)d

)
,

/

/

/

.

/

/

/

-

of Rd , the so-called Euler hyperplane, and on no affine subspace of smaller
dimension. The Euler hyperplane is affinely spanned by the f -vectors of the

9 A proof is available in Webster (1994, thm. 3.5.3).
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d-simplex and d ´1 d-polytopes with d +2 vertices. For each r P [0 . . . d ´2],
consider the simplicial (d ´ r)-polytope Fr := T (1)‘T (d ´ r ´ 1), the direct
sum of the simplices T (1) and T (d ´ r ´ 1) (see (2.6.17)). Then consider the
r-fold pyramids pyrr (Fr), for r P [0 . . . d ´ 2]. It follows that the f -vectors
of the d-polytopes T (d) and pyrr (Fr) (for r P [0 . . . d ´ 2]) form an affinely
independent set in Rd (Problem 2.15.13).

2.13 Dehn–Sommerville’s Equations

Euler–Poincaré–Schläfli’s equation (Theorem 2.12.17) is the unique linear
equation satisfied by the f -vectors of all d-polytopes (Theorem 2.12.18),
but there are other linear equations satisfied by the f -vector of all polytopes
from a certain class. This is the case of Dehn–Sommerville’s (classical) equa-
tions (2.13.3), which are satisfied by the f -vector of all simplicial d-polytopes.
Dehn–Sommerville’s equations (Theorem 2.13.3) were first established for
dimension five by Dehn (1905), and later extended to all dimensions by
Sommerville (1927). As is often the case, the equations were independently
rediscovered by Klee (1964). For more information on the history of the
equations, consult Grünbaum (2003, sec. 9.8).

Our proof of Dehn–Sommerville’s equations relies on a generalisation of
Euler–Poincaré–Schläfli’s equation. We denote by Fi (F,P ) the set of i-faces
in a d-polytope P containing a k-face F , for k P [1 . . . d] and i P [k . . . d].
And we let fi(F,P ) := #Fi (F,P ).

Theorem 2.13.1 Let P be a d-polytope in Rd and let F be a proper k-face of
it. Then

fk(F,P ) ´ fk+1(F,P ) + ¨ ¨ ¨ + (´1)d´kfd(F,P ) = 0.

Remark 2.13.2 Euler–Poincaré–Schläfli’s equation (Theorem 2.13.3) corre-
sponds to the case F = H of Theorem 2.13.1.

Proof Without loss of generality, suppose that P is a d-polytope in Rd that
contains the origin in its interior, and let ψ be an antiisomorphism from L(P )

to L(P ˚). If we apply Euler–Poincaré–Schläfli’s equation to the (d ´ 1 ´ k)-
polytope ψ(F) (Theorem 2.4.12), we get that

f´1(ψ(F )) ´ f0(ψ(F )) + ¨ ¨ ¨ + (´1)d´1´kfd´2´k(ψ(F ))

+ (´1)d´kfd´1´k(ψ(F )) = 0. (2.13.2.1)
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The number fd´1´i (ψ(F )) of (d ´ 1 ´ i)-faces of ψ(F) coincides with the
number fi(F,P ) of i-faces in P containing F , which is a consequence of
Theorem 2.4.10 and Theorem 2.4.12. Thus (2.13.2.1) is equivalent to

fd(F,P ) ´ fd´1(F,P ) + ¨ ¨ ¨ + (´1)d´1´kfk+1(F,P )

+ (´1)d´kfk(F,P ) = 0.

This proves the the theorem.

Theorem 2.13.3 (Dehn–Sommerville’s equations for simplicial polytopes)
The f -vector of a simplicial d-polytope satisfies the expression

d´1
ÿ

i=k

(´1)i
(

i + 1

k + 1

)
fi = (´1)d´1fk,

for k = ´1, . . . ,d ´ 2.

Remark 2.13.4 Euler–Poincaré–Schläfli’s equation (Theorem 2.13.3) corre-
sponds to the case k = ´1 of the Dehn–Sommerville equations.

Proof For a k-face F of a simplicial d-polytope P , with k P [´1 . . . d ´ 2],
Theorem 2.13.1 yields that

fk(F,P ) ´ fk+1(F,P ) + ¨ ¨ ¨ + (´1)d´kfd(F,P ) = 0, (2.13.4.1)

which results in

(´1)kfk(F,P )+ (´1)k+1fk+1(F,P )+ ¨ ¨ ¨+ (´1)dfd(F,P ) = 0 (2.13.4.2)

if we multiply (2.13.4.1) by (´1)k . We run (2.13.4.2) over the set Fk(P ) of
k-faces in the polytope P , obtaining

ÿ

FPFk(P )

(´1)kfk(F,P ) + ¨ ¨ ¨ + (´1)dfd(F,P ) = 0,

which is equivalent to

d
ÿ

i=k

(´1)i
ÿ

FPFk(P )

fi(F,P ) = 0. (2.13.4.3)

For each k P [´1 . . . d ´ 2] and each i P [k . . . d], the sum
ř

FPFk(P ) fi(F,P ) counts the total number of inclusions between the k-
faces and i-faces in P : a k-face F of P is contained in fi(F,P ) i-faces of
P , and we do this count for each k-face of P . Another way of counting these
inclusions is to consider the i-faces. There are fi(P ) i-faces in P , and an
i-face J of P contains

(
i+1
k+1

)
k-faces if i P [k . . . d ´ 1] (as J is a simplex) and
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fk(P ) k-faces if i = d . For each k P [´1 . . . d ´ 2] and each i P [k . . . d], this
analysis gives that

0 =
d
ÿ

i=k

(´1)i
ÿ

FPFk(P )

fi(F,P ) =
d´1
ÿ

i=k

(´1)i
(

i + 1

k + 1

)
fi(P ) + (´1)dfk(P ).

The last equality is Dehn–Sommerville’s desired equation for k P [´1 . . . d ´

2].

Some of Dehn–Sommerville’s d equations of a simplicial d-polytope P are
redundant. Consider the case d = 3:

k = ´1 : ´f´1(P ) + f0(P ) ´ f1(P ) + f2(P ) = f´1(P ),

k = 0 : f0(P ) ´ 2f1(P ) + 3f2(P ) = f0(P ),

k = 1 : ´f1(P ) + 3f2(P ) = f1(P ).

(2.13.5)

The equations k = 0 and k = 1 are identical, and so the equation k = 1 is
redundant. Furthermore, the equations k = ´1 and k = 0 are irredundant.
In other words, the three equations are equivalent to the the first two. Now
consider the case d = 4:

k = ´1 : ´f´1(P ) + f0(P ) ´ f1(P ) + f2(P ) ´ f3(P ) = ´f´1(P ),

k = 0 : f0(P ) ´ 2f1(P ) + 3f2(P ) ´ 4f3 = ´f0(P ),

k = 1 : ´f1(P ) + 3f2(P ) ´ 6f3(P ) = ´f1(P ),

k = 2 : f2(P ) ´ 4f3(P ) = ´f2(P ).
(2.13.6)

The equations k = 1 and k = 2 are identical, and the equations k = ´1
and k = 1 imply the equation k = 0. In other words, the four equations are
equivalent to the equations k = ´1 and k = 1. This redundancy manifests in
all dimensions.

Theorem 2.13.7 10 For every d ě 1, precisely t(d + 1){2u of Dehn–
Sommerville’s d equations are irredundant.

A consequence of Theorem 2.13.7 is the existence of td{2u + 1 simplicial
d-polytopes whose f -vectors form an affinely independent set in Rd (Prob-
lem 2.15.14). Another consequence ensues.

Corollary 2.13.8 If we consider the f -vectors of simplicial d-polytopes as
points in Rd , then they lie in an affine subspace in Rd of dimension td{2u, and
on no affine subspace of smaller dimension.

10 A proof is available in Grünbaum (2003, p. 147).
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h-vectors of Simplicial Polytopes

Consider a simplicial d-polytope P and identify every face of P with its vertex
set. Following Ziegler (1995, sec. 8.3), for a shelling S := F1, . . . ,Fs of the
boundary complex B(P ) of P , we define the restriction set Rj of the facet
Fj as

Rj := tv P V(Fj )| (V(Fj )ztvu) Ď Fi,for some i P [1 . . . j ]u.

We use the shelling to build B(P ). For j P [2 . . . s], suppose that we have built
the subcomplex Cj´1 := C(F1 Y . . . Y Fj´1) of B(P ). When the facet Fj is
added to Cj´1, the faces introduced are precisely the faces X satisfying Rj Ď

X Ď Fj . Clearly, X Ď Fj . For the other direction, if X is not new then the
definition of a shelling (Definition 2.12.1) gives that X Ď Fj X Fi = Fj ztvu

for some Fi with i ă j and some v P V(Fj ). But the definition of a restriction
set yields that v P Rj , ensuring that X Ę Rj . We let Ij be the set of such new
faces:

Ij := tX P B(P )| Rj Ď X Ď Fj u. (2.13.9)

It follows that I1, . . . ,Is is a partition of the faces of B(P ). For k P [0 . . . d],
let hk(S) count the number of restriction sets with cardinality k:

hk(S) := #tj | #Rj = k, for j P [1 . . . s]u. (2.13.10)

From the numbers h0(S), . . . ,hd(S), we can recover the f -vector of P . Since
P is simplicial, in the case that #Rj = i, by (2.13.9) there are exactly

(
d´i
k´i

)
(k ´ 1)-faces in Ij , and thus

fk´1(P ) :=
k
ÿ

i=0

hi(S)

(
d ´ i

k ´ i

)
, for k = 0, . . . ,d,

=
d
ÿ

i=0

hi(S)

(
d ´ i

k ´ i

)
.

(2.13.11)

We can also obtain the number hk(S) in terms of the f -vector of P . For this,
we define the two polynomials

ϕf (x) :=
d
ÿ

k=0

fk´1(P )xd´k and ϕh(x) :=
d
ÿ

k=0

hk(S)xd´k,
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and using (2.13.11) and (x + 1)d´i = řd´i
j=0

(
d´i
j

)
xd´i´j we relate them as

ϕf (x) =
d
ÿ

k=0

fk´1(P )xd´k =
d
ÿ

k=0

(
d
ÿ

i=0

hi(S)

(
d ´ i

k ´ i

))
xd´k

=
d
ÿ

i=0

hi(S)

⎛
⎝d´i
ÿ

j=0

(
d ´ i

j

)
xd´i´j

⎞
⎠ =

d
ÿ

i=0

hi(S)(x + 1)d´i = ϕh(x + 1).

Equivalently, we have that ϕf (x ´ 1) = ϕh(x). This, together with the identity
(x ´ 1)d´i = řd´i

j=0(´1)j
(
d´i
j

)
xd´i´j , yields that

hk(S) =
k
ÿ

i=0

(´1)k´i

(
d ´ i

k ´ i

)
fi´1(P ), for k = 0, . . . ,d. (2.13.12)

From (2.13.12) it follows that the hk numbers are independent of the shelling
S, and so we will call the sequence (h0, . . . ,hd) the h-vector of P . The
reverse shelling S1 of S is also a shelling of B(P ), where the cardinality of
the restriction set R1

j of the facet Fj is d ´ k if the cardinality of Rj in S is k,
and therefore hd´k(S

1) = hk(S), for k P [0 . . . d]. Since the numbers hk are
independent of any shelling of B(P ), it follows that

hd´k = hk, for k = 0, . . . ,d. (2.13.13)

With some effort, and as described in the proof of Grünbaum (2003,
thm. 9.2.2), we get that (2.13.13) is another way of writing Dehn–
Sommerville’s equations for simplicial polytopes (Theorem 2.13.3).

Example 2.13.14 (Computation of h-vectors of simplicial polytopes) Con-
sider the octahedron P in Fig. 3.5.2(b) and the line shelling F1 := 123,F2 :=
135,F3 := 234,F4 := 345,F5 := 456,F6 := 156,F7 := 126,F8 := 246 of
B(P ). For this shelling we have that

R1 := H,R2 := t5u,R3 := t4u,R4 := t4,5u,R5 := t6u,

R6 := t1,6u,R7 := t2,6u,R8 := t2,4,6u.

Once we have the restriction sets, using (2.13.9) we get a partition of B(P ):

I1 := t1,2,3,12,13,23,123u,I2 := t5,15,35,135u,I3 := t4,24,34,234u,

I4 := t45,345u,I5 := t6,46,56,456u,I6 := t16,156u,I7 := t26,126u,

I8 := t246u.

The h-vector (1,3,3,1) of P is computed using (2.13.10):

h0 := 1,h1 := #t2,3,5u,h2 := #t4,6,7u,h3 := #t8u.
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Ziegler (1995, ex. 8.22) also illustrates the computation of the h-vector of
the octahedron by considering a shelling and its reverse shelling, both different
from the shelling in Example 2.13.14.

Dehn–Sommerville’s Equations for Cubical Polytopes

The f -vectors of cubical polytopes satisfy equations that are similar to Dehn–
Sommerville’s equations for simplicial polytopes.

Theorem 2.13.15 (Dehn–Sommerville’s equations for cubical polytopes)11 Let
P be a cubical d-polytope in Rd . Then, apart from Euler–Poincaré–Schläfli’s
equation:

d´1
ÿ

i=´1

(´1)ifi(P ) = (´1)d´1f´1(P ),

the f -vector of P satisfies

d´1
ÿ

i=k

(´1)i2i´k

(
i

k

)
fi(P ) = (´1)d´1fk(P ),

for k = 0, . . . ,d ´ 2.

The next corollary of Theorem 2.13.15 is the analogue of Corollary 2.13.8.

Corollary 2.13.16 If we consider the f -vectors of cubical d-polytopes as
points in Rd , then they lie in an affine subspace in Rd of dimension td{2u,
and on no affine subspace of smaller dimension.

Problem 2.15.16 presents a family of td{2u + 1 cubical d-polytopes whose
f -vectors are affinely independent in Rd .

2.14 Gale Transforms

The Gale transform of the vertices of a polytope captures the combinatorial
structure of the polytope in a very compact manner. While ideas related to Gale
transforms had been exploited by a number of authors, M. A. Perles seemed to
have been the first that formalised the method (Grünbaum, 2003, sec. 5.4).

An (affine) point configuration is a collection X := tx1, . . . ,xnu of n, not
necessarily distinct, points that lies in an affine space Rd and that affinely

11 A proof is available in Grünbaum (2003, sec. 9.4).
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spans Rd . Similarly, a vector configuration is a collection X := tx1, . . . ,xnu

of n, not necessarily distinct, vectors that lies in a linear space Rd and that
linearly spans Rd . In either case, often will we consider the set X as a sequence
(x1, . . . ,xn) or as a d ˆn matrix with the element xi as the ith column. A Gale
transform of a point configuration X of n points in the affine space Rd is a
vector configuration of n vectors in the linear space Rn´d´1. We next develop
the machinery to compute Gale transforms.

Given a point configuration X := tx1, . . . ,xnu in Rd , the set dep X of its
affine dependences contains all the vectors a P Rn satisfying 1n ¨ a = 0 and
Xa = 0, where X is viewed as a d ˆn matrix. This is equivalent to stating that

dep X :=
#

a = (a1, . . . ,an)
t

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=1

ai = 0 and
n
ÿ

i=1

aixi = 0d

+

. (2.14.1)

We homogenise the configuration X by associating the vector pxi :=
(

xi

1

)
P

Rd+1 with the point xi P Rd . This gives a vector configuration pX :=
tpx1, . . . ,pxnu in Rd+1 whose set ldep pX of linear dependences coincides with
the set dep X:

ldep pX :=

$

’

&

’

%

a =

⎛
⎜⎝

a1
...

an

⎞
⎟⎠
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pXa = 0d+1,or, equivalently,
n
ÿ

i=1

aipxi = 0d+1

,

/

.

/

-

.

(2.14.2)

Remark 2.14.3 The sets dep X and ldep pX are symmetric about the origin or
centrally symmetric; that is, a P dep X if and only if ´a P dep X. So it often
suffices to record only one element of the pair (a, ´ a).

For every point configuration X with n ě d + 1 points in Rd , the set dep X

is a linear subspace of Rn of dimension n ´ d ´ 1. To see this, note that dep X

coincides with the nullspace of pX, where pX is viewed as a (d + 1) ˆ n matrix.
Since X affinely spans Rd , the row vector space of pX is (d + 1)-dimensional.
This in turn implies that (row pX)K, which coincides with null pX, is (n´d ´1)-
dimensional (Problem 1.12.5).

We now define a Gale transform of a point configuration in Rd .

Definition 2.14.4 (Gale transform) Let X := (x1, . . . ,xn) be a point
configuration in Rd , and let Y be an n ˆ (n ´ d ´ 1) matrix whose columns
y1, . . . ,yn´d´1 form a basis in Rn of dep X. The Gale transform G of X is the
vector configuration G(X) = (G(x1), . . . , G(xn)) in Rn where G(xi ) is the ith
row of Y , for each i P [1 . . . n].
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Regarding a Gale transform as a matrix gives rise to further observations.

Remark 2.14.5 Let X := (x1, . . . ,xn) be a point configuration in Rd , and
consider the vector configuration pX as a (d +1)ˆn matrix and the matrix Y of
Definition 2.14.4. If we regard the Gale transform G(X) of X as a d ˆn matrix
with columns G(x1), . . . , G(xn), then Problems 1.12.4 and 1.12.5 yield that

Y t = G(X), null pX = col Y = rowG(X), and row pX = nullG(X).

When computing a Gale transform of the vertex set V of a polytope, we view
V as a sequence; we just fix an ordering of the elements of it. Example 2.14.6
exemplifies Definition 2.14.4.

Example 2.14.6 Consider the 3-polytope of Fig. 2.14.1, whose vertices are

v1 := (0,0, ´ 1)t, v2 := (1,0, ´ 1)t, v3 := (0,1, ´ 1)t, v4 := (0,0,1)t,

v5 := (1,2,1)t, v6 := (0,1,1)t,

and compute a Gale transform of the sequence V = (v1, . . . ,v6) according to
Definition 2.14.4.

We compute a basis of dep V , or equivalently, a basis of null pV . Homogenise
the matrix V formed by the vertices of the polytope, obtaining pV . Choose a
basis of null pV , for instance (1,0, ´ 1, ´ 1,0,1)t and (0,1, ´ 1, ´ 2, ´ 1,3)t ,
and form the 2 ˆ 6 matrix Y with the vectors in the basis as columns. Then,
the transpose of Y produces the Gale transform G(V ) of V associated with the
aforementioned basis. See the matrices pV , Y , and G(V ) below:

pV =

⎛
⎜⎜⎝

0 1 0 0 1 0
0 0 1 0 2 1

´1 ´1 ´1 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

´1 ´1
´1 ´2
0 ´1
1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

G(V ) =
⎛
⎝G(v1) G(v2) G(v3) G(v4) G(v5) G(v6)

1 0 ´1 ´1 0 1
0 1 ´1 ´2 ´1 3

⎞
⎠

As expected, a Gale transform of V consists of six vectors lying in R2;
Fig. 2.14.1(b) depicts a realisation of G(V ).

We emphasise that a Gale transform is defined for a point configuration and
not for individual points. The next proposition provides some basic properties
of Gale transforms.
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v2 = (1, 0,−1)t

v5 = (1, 2, 1)t

v6 = (0, 1, 1)t

v4 = (0, 0, 1)t

v3 = (0, 1,−1)t

G(v6)

G(v1)

G(v5)

G(v3)

G(v4)

G(v2)

v1
(0, 0,−1)t

(a)

(b)

Figure 2.14.1 Computation of a Gale transform of a 3-polytope with six vertices.
(a) A realisation of the polytope. (b) A realisation of a Gale transform of the
polytope.

Proposition 2.14.7 Let X = (x1, . . . ,xn) be a point configuration in Rd and
let G(X) = (G(x1), . . . , G(xn)) be a Gale transform of X. Then the following
hold.

(i) The vectors of G(X) need not be all distinct.
(ii) The vectors of G(X) satisfy

řn
i=1 G(xi ) = 0n´d´1, and G(X) linearly

spans Rn´d´1.
(iii) The vectors of G(X) positively span Rn´d´1.
(iv) Every open halfspace bounded by a linear hyperplane in Rn´d´1 contains

at least one vector from G(X).
(v) The points of X are in (affine) general position in Rd – that is, no d + 1

of them lie in a hyperplane–if and only if the vectors of G(X) are in linear
general position in Rn´d´1; that is, no n ´ d ´ 1 of them lie in a linear
hyperplane.

(vi) A Gale transform is determined up to linear isomorphism. In other words,
suppose that Y = (y1, . . . ,yn´d´1) and Z = (z1, . . . ,zn´d´1) are two
bases of dep X so that YA = Z for a nonsingular matrix A. And suppose
that GY and GZ are the Gale transforms of X associated with Y and Z

(Definition 2.14.4). Then, for each i P [1 . . . n], we have that

GZ(xi ) = At GY (xi ).

Proof We provide a proof of (vi), and leave the rest to the reader.
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Let Y := (y1, . . . ,yn´d´1) be a basis in Rn of dep X and let

(G(x1), . . . , G(xn))

be the Gale transform of X associated with the basis Y (Definition 2.14.4).
Choose another basis in Rn´d´1 of dep X, say z1, . . . ,zn´d´1, and let Z be
the n ˆ (n ´ d ´ 1) matrix having zi as its ith column. Then we obtain the
equality YA = Z where A = (ai,j ) is a nonsingular (n ´ d ´ 1) ˆ (n ´ d ´ 1)

matrix and zi = a1,iy1 + ¨ ¨ ¨ + an´d´1,iyn´d´1 for each i P [1 . . . n ´ d ´ 1].
In this setting, the sequence

(At G(x1), . . . ,A
t G(xn))

is the Gale transform of X associated with the basis Z.

Henceforth, we talk of the Gale transform of a point configuration, with the
understanding stated in Proposition 2.14.7(vi).

While we have stressed that the elements of a Gale transform should be
understood as vectors in a linear space Rm, sometimes we need to interpret
them as points in the affine space Rm so that we can carry out operations
on them such as convex hulls. Theorem 2.14.8 exemplifies this situation and
shows how to query a Gale transform.

Theorem 2.14.8 12 Let V := tv1, . . . ,vnu be a point configuration in Rd and
let G(V ) := (G(v1), . . . , G(vn)) be the Gale transform of V . Moreover, let
W Ă V and let G(W) be the restriction of G(V ) to the points in W . The set
conv W is a proper face of the d-polytope conv V if and only if 0n´d´1 P

rint(conv(G(V )zG(W))).

We test Theorem 2.14.8 on the 3-polytope of Fig. 2.14.1.

Example 2.14.9 Let V := tv1, . . . ,v6u be the vertex set of the 3-polytope P

of Fig. 2.14.1, and let G(V ) := (G(v1), . . . , G(v6)) be the Gale transform of
V . Applying Theorem 2.14.8 to G(V ) yields the following.

(i) The vertex sets of the edges of P incident with v1 are W1 := tv1,v2u,
W2 := tv1,v4u, and W3 := tv1,v3u, as 02 P rint(conv(G(V )zG(Wi))) for
i = 1,2,3. It also follows that the sets tv1,v5u and tv1,v6u are not edges
of P .

(ii) The vertex sets of the 2-faces of P incident with v1 are W4 :=
tv1,v2,v3u, W5 := tv1,v2,v4u, and W6 := tv1,v3,v4,v6u, as 02 P

rint(conv(G(V )zG(Wi))) for i = 4,5,6.

12 A proof is available in Webster (1994, thm. 3.6.6).

https://doi.org/10.1017/9781009257794.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009257794.003


2.14 Gale Transforms 141

The power of the Gale transform (and Theorem 2.14.8) comes to light when
dealing with d-polytopes that have d + 2, d + 3, or d + 4 vertices, since in
these cases the transforms lie in R, R2, and R3, respectively. Its power is also
visible when studying pyramids and simplicial polytopes.

Theorem 2.14.10 13 Let P be a polytope with vertex set V and let G(V ) be
the Gale transform of V . Then P is a pyramid with apex v if and only if
G(v) = 0. Furthermore, the Gale transform of the base conv(V ztvu) of P

is G(V )ztG(v)u.

A corollary immediately ensues.

Corollary 2.14.11 Let P be a polytope with vertex set V and let G(V ) be the
Gale transform of V . Then P is an r-fold pyramid with apices v1, . . . ,vr if and
only if G(v1) = ¨ ¨ ¨ = G(vr ) = 0.

A d-simplex is a d-fold pyramid over a 0-simplex, which combined with
Proposition 2.14.7 yields the following.

Corollary 2.14.12 Let tv1, . . . ,vd+1u be the vertex set of a d-simplex. Then
G(v1) = ¨ ¨ ¨ = G(vd+1) = 0.

As in the case of pyramids, Gale transforms of simplicial polytopes can be
easily characterised.

Theorem 2.14.1314 Let G be the Gale transform of a d-polytope on n vertices.
The polytope is simplicial if and only if 0 R rint(conv(G XH)) for every linear
hyperplane H in Rn´d´1.

The computation described in Definition 2.14.4 can certainly be applied to a
point configuration X in Rd that does not represent the vertices of a polytope.
So how can we tell if the sequence X is in convex position? Theorem 2.14.14
provides an answer.

Theorem 2.14.14 15 A sequence G(V ) := (G(v1), . . . , G(vn)) of vectors in
Rn´d´1 is the Gale transform of a d-polytope (other than the simplex) with
vertex set V if and only if

(i)
řn

i=1 G(vi ) = 0n´d´1 and,
(ii) every open halfspace bounded by a linear hyperplane in Rn´d´1 contains

at least two vectors of G(V ).

13 A proof is available in McMullen and Shephard (1971, thm. 3).
14 A proof is available in Webster (1994, thm. 3.6.9).
15 A proof is available in Webster (1994, thm. 3.6.8).
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Projectively isomorphic polytopes can be told from their corresponding
Gale transforms, and so can affinely isomorphic polytopes. Two polytopes P

and P 1 are affinely isomorphic if there is an affine isomorphism � such that
�(P ) = P 1.

Theorem 2.14.15 (Grünbaum 2003, thms. 5.4.6–4.7) Let P and P 1 be two
polytopes, let V = tv1, . . . ,vnu and V 1 = �

v1
1, . . . ,v

1
n

(

be their respective
vertex sets, and let (G(v1), . . . , G(vn)) and (G(v1

1), . . . , G(v1
n)) be their

respective Gale transforms. Then the following hold.

(i) There is an affine isomorphism � between P and P 1 with �(vi ) = v1
i if and

only if there is a nonsingular matrix A such that G(v1
i ) = AG(vi ) for each

i P [1 . . . n].
(ii) There is a projective isomorphism ζ between P and P 1 that is admissible

for P and satisfies ζ(vi ) = v1
i if and only if there is a nonsingular matrix

A and positive scalars α1, . . . ,αn such that G(v1
i ) = αiAG(vi ) for each

i P [1 . . . n].

If the vectors of the Gale transform G of a polytope P are multiplied by
positive scalars, then we obtain a vector configuration S that will produce the
same face lattice as G when we apply Theorem 2.14.8 to it. But S may not
satisfy all the properties of a Gale transform (Proposition 2.14.7); in particular,
the sum of vectors of S may not result in the zero vector. We say that a Gale
diagram of a d-polytope on n vertices is a vector configuration S with n

vectors in Rn´d´1 that produces the face lattice of the polytope when we apply
Theorem 2.14.8 to it. It follows that Gale diagrams generalise Gale transforms.
In this context, we say that two Gale diagrams of polytopes are isomorphic if
they produce isomorphic face lattices.

It is customary to normalise the vectors of a Gale diagram and call the
resulting configuration a standard Gale diagram, as done in McMullen and
Shephard (1971, p. 138). For Grünbaum (2003, sec. 5.4), however, every Gale
diagram is a standard Gale diagram. From a Gale diagram

G(X) := (G(x1), . . . , G(xn)),

a standard Gale diagram G1(X) can be obtained as follows:

G1(X) :=
#

G(xi ), if G(xi ) = 0;
G(xi )
‖xi‖ , otherwise.

(2.14.16)

The new configuration G1 of vectors is a subset of t0u Y Sn´d´2. And by
virtue of Theorem 2.14.8, the sequence G1(X) is endowed with the same
combinatorial properties of G(X). In drawing the diagram G1 on t0uYSn´d´2,
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G(v6)

G(v1)

G(v2)

G(v5)

G(v3)
G(v4)

G(v6)
G(v1)

G(v2)

G(v3)G(v5)

G(v4)

(a) (b)

G(v7)

(c)

(− 1
2 ,

1
2 )t

(0, 1)t

(0, 0)t

( 1
2 ,

1
2 )t

(0,−1)t

(− 1
2 ,− 1

2 )t ( 1
2 ,− 1

2 )t

Figure 2.14.2 Gale diagrams of polytopes. (a) The standard Gale diagram
corresponding to the Gale transform of Fig. 2.14.1(b). (b) The standard Gale
diagram of a pyramidal 4-polytope. (c) A Gale transform isomorphic to the Gale
diagram in (b).

we draw the sphere and extend each vector so that it becomes a diameter of
the sphere, as in Fig. 2.14.2(a)–(b). In what follows, we normalise our Gale
diagrams.

When we are interested only in the face lattice that results from applying
Theorem 2.14.8 to a Gale transform, we will resort to Gale diagrams without
specifying concrete vectors. The next result is the combinatorial equivalent of
Theorem 2.14.15.

Theorem 2.14.17 Let P and P 1 be two polytopes with vertex sets V and V 1,
respectively, and let G(V ) and G(V 1) be their respective Gale diagrams. The
polytopes are combinatorially isomorphic if and only if their Gale diagrams
are isomorphic.

We have learnt how to construct the Gale transform of a polytope given
its vertices (Definition 2.14.4), and how to produce the face lattice of a
polytope P from its Gale diagram (Theorem 2.14.8). But what about if we
want a realisation of a polytope that is combinatorially isomorphic to P ;
Example 2.14.18 demonstrates how to do so.

Example 2.14.18 Produce a realisation of a polytope P that is combinatorially
isomorphic to a polytope whose Gale diagram G appears in Fig. 2.14.2(b). Let
V := V(P ).

Figure 2.14.2(b) first reveals that P has n = 7 vertices and dimension
d = 4, as the Gale diagram lies in t0u Y S. Moreover, P is a pyramid because
G(v7) = 0 (Theorem 2.14.10). To produce a realisation of P , we produce a
Gale transform G1 isomorphic to G by associating concrete vectors in R2 that
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are nonzero multiples of the vectors in G and whose sum is 02. Possible vectors
are given below.

G1(V ) =
⎛
⎝G1(v1) G1(v2) G1(v3) G1(v4) G1(v5) G1(v6) G1(v7)

0 1
2

1
2 0 ´

1
2 ´

1
2 0

1 1
2 ´

1
2 ´1 ´

1
2

1
2 0

⎞
⎠ .

The rows of G1(V ) form a basis of dep V or, equivalently, a basis of null pV
or, equivalently, a basis of (row pV )K by Problem 1.12.5. We are looking for a
basis of row pV or, equivalently, a basis B of nullG1(V ) that includes the all-one
vector (Remark 2.14.5). After finding the basis B, the matrix pV is constructed
by placing the vectors of B as rows, with the all-one vector as the last row. The
matrices V and pV are given below, from left to right.

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7

´1 1 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 ´1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

´1 1 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 ´1 1 0 0 0 0
1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠ .

Applications of Gale Diagrams

Gale diagrams facilitate the description and enumeration of d-polytopes with
d + 2 and d + 3 vertices. The case of d + 2 vertices is not as complicated as
the case of d + 3 vertices (Fusy, 2006), which makes it appropriate for a neat
application of Gale diagrams. See Fig. 2.14.3.

Theorem 2.14.19 16 There are precisely td2{4u nonisomorphic d-polytopes
with d + 2 vertices. Among these, the td{2u simplicial d-polytopes are direct
sums of simplices, namely T (r) ‘ T (s) with r,s ě 1 and r + s = d. The
remaining nonsimplicial d-polytopes are t-fold pyramids over T (r) ‘ T (s)

with r,s,t ě 1 and r + s + t = d .

(a) (b)

r + 1 t s + 1 r + 1 s + 1
−1 −1 110 0

Figure 2.14.3 Gale diagrams of d-polytopes with d + 2 vertices. (a) The Gale
diagrams corresponding to nonsimplicial polytopes. (b) The Gale diagrams
corresponding to simplicial polytopes.

16 A proof is available in Webster (1994, thm. 3.6.10).
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Affine Gale Diagrams

As Theorem 2.14.8 demonstrates, the combinatorial structure of a d-polytope
on n vertices can be read off from its Gale transform on Rn´d´1. It turns out
that this can also be done from a point configuration on Rn´d´2, from affine
Gale diagrams. This reduction in dimension means that if n ´ d ´ 1 = 3, then
the Gale transform would lie in R3, but an affine Gale diagram would lie in R2.
Sturmfels (1988) seems to have been the first to utilise affine Gale diagrams.

Affine Gale diagrams are central projections of Gale transforms onto
nonlinear hyperplanes. Let V := tv1, . . . ,vnu be the vertex set of a d-polytope
conv V and let G be the Gale transform of V . We choose a nonlinear hyperplane
H := tx P Rn´d´1 | a ¨ x = 1u not parallel to any vector in G; that is,
a ¨G(vi ) ‰ 0 for each i P [1 . . . n]. Centrally project each nonzero vector G(vi )

of G onto a point Ga(vi ) in H : the vector G(vi ) is mapped to the intersection
Ga(vi ) of H and a line through 0 and G(vi ). Notationally, we have that

Ga(vi ) := G(vi )

a ¨ G(vi )
, for each i P [1 . . . n]. (2.14.20)

The affine Gale diagram Ga of V is the point configuration

Ga(V ) = (Ga(v1), . . . , Ga(vn)). (2.14.21)

We need to distinguish between a point Ga(vi ) obtained from a vector G(vi )

directed towards H , one satisfying a ¨ G(vi ) ą 0, and a point obtained from
vectors G(vi ) directed away from H , one satisfying a ¨ G(vi ) ă 0. Call the
former point positive, and if a differentiation is necessary, denote it G+

a (vi );
and call the latter point negative and denote it G´

a (vi ), if necessary. The set of
positive points of Ga(V ) will be denoted by G+

a (V ), while the set of negative
points will be denoted by G´

a (V ). A zero vector G(vi ) has no central projection
onto H and so is a special point. To realise the reduction in dimension, we need
an isomorphism σ between H and Rn´d´2; since a = (a1, . . . ,an´d´1)

t

is nonzero, there exists ai ‰ 0, which implies that the projection ‘deleting’
the i coordinate of each Ga(vi ) does the trick. For the sake of simplicity,
we also denote by Ga(vi ) the point σ(Ga(vi )) and denote by Ga(V ) the set
of these points in Rn´d´2. Finally, to depict Ga(V ) in Rn´d´2, we draw
the positive points with black dots, the negative points with white dots, and
specify the number of special points by drawing a grey point and a number. We
exemplify the construction of an affine Gale diagram for the Gale transform in
Fig. 2.14.1(b).
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Figure 2.14.4 An affine Gale diagram from a Gale transform. (a) A realisation of
the Gale transform G in Fig. 2.14.1(b), a nonlinear hyperplane H , and the central
projection of the vectors in G onto H . (b) A realisation of an affine Gale diagram
Ga for G.

Example 2.14.22 Consider the Gale transform in Fig. 2.14.1(b):

G(V ) =
⎛
⎝G(v1) G(v2) G(v3) G(v4) G(v5) G(v6)

1 0 ´1 ´1 0 1
0 1 ´1 ´2 ´1 3

⎞
⎠ .

We choose a := (1{2,1{2)t , compute the affine Gale diagram

Ga(v1) := G(v1)

a ¨ G(v1)
=

(
2
0

)
, Ga(v2) := G(v2)

a ¨ G(v2)
=

(
0
2

)
,

Ga(v3) := G(v3)

a ¨ G(v3)
=

(
1
1

)
, Ga(v4) := G(v4)

a ¨ G(v4)
=

(
2{3
4{3

)
,

Ga(v5) := G(v5)

a ¨ G(v5)
=

(
0
2

)
, Ga(v6) := G(v6)

a ¨ G(v6)
=

(
1{2
3{2

)
,

and project the points onto the x2 = 0 hyperplane to produce

Ga(v1) := 2, Ga(v2) := 0, Ga(v3) := 1, Ga(v4) := 2{3, Ga(v5) := 0,

Ga(v6) := 1{2.

There is no special point in Ga . As expected, an affine Gale diagram of V

consists of six points lying in R1; Figure 2.14.4(b) depicts Ga(V ).
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Affine Gale diagrams convey the same combinatorial information as Gale
transforms and Gale diagrams, as we now demonstrate.

Theorem 2.14.23 Let V := tv1, . . . ,vnu be a point configuration in Rd and
Ga(V ) := (Ga(v1), . . . , Ga(vn)) an affine Gale diagram of V with no special
points. Moreover, let W Ă V and let Ga(W) be the restriction of Ga(V ) to the
points in W . The set conv W is a proper face of the d-polytope conv V if and
only if

rint(conv(G+
a (V )zG+

a (W))) X rint(conv(G´
a (V )zG´

a (W))) ‰ H.

Proof It suffices that the condition of this theorem is equivalent to the
condition of Theorem 2.14.8. Let G(V ) := tG(v1), . . . , G(vn)u be the Gale
transform and H := tx P Rn´d´1 | a ¨ x = 1u the hyperplane in Rn´d´1

used in the computation of Ga . Assume that Ga(V ) lies in H X Rn´d´1.
Further, without loss of generality assume that G(V )zG(W) = tv1, . . . ,vku.
We partition the set I = t1, . . . ,ku into two subsets I+ and I´ according to
the sign of a ¨ G(vi ). That is,

I+ := ti P I | a ¨ G(vi ) ą 0u and I´ := tj P I | a ¨ G(vj ) ă 0u .

Suppose that 0n´d´1 P rint(conv(G(V )zG(W))). By Theorem 1.7.6, this is
equivalent to the existence of positive scalars α1, . . . ,αk satisfying

řk
i=1 αi =

1 and 0n´d´1 = řk
i=1 αi G(vi ), which in turn implies that

ÿ

iPI+
αi G(vi ) = ´

ÿ

jPI´

αj G(vj ) (2.14.23.1)

and that
ÿ

iPI+
αia ¨ G(vi ) = ´

ÿ

jPI´

αja ¨ G(vj ). (2.14.23.2)

From (2.14.23.2), it is clear that both I+ and I´ are nonempty. We show
the existence of a point

x P rint(conv(G+
a (V )zG+

a (W))) X rint(conv(G´
a (V )zG´

a (W))),

which would settle the first direction.
Let α := ř

iPI+ αia ¨ G(vi ) and let

x :=
ÿ

iPI+

αia ¨ G(vi )

α
Ga(vi ) =

ÿ

iPI+

αia ¨ G(vi )

α

G(vi )

a ¨ G(vi )
. (2.14.23.3)

Since a ¨ G(vi ) ą 0 for i P I+ and αi ą 0, we find that αia ¨ G(vi ){α ą 0 and
α ą 0, which combined with

ř

iPI+(αia ¨ G(vi )){α = 1 give that

x P rint(conv(G+
a (V )zG+

a (W))).
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On the other hand, α = ´
ř

jPI´ αja ¨ G(vj ) by (2.14.23.2). So from
(2.14.23.1) and (2.14.23.3), it follows that

x =
ÿ

jPI´

(´αj )a ¨ G(vj )

α
Ga(vj ) =

ÿ

jPI´

(´αj )a ¨ G(vj )

α

G(vj )

a ¨ G(vj )
,

which implies x P rint(conv(G´
a (V )zG´

a (W))), as desired.
For the other direction, suppose that there exists a point x P H satisfying

x P rint(conv(G+
a (V )zG+

a (W))) X rint(conv(G´
a (V )zG´

a (W))).

Then

x =
ÿ

iPI+
βi Ga(vi ), with βi ą 0 for i P I+ and

ÿ

iPI+
βi = 1,

x =
ÿ

jPI´

βj Ga(vj ), with βj ą 0 for j P I´ and
ÿ

jPI´

βj = 1,

which yields that

0n´d´1 =
ÿ

iPI+
βi Ga(vi ) +

ÿ

jPI´

(´βj )Ga(vj )

=
ÿ

iPI+
βi

G(vi )

a ¨ G(vi )
+

ÿ

jPI´

(´βj )
G(vj )

a ¨ G(vj )
.

Since βi{(a ¨ G(vi )) ą 0 for i P I+ and (´βj ){(a ¨ G(vj )) ą 0 for j P I´, it
follows that

0n´d´1 P rint(convtG(v1), . . . , G(vk)u) = rint(conv(G(V )zG(W))).

If σ is an isomorphism from H to Rn´d´2, then it is clear that any positive
combination involving x and points in Ga will remain valid under σ . This
completes the proof of the theorem.

We test Theorem 2.14.23 with the polytope in Fig. 2.14.1.

Example 2.14.24 Let V := tv1, . . . ,v6u be the vertex set of the 3-polytope P

of Fig. 2.14.1 and let Ga(V ) := (Ga(v1), . . . , G(v6)) be an affine Gale diagram
of V . We have that G+

a (V ) := tG+
a (v1), G+

a (v2), G+
a (v6)u and G´

a (V ) :=
tG´

a (v3), G´
a (v4), G´

a (v5)u. Applying Theorem 2.14.23 to Ga(V ) yields the
following.

(i) The sets W1 := tv1,v2u, W2 := tv1,v4u, and W3 := tv1,v3u are edges of
P , as

rint(conv(G+
a (V )zG+

a (Wi))) X rint(conv(G´
a (V )zG´

a (Wi))) ‰ H
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for i = 1,2,3. It also follows that the set W 1
1 := tv1,v6u is not an edge of

P since

rint(conv(G+
a (V )zG+

a (W 1
1))) X rint(conv(G´

a (V )zG´
a (W 1

1))) = H.

However, observe that

conv(G+
a (V )zG+

a (W 1
1)) X conv(G´

a (V )zG´
a (W 1

1)) ‰ H.

(ii) The set W6 := tv1,v3,v4,v6u is a 2-face of P , as

rint(conv(G+
a (V )zG+

a (W6))) X rint(conv(G´
a (V )zG´

a (W6))) ‰ H.

We now give the translation of Theorem 2.14.14 to affine Gale diagrams

Theorem 2.14.25 17 A sequence Ga(V ) := (Ga(v1), . . . , Ga(vn)) of points in
Rn´d´2 is an affine Gale diagram of a d-polytope (other than a pyramid) with
vertex set V if and only if, for any hyperplane H spanned by some of the points
in Ga(V ) and for each open halfspace determined by H , the number of positive
points on this halfspace plus the number of negative points on the other open
halfspace is at least two.

Verify this theorem with the affine Gale diagram in Fig. 2.14.4.
Theorems 2.14.23 and 2.14.25 are stated for a polytope P with no special

points. This is not a limitation, since adding k special points amounts to taking
a k-fold pyramid Q over P , and the combinatorics of Q is determined by that
of P and the number k.

2.15 Problems

2.15.1 Let P and Q be polytopes in Rd , let α P R, and let K be an affine
subspace of Rd . Prove that P + Q, P X Q, P X K , and αP are all polytopes
in Rd .

2.15.2 Let P be a polytope and let F be a facet of it. Suppose there are exactly
two vertices outside F . Prove that these vertices must be adjacent.

2.15.3 Let P be a d-polytope, F an h-face of P , and F0 a proper k-face of F

with ´1 ď k ă h ď d . Prove that there exists a (d ´ h + k)-face F1 of P such
that F0 = F1 X F and P = conv(F Y F1).

17 A proof is available in Ziegler (1995, thm. 6.1.9).
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2.15.4 Let P be a d-polytope, Fj a j -face of P , and Fi an i-face of P such
that ´1 ď i ă j ď d . Prove that the lattice L(Fj {Fi) is a sublattice of the
lattice L(P ).

2.15.5 Prove that a d-polytope is a d-simplex if and only if it has d + 1 facets.

2.15.6 (Pyramids) Let P be a d-polytope. Prove the following.

(i) If P = F ˚ v is a pyramid, then F is a pyramid with apex w ‰ v if and
only if P is a pyramid with apex w.

(ii) A d-polytope is a pyramid over r distinct facets if and only if it is an r-fold
pyramid.

2.15.7 Let P and P 1 be two d-polytopes with a facet F of P projectively iso-
morphic to a facet F 1 of P 1. Prove that there exists a projective transformation
ζ such that conv(P Y ζ(P 1)) is a realisation of P #F P 1.

2.15.8 Prove that a polytope P is k-simplicial if and only if P ˚ is k-simple.

2.15.9 (McMullen, 1976) Prove that the connected sum of two polytopes along
simplex facets is always possible. This amounts to proving that a simplex is
projectively isomorphic to any other realisation of a simplex.

2.15.10 Prove that if we stack over a facet F of a polytope P , then the
conjugate vertex of F in the dual polytope P ˚ of P gets truncated, and vice
versa.

2.15.11 Prove that if we perform the wedge of a polytope P at a facet F

of it, then we are performing the dual wedge of the dual polytope P ˚ at the
conjugate vertex of F in P ˚, and vice versa.

2.15.12 (Ewald and Shephard, 1974) A polytope can be made simple by
truncating the vertices, then the original edges, and so on up to the ridges of
the polytope.

2.15.13 Consider the simplicial (d ´ r)-polytope Fr := T (1) ‘ T (d ´ r ´ 1),
and the r-fold pyramids pyrr (Fr), for r P [0 . . . d ´2]. Prove that the f -vectors
of the d-polytopes T (d) and pyrr (Fr) (for r P [0 . . . d ´ 2]) form an affinely
independent set in Rd .

2.15.14 Prove that the f -vectors of the following sets of simplicial
d-polytopes form a set of affinely independent vectors in Rd .
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(i) The d-simplex and the td{2u simplicial d-polytopes T (r)‘T (s) with r,s ě

1 and r + s = d .
(ii) The cyclic d-polytopes C(n,d),C(n + 1,d), . . . ,C(n + td{2u,d) with n ě

d + 1.

2.15.15 (Cuboids; Grünbaum, 2003, sec. 4.6) The cuboid Q(d,0) is combina-
torially isomorphic to the d-cube Q(d). For r P [0 . . . d], the cuboid Q(d,r) is
obtained by ‘pasting together’ two cuboids Q(d,k´1) along a common cuboid
Q(d ´ 1,k ´ 1). This operation requires that the two cuboids Q(d,k ´ 1) are
deformed beforehand. Prove the following.

(i) fk(Q(d,0)) = 2d´1
(
d
k

)
.

(ii) fk(Q(d,r)) = 2fk(Q(d,r ´ 1)) ´ fk(Q(d ´ ,r ´ 1)), for k P [0 . . . d ´

1 ´ r].
(iii) For k,r ě 0 and k P [0 . . . d ´ 1 ´ r], it holds that

fk(Q(d,r)) =
r
ÿ

i=0

(
r

i

)(
d ´ i

k

)
2d+r´k´2i .

2.15.16 Prove that the cubical d-polytopes Q(d,0), . . . ,Q(d,td{2u) defined
in Problem 2.15.15 form a set of affinely independent vectors in Rd .

2.15.17 Let P be a d-polytope in Rd and let G be a Gale diagram of P . Prove
that if v is a vertex of P , then G z tG (v)u is a Gale diagram, but not necessarily
the Gale transform, of the vertex figure P {v of P at v.

2.15.18 Produce realisations of polytopes combinatorially isomorphic to the
polytopes whose Gale diagrams appear in Fig. 2.15.1.

2

2

(a)

2

(b)

2

(c) (d)

2

Figure 2.15.1 Gale diagrams of four 4-polytopes with seven vertices; the labels
state the number of vectors in the corresponding position.
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2.15.19 (Projectively unique polytopes; McMullen, 1976) A polytope P is
projectively unique if every polytope combinatorially isomorphic to P is
projectively isomorphic to P . Prove the following.

(i) The d-simplex is projectively unique.
(ii) Every d-polytope with d + 2 vertices is projectively unique.

(iii) The dual polytope of a projectively unique polytope is also projectively
unique.

(iv) The join of two polytopes P1 and P2 is projectively unique if and only if
both P1 and P2 are projectively unique.

2.15.20˚ (Perfect shellings; Ziegler, 1995, ex. 8.9) Let F1, . . . ,Fs be a
shelling of a polytope. For each i P [1 . . . s], order the (d ´ 2)-faces of Fi

as they appear in this list: F1 XFi , F2 XFi , Fi´1 XFi , Fi+1 XFi , . . ., Fs XFi .
If, for each i P [1 . . . s], this ordering of the (d ´ 2)-faces of Fi is a shelling of
Fi , then we say that the shelling is perfect.

(i) Does every polytope have a perfect shelling?
(ii) Does every simple polytope have a perfect shelling?

(iii) Does every cubical polytope have a perfect shelling?

Ziegler attributes the first question to Gil Kalai. It is known that simplicial
polytopes, duals of cyclic polytopes, d-cubes, and 3-polytopes all have perfect
shellings.

2.16 Postscript

The Representation theorem for cones (2.2.1) resulted from the efforts of
Farkas (1898, 1901), Minkowski (1896), and Weyl (1935). It is often proved
via Farkas’ lemma, as in Schrijver (1986, cor. 7.1a). The representation
theorem for polyhedra (2.2.2) is due to Motzkin (1936).

The statements about the facial structure of polyhedra (Theorem 2.3.1) and,
more generally, those in Section 2.3, are standard and scattered across many
texts on convexity; for instance see Webster (1994, sec. 3.2), Brøndsted (1983,
sec. 2.8), and Lauritzen (2013, ch. 4). Our proofs, while standard, were inspired
by the presentation in Webster (1994, sec. 3.2) and Brøndsted (1983, sec. 2.8).
The proof of Proposition 2.3.2 follows the same ideas as that of the second part
of the proof of Lauritzen (2013, prop. 4.3). The proof for the sufficiency part
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of the characterisation of faces of polytopes in Theorem 2.3.7 is inspired by
ideas from the proof of Webster (1994, thm. 3.1.4).

The section on preprocessing has the spirit of Ziegler (1995, sec. 2.6), while
trying to have the appeal and concreteness of Yaglom (1973); consult Ziegler
(1995, sec. 2.6) for the formulas that we did not provide. The presentation of
the embedding of affine spaces into projective spaces follow that in Berger
(2009, ch. 5) and Gallier (2011, sec. 5.6).

Sections 2.7 on face figures and 2.8 on simple and simplicial polytopes
are based on the excellent accounts of Brøndsted (1983, sec. 2.11–2.12). The
proof by duality of Theorem 2.11.9 is based on the proof by Brøndsted (1983,
thm. 2.11.10), while the proof that, for d ě 3, a d-simplex is the only simple
and simplicial polytope (Theorem 2.8.8) is inspired by that of Brøndsted (1983,
thm. 2.11.19).

The material of Section 2.9 on cyclic and neighbourly polytopes is fairly
standard. Our presentation is similar to those in Grünbaum (2003, sec. 4.7,7.1),
Webster (1994, sec. 3.4), and Brøndsted (1983, sec. 2.13).

The proof of the inductive construction of polytopes offered in Theo-
rem 2.10.1 is based on the original proof of Grünbaum (1963, thm. 5.2.1). As
we stated after the proof of Theorem 2.10.1, the original proof of Grünbaum
(1963, thm. 5.2.1) is slightly incorrect. The same mistake is carried over in
the proof of McMullen and Shephard (1971, thm. 2.22). This mistake was first
noted by M. A. Perles, as acknowledged by Altshuler and Shemer (1984). This
inductive construction is often described as the beneath-beyond algorithm and
plays an important role in the computation of convex hulls in computational
geometry; see, for instance, Edelsbrunner (2012, sec. 8.4) and Preparata and
Shamos (1985, sec. 3.4.2).

In many settings, the operations of pulling and pushing vertices allow us to
focus on simplicial polytopes. This is the case with the upper bound theorem of
McMullen (1970), which states that the cyclic d-polytope on n vertices has the
largest number of faces among the d-polytopes with that number of vertices.
The process of pulling vertices first appeared in Eggleston et al. (1964, sec. 2),
while the process of pushing vertices was first announced in Klee (1964b,
sec. 2). Our proof of Theorem 2.10.5 is based on that of Matoušek (2002,
lem. 5.5.4) and Santos (2012, lem. 2.2).

The presentation of polytopal complexes, subdivisions, and Schlegel dia-
grams is similar to that of Ziegler (1995, sec. 5.1,5.2). Schlegel diagrams first
appeared in Schlegel (1883), but Sommerville (1958) seems to be the first
to exploit their use on polytopes. Lee (1991) showed that the regularity of a
subdivision of a polytope conv V can be tested via the Gale transform of the
set V . We did not go into algorithmic aspects of subdivisions; they are well
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covered in De Loera et al. (2010, sec. 8.2). We just remark that checking
whether a subdivision is regular is equivalent to the feasibility of a linear
program (De Loera et al., 2010, sec. 8.2).

Proposition 2.12.12 states that stars of vertices of shellable complexes are
shellable. This is due to Courdurier (2006), and our proof follows his. It is also
the case that links of vertices in shellable polytopal complexes are shellable
(Courdurier, 2006); this generalises Proposition 2.12.11, which gives that links
of vertices in boundary complexes of polytopes are shellable.

Our proof of Euler–Poincaré–Schläfli’s equation (Theorem 2.12.17)
is inspired by that of Gruber (2007, thm. 15.5). The proof of Dehn–
Sommerville’s equations is somehow standard: it relies on the generalisation
of Euler–Poincaré–Schläfli’s equation stated in Theorem 2.13.1; see, for
instance, Webster (1994, thm. 3.5.4) or McMullen and Shephard (1971,
thm. 2.4.19). The derivation of the h-vector of simplicial polytopes from
shellings is explained in more detail in Ziegler (1995, sec. 8.3); our description
aims to summarise his. Dehn–Sommerville’s equations for cubical polytopes
seem to have first appeared in Grünbaum (2003, thm. 9.4.1).

The section on Gale transforms (Section 2.14) is based on the presentations
in McMullen and Shephard (1971, ch. 3) and Webster (1994, sec. 3.6).
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