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IN THE DUAL MODEL

ERIK EKSTRÖM ∗ ∗∗ and

BING LU,∗ Uppsala University

Abstract

We study de Finetti’s optimal dividend problem, also known as the optimal harvesting
problem, in the dual model. In this model, the firm value is affected both by continuous
fluctuations and by upward directed jumps. We use a fixed point method to show that
the solution of the optimal dividend problem with jumps can be obtained as the limit of
a sequence of stochastic control problems for a diffusion. In each problem, the optimal
dividend strategy is of barrier type, and the rate of convergence of the barrier and the
corresponding value function is exponential.
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1. Introduction

In the classical optimal dividend problem by de Finetti one seeks to maximize the expected
value of the discounted dividends paid out to the share holders of a firm until the ruin time. In
[2] and [15], this dividend problem was solved in the case when the underlying firm value is
modelled as a linear Brownian motion using methods from singular stochastic control theory.
It was shown that the optimal strategy is of barrier type, i.e. to distribute all surplus above a
certain level as dividends, and then do nothing as long as the firm value is below this level.

More recent literature has to a large extent dealt with models allowing for negative jumps of
the firm value; see, for example, [1], [5], [13], and [14]. The main application of such models
is in the insurance industry, where the negative jumps have a natural interpretation as insurance
claims. Mathematically, the inclusion of negative jumps is tractable since the process then
never jumps over the barrier.

We study the optimal dividend problem by de Finetti in a model allowing for positive jumps
of the underlying firm value. This is also known in the literature as the dividend problem in the
dual model; cf. [3], [4], [6], and [9]. To include positive jumps is natural for example in the
case of a research-based firm. The jump is then interpreted as the net present value of future
income stemming from an invention. Since the firm value may jump over the barrier (we show
below that a barrier strategy is optimal also in our setting), there is in general little hope of an
explicit solution of the dividend problem. Instead, we connect the dividend problem with a
problem of finding a fixed point of a certain functional operator. Moreover, we show that the
fixed point can be obtained as the limit of a recursively defined sequence of stochastic control
problems for a diffusion process, and each problem in the sequence is readily solved using
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The optimal dividend problem in the dual model 747

standard methods for stochastic singular control of a diffusion process. One advantage of this
fixed-point approach, in comparison with for example a study of the dividend problem based
on viscosity solutions of integrodifferential equations, is that the fixed-point approach gives
control of the regularity of the value function. In particular, it is straightforward to provide
verification results based on Itô’s formula that connect the analytical solution of a free boundary
problem with the corresponding stochastic control problem.

The technique that we use to write the dividend problem for a jump process as the limit
of a sequence of control problems for a diffusion process is inspired by corresponding studies
in optimal stopping theory. The classical references are [10] and [12], where this technique
is developed for piecewise deterministic Markov processes. For generalizations to processes
involving both jumps and Brownian fluctuations, see [7], [11], and the references therein.
To the best of our knowledge, this technique has not been applied to any singular stochastic
control problem before. Along with the financial interest of the dividend problem in the dual
model mentioned above, a key contribution of the current paper is thus to provide the technical
details of this procedure for the first time in stochastic control theory. Even though the overall
structure of the procedure is the same as in optimal stopping theory, we encountered a number of
technical problems, for example in connection with the concavity of the value function and with
the monotonicity of the sequence of barriers, which seem intimately connected with stochastic
control theory.

The paper is organized as follows. In Section 2 we set up the model and formulate de Finetti’s
optimal dividend problem in the presence of positive jumps, and we prove a verification result.
In Section 3 we introduce a related stochastic control problem for a diffusion process, and we
show that it can be solved using a free boundary approach. Next, in Section 4 we use this control
problem as a building block in the recursive construction of a sequence of control problems,
and the corresponding solutions are shown to converge to the dividend problem formulated in
Section 2. In Section 5 we show that the rate of convergence is exponential both for the value
functions and for the corresponding barriers. Finally, in Section 6 we provide a sensitivity
analysis of the solution with respect to the different parameters of the model.

Remark. After finishing a first version of the current paper, we were informed about the
article [8]. In that paper the authors proved the optimality of a barrier strategy in de Finetti’s
problem for spectrally positive Lévy processes using fluctuation theory, and the optimal barrier
is characterized in terms of a scale function. The current paper offers an alternative approach
of determining the optimal barrier and the value function under the additional hypothesis of
a finite activity of jumps. This assumption is crucial below in the definition of the functional
operator J , and it appears not easily disposed of. However, our approach does seem flexible
enough to extend in another direction, that is, to include for example models where the drift,
volatility, jump rate, and jump size are level dependent.

2. The optimal dividend problem and a verification result

Let (�,F ,P) be a probability space hosting a Poisson random measure N(dt, dy) on
[0,∞) × R+ and a Brownian motion W = {Wt, t ≥ 0} such that N and W are independent.
We assume that the mean measure of N is λF(dy) dt , where F is a probability distribution on
R+ with finite mean ε := ∫ ∞

0 yF(dy) and the jump intensity λ > 0 is a constant.
LetD = {Dt, t ≥ 0} be a nonnegative, right-continuous, and nondecreasing process adapted

to the filtration generated by N and W . Below Dt represents the cumulative dividends paid
out up to time t . In particular, if D0 > 0 then a dividend payment of size D0 is distributed
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748 E. EKSTRÖM AND B. LU

at time 0. Let XD = {XDt , t ≥ 0} be the risk process of a firm after dividends are distributed
according to the strategy D. We assume that XD satisfies

XDt = XD0 + μt + σWt +
∫ t

0

∫ ∞

0
yN(dt, dy)−Dt, (1)

where the drift μ and the volatility σ are constants. Note that in the absence of dividend
payments, i.e.D ≡ 0, the firm value evolves between jump times according to a linear Brownian
motion with drift μ and volatility σ . Also, note that each negative jump of the firm value
corresponds to a lump sum dividend payment. For a given dividend policyD, the ruin time γD

of the firm is defined by
γD = inf{t ≥ 0 | XDt ≤ 0}.

We only consider dividend strategies D such that

XD0 ≥ 0 and Dt −Dt− ≤ XDt− +
∫ ∞

0
yN(dt, dy) for t ∈ (0, γ D]. (2)

The class of such strategies is denoted �.

Remark. Condition (2) asserts that a lump sum dividend payment never results in a negative
value ofXD . Note that we allow for lump sum dividend payments to occur at the same time as
a positive jump in XD .

Our objective is to solve the stochastic control problem

V (x) = sup
D∈�

Ex−D0

[
D0 +

∫ γD

0
e−rt dDt

]
, (3)

where ∫ γD

0
e−rt dDt :=

∫
(0,γ D]

e−rt dDt,

r is a constant positive interest rate and x −D0 = XD0 denotes the initial firm value immediately
after dividends at time 0 have been deducted. Accordingly, the parameter x denotes the initial
firm value before the dividends at time 0 have been deducted. Note that V (x) ≥ x since the
strategy

Dt = x (4)

of deducting all money as dividends immediately is admissible. Next, for a given b > 0, define
the barrier strategy Db to be the minimal dividend strategy D such that XDt ≤ b for all t ≥ 0.
More explicitly, if Xt = x +μt + σWt +

∫ t
0

∫ ∞
0 yN(dt, dy) is the firm value in the absence of

dividend payments and
St = sup{Xs : s ∈ [0, t]}

is its supremum process, then Dbt = (St − b)+ and XD
b

t = Xt − (St − b)+.
A common approach in the literature on the dividend problem is to somehow construct a

candidate solution, and then to appeal to a verification result which shows that the candidate
solution actually coincides with the value function. Since we have not been able to find in the
literature a rigorous verification result that applies in the current setting, we include a detailed
result (Theorem 1). Let A be the differential operator

Av = σ 2

2
v′′ + μv′.
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Theorem 1. (Verification result for the dividend problem with jumps.) Assume that

v : [0,∞) → [0,∞)

is twice continuously differentiable with

(i) 1 ≤ v′ ≤ C for some constant C,

(ii) Av − rv + λ
∫ ∞

0 (v(x + y)− v(x))F (dy) ≤ 0.

Then V ≤ v.
If there exists a point b > 0 such that v, in addition to (i) and (ii), also satisfies

(iii) v(0) = 0,

(iv) Av − rv + λ
∫ ∞

0 (v(x + y)− v(x))F (dy) = 0 for x ∈ (0, b],
(v) v(x) = v(b)+ x − b for x ∈ (b,∞),

then V = v, and the barrier strategy Db is optimal.

Proof. Assume that (i) and (ii) hold. LetD ∈ � be a given dividend strategy, and letDc be
its continuous part. Itô’s formula for semimartingales yields

e−r(t∧γD)v(XD
t∧γD )

= v(XD0 )−
∫ t∧γD

0
e−rt v′(XDs−) dDc

s +
∫ t∧γD

0
σe−rsv′(XDs−) dWs

+
∫ t∧γD

0
e−rs(A − r)v(XDs−) ds

+
∑

s≤t∧γD
e−rs

(
v

(
XDs− +

∫ ∞

0
yN(ds, dy)−�Ds

)
− v(XDs−)

)

= v(XD0 )−
∫ t∧γD

0
e−rt v′(XDs−) dDc

s +
∫ t∧γD

0
σe−rsv′(XDs−) dWs

+
∫ t∧γD

0
e−rs

(
(A − r)v(XDs−)+ λ

∫ ∞

0
(v(XDs− + y)− v(XDs−))F (dy)

)
ds

+
∫ t∧γD

0
e−rs

∫ ∞

0
(v(XDs− + y)− v(XDs−))Ñ(ds, dy)

+
∑

s≤t∧γD
e−rs

(
v

(
XDs− +

∫ ∞

0
yN(ds, dy)−�Ds

)
− v

(
XDs− +

∫ ∞

0
yN(ds, dy)

))
,

where

Ñ(ds, dy) := N(ds, dy)− λF(dy) ds

is the compensated Poisson random measure. Since v′ is bounded, the integral with respect to
Brownian motion is a martingale. Similarly, the integral with respect to Ñ is also a martingale,
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750 E. EKSTRÖM AND B. LU

so taking expected values and using (i) and (ii) gives

Ex−D0 [e−r(t∧γD)v(XD
t∧γD )]

= v(x −D0)− Ex−D0

[∫ t∧γD

0
e−rsv′(XDs−) dDc

s

]

+ Ex−D0

[∫ t∧γD

0
e−rs

(
(A − r)v(XDs−)+ λ

∫ ∞

0
(v(XDs− + y)− v(XDs−))F (dy)

)
ds

]

+ Ex−D0

[ ∑
s≤t∧γD

e−rs
(
v

(
XDs− +

∫ ∞

0
yN(ds, dy)−�Ds

)

− v

(
XDs− +

∫ ∞

0
yN(ds, dy)

))]

≤ v(x −D0)− Ex−D0

[∫ t∧γD

0
e−rs dDs

]
.

Next, using v′ ≥ 1 and v ≥ 0, and letting t → ∞, we have

v(x) ≥ v(x −D0)+D0 ≥ Ex−D0

[
D0 +

∫ γD

0
e−rs dDs

]

by monotone convergence. Since the dividend strategy D was arbitrary, this implies that

V (x) = sup
D∈�

Ex−D0

[
D0 +

∫ γD

0
e−rs dDs

]
≤ v(x).

Now assume that (i)–(v) holds for some b > 0, and choose the dividend strategy D = Db

as the barrier strategy that pushes the controlled processXD down below the level b. As above,

Ex−D0 [e−r(t∧γD)v(XD
t∧γD )]

= v(x −D0)− Ex−D0

[∫ t∧γD

0
e−rsv′(XDs−) dDc

s

]

+ Ex−D0

[∫ t∧γD

0
e−rs

(
(A − r)v(XDs−)+ λ

∫ ∞

0
(v(XDs− + y)− v(XDs−))F (dy)

)
ds

]

+ Ex−D0

[ ∑
s≤t∧γD

e−rs
(
v

(
XDs− +

∫ ∞

0
yN(ds, dy)−�Ds

)

− v

(
XDs− +

∫ ∞

0
yN(ds, dy)

))]

= v(x −D0)− Ex−D0

[∫ t∧γD

0
e−rs dDs

]
,

where the last equality follows from the fact that v′ = 1 on the support of the measure dD
and (iv). By bounded convergence and monotone convergence, letting t → ∞ gives

v(x −D0) = Ex−D0

[∫ γD

0
e−rs dDs

]
.
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Since D0 = (x − b)+ and v′(x) = 1 for x ≥ b, v(x) = Ex−D0 [D0 + ∫ γD
0 e−rs dDs], which

completes the proof of the second claim.

Corollary 1. Ifμ+ελ ≤ 0 then V (x) = x, soD defined in (4) is an optimal dividend strategy.

Proof. The function v(x) = x certainly satisfies (i). Moreover,

Av − rv + λ

∫ ∞

0
(v(x + y)− v(x))F (dy) = μ+ λε − rx ≤ 0,

so the first part of Theorem 1 yields V ≤ x. Since we always have V ≥ x, the result follows.

Throughout the remainder of this paper, we assume that

μ+ ελ > 0, (5)

so that the expected value of the firm is increasing in time if no dividends are deducted.

Corollary 2. The value function V satisfies V (x) ≤ x + (μ+ λε)/r .

Proof. The function v(x) := x + (μ+ λε)/r satisfies

Av − rv + λ

∫ ∞

0
(v(x + y)− v(x))F (dy) = −rx ≤ 0,

so the result follows from the first part of Theorem 1.

In the presence of positive jumps, the construction of an explicit candidate solution seems
feasible only in the special cases of hyperexponentially distributed jumps; see [4] and [6] (the
authors of [9] claim that they include a general positive jump structure, but a closer inspection
of their candidate function reveals that it does not satisfy the conditions needed for a verification
argument). The recent preprint [8] transforms the problem of finding an explicit solution to a
problem of finding an explicit representation of the scale function. In Sections 3 and 4 we instead
construct a candidate function as the limit of a sequence of value functions for an inductively
defined sequence of stochastic control problems written in terms of a diffusion process.

3. The building block: a stochastic control problem without jumps

In this section we study a stochastic control problem for an underlying process without
jumps. This control problem is the basic building block in Section 4 when showing that the
value function V in (3) for a problem with jumps can be written as the limit of a sequence of
value functions in problems with no jumps.

Let D = {Dt, t ≥ 0} be a dividend strategy consisting of a nonnegative, right-continuous,
nondecreasing process adapted to the filtration generated by a Brownian motion W , and let

dYDt = μ dt + σ dWt − dDt,

where the constants μ and σ are the same as in (1). For a given dividend policy D, let

τD = inf{t ≥ 0 | YDt ≤ 0}
be the ruin time of the process YD . We denote by 
 the set of dividend strategies D such that
YD0 ≥ 0 and Dt −Dt− ≤ YDt for all 0 < t ≤ τD .
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Next we introduce the functional operator J whose action on a test function f : (0,∞) →
(0,∞) is defined by

Jf (x) = sup
D∈


Ex−D0

[
D0 +

∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSf (YDt ) dt

]
(6)

for x ≥ 0, where

Sf (y) :=
∫ ∞

0
f (y + z)F (dz)

is a weighted translation of f . We will only consider functions f belonging to the class

F :=
{
f : (0,∞) → (0,∞), f is concave, x ≤ f (x) ≤ x + μ+ λε

r

}
.

As before, for a given b > 0, we define the barrier strategy Db to be the minimal dividend
strategy D such that YDt ≤ b for all t ≥ 0. More explicitly, if dYt = μ dt + σ dWt and

St = sup{Ys : s ∈ [0, t]}

is its supremum process, then Dbt = (St − b)+ and YD
b

t = Yt − (St − b)+ (the process Db is
then the local time of the process dYt = μ dt + σ dWt reflected at the point b).

We begin our analysis of the control problem (6) by providing a verification result. To
formulate it, let the differential operator L be defined by

Lu := σ 2

2
u′′ + μu′ − (λ+ r)u.

Theorem 2. (Verification result for the control problem without jumps.) Let f ∈ F, and
assume that v : [0,∞) → [0,∞) is twice continuously differentiable with

(i) 1 ≤ v′ ≤ C for some constant C,

(ii) Lv + λSf ≤ 0.

Then v ≥ Jf .
If there exists a point b > 0 such that v, in addition to (i) and (ii), also satisfies

(iii) v(0) = 0,

(iv) Lv + λSf = 0 for x ∈ (0, b],
(v) v(x) = v(b)+ x − b for x ∈ (b,∞),

then v = Jf , and the barrier strategy Db is optimal in (6).

Remark. Note that if v = f then Lv + λSf = Av − rv + λ
∫ ∞

0 (v(x + y) − v(x))F (dy).
Consequently, in view of Theorems 1 and 2, the optimal dividend problem (3) in the dual model
is closely related to a fixed-point problem for the operator J in (6).
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Proof of Theorem 2. First assume that (i) and (ii) hold. For a given dividend strategyD ∈ 
,
an application of Itô’s formula yields

e−(r+λ)(t∧τD)v(YD
t∧τD )

= v(YD0 )+
∫ t∧τD

0
e−(r+λ)sLv(YDs−) ds +

∫ t∧τD

0
e−(r+λ)sσv′(YDs−) dWs

−
∫ t∧τD

0
e−(r+λ)sv′(YDs−) dDc

s +
∑

s≤t∧τD
e−(r+λ)s(v(Ys− −�Ds)− v(Ys−)), (7)

where Dc denotes the continuous part of D. Since v′ is bounded, the process

{∫ t∧τD

0
e−(r+λ)sσv′(YDs−) dWs

}
t≥0

is a martingale. Consequently, taking the expected value in (7) yields

Ex−D0 [e−(r+λ)(t∧τD)v(YD
t∧τD )]

= v(x −D0)+ Ex−D0

[∫ t∧τD

0
e−(r+λ)sLv(YDs−) ds

]

− Ex−D0

[∫ t∧τD

0
e−(r+λ)sv′(YDs−) dDc

s

]

+ Ex−D0

[ ∑
tk≤t∧τD

e−(r+λ)tk (v(Ytk− −�Dtk )− v(Ytk−))
]
, (8)

so using Lv + λSf ≤ 0, v ≥ 0, and v′ ≥ 1 gives

v(x −D0) ≥ Ex−D0

[∫ t∧τD

0
e−(r+λ)s dDs + λ

∫ t∧τD

0
e−(r+λ)sSf (YDs ) ds

]
.

Letting t → ∞ we find by monotone convergence that

v(x −D0) ≥ Ex−D0

[∫ τD

0
e−(r+λ)s dDs + λ

∫ τD

0
e−(r+λ)sSf (YDs ) ds

]
.

Since v′ ≥ 1 and the dividend strategy D ∈ 
 is arbitrary, it follows that

Jf (x) = sup
D∈


Ex−D0

[
D0 +

∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSf (YDt ) dt

]

≤ v(x).

To prove the second statement, assume that (i)–(v) hold for some b > 0. Note that the
strategy D = Db is continuous (although we may have Db0 > 0), so (8) yields

v(x −D0) = Ex−D0

[∫ t∧τD

0
e−(r+λ)sv′(YDs ) dDs + λ

∫ t∧τD

0
e−(r+λ)sSf (YDs ) ds

]

+ Ex−D0 [e−(r+λ)(t∧τD)v(YD
t∧τD )]
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since Lv(x)+λSf (x) = 0 for x ≤ b. By (iii) and bounded convergence, the last term vanishes
as t → ∞, so, by monotone convergence,

v(x −D0) = Ex−D0

[∫ τD

0
e−(r+λ)sv′(YDs ) dDs + λ

∫ τD

0
e−(r+λ)sSf (YDs ) ds

]
.

Since v′(x) = 1 for x ≥ b and since the support of the measure dD is contained in {s ≥ 0 :
YDs ≥ b}, we have

v(x)−D0 = v(x −D0) = Ex−D0

[∫ τD

0
e−(r+λ)s dDs + λ

∫ τD

0
e−(r+λ)sSf (YDs ) ds

]
.

Consequently,

Jf (x) = sup
D∈


Ex−D0

[
D0 +

∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSf (YDt ) dt

]
≥ v(x),

which completes the proof.

In view of the above verification result, we now construct a function U satisfying prop-
erties (i)–(v). The existence of such a function is guaranteed by Theorem 3 together with
Propositions 1 and 2 below; see Theorem 4.

Theorem 3. Assume that f ∈ F. Then there exists a unique solution (U, b) of the free boundary
problem

LU(x)+ λSf (x) = 0, 0 < x < b, (9a)

U(0) = 0, (9b)

U ′(b) = 1, (9c)

U ′′(b) = 0 (9d)

such that b > 0.

Proof. Let γ1 < 0 and γ2 > 0 be the solutions of the quadratic equation

γ 2 + 2μ

σ 2 γ − 2(λ+ r)

σ 2 = 0,

so that ψ = eγ2x and ϕ = eγ1x are the increasing and decreasing, respectively, fundamental
solutions to the homogeneous equation LU = 0.

Let, for a given b > 0,

U(x) := Ub(x)

:= Cϕ(x)

∫ x

0

Sf (y)

ϕ(y)
dy − Cψ(x)

∫ x

0

Sf (y)

ψ(y)
dy

+ ψ(x)− ϕ(x)

ψ ′(b)− ϕ′(b)

(
1 + Cψ ′(b)

∫ b

0

Sf (y)

ψ(y)
dy − Cϕ′(b)

∫ b

0

Sf (y)

ϕ(y)
dy

)

for x ∈ (0, b), where C = 2λ/σ 2(γ2 − γ1). Then U(0) = 0 and

U ′(x) = Cϕ′(x)
∫ x

0

Sf (y)

ϕ(y)
dy − Cψ ′(x)

∫ x

0

Sf (y)

ψ(y)
dy

+ ψ ′(x)− ϕ′(x)
ψ ′(b)− ϕ′(b)

(
1 + Cψ ′(b)

∫ b

0

Sf (y)

ψ(y)
dy − Cϕ′(b)

∫ b

0

Sf (y)

ϕ(y)
dy

)
,
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so inserting x = b gives U ′(b) = 1. Moreover,

U ′′(x) = Cϕ′′(x)
∫ x

0

Sf (y)

ϕ(y)
dy − Cψ ′′(x)

∫ x

0

Sf (y)

ψ(y)
dy − C(γ2 − γ1)Sf (x)

+ ψ ′′(x)− ϕ′′(x)
ψ ′(b)− ϕ′(b)

(
1 + Cψ ′(b)

∫ b

0

Sf (y)

ψ(y)
dy − Cϕ′(b)

∫ b

0

Sf (y)

ϕ(y)
dy

)
, (10)

and it is straightforward to check that LU(x)+ λSf (x) = 0 for x < b. Consequently, the pair
(U, b) satisfies the first three equations in (9). Moreover, for a given b, U is the unique such
solution. To find a unique b so that the fourth equation also holds, we show that the function
h(b) := (Ub)′′(b) has a unique positive zero. Note that inserting x = b in (10) yields

h(b) = C(γ2 − γ1)
γ1γ2ϕ(b)ψ(b)

γ2ψ(b)− γ1ϕ(b)

∫ b

0

ϕ(y)− ψ(y)

ϕ(y)ψ(y)
Sf (y) dy − C(γ2 − γ1)Sf (b)

+ γ 2
2 ψ(b)− γ 2

1 ϕ(b)

γ2ψ(b)− γ1ϕ(b)
.

Define a function l : [0,∞) → R by

l(b) := C(γ2 − γ1)

∫ b

0

ϕ(y)− ψ(y)

ϕ(y)ψ(y)
Sf (y) dy − C(γ2 − γ1)

(
1

γ1ϕ(b)
− 1

γ2ψ(b)

)
Sf (b)

+ γ2

γ1ϕ(b)
− γ1

γ2ψ(b)
, (11)

so that

l(b) = h(b)
γ2ψ(b)− γ1ϕ(b)

γ2γ1ϕ(b)ψ(b)
.

Since (γ2ψ(b) − γ1ϕ(b))/γ2γ1ϕ(b)ψ(b) < 0 for all b, it suffices to show that there exists a
unique zero of l. Note that

l(0) = 2(γ1 − γ2)

σ 2γ1γ2
(μ+ λSf (0)) > 0,

where the inequality follows from λSf (0)+ μ ≥ λε + μ > 0.
Moreover,

l′+(b) = γ1

ψ(b)
− γ2

ϕ(b)
− C(γ2 − γ1)(Sf )

′+(b)
(

1

γ1ϕ(b)
− 1

γ2ψ(b)

)

=
(
γ1

ψ(b)
− γ2

ϕ(b)

)(
1 − λ

λ+ r
(Sf )′+(b)

)
,

where the second equality follows from γ1γ2 = −2(λ+r)/σ 2, and where l′+ and (Sf )′+ denote
the right derivatives of l and Sf , respectively. Hence l′+(b) behaves like −γ2r/(λ+ r)ϕ(b) for
large b, so l(∞) < 0. Thus, by continuity of l, there exists b∗ such that l(b∗) = 0.

To prove the uniqueness of b∗, note that, since Sf is concave, l is nondecreasing on (0, b̂)
and nonincreasing on (b̂,∞), where

b̂ := inf

{
b ∈ (0,∞) : (Sf )′+(b) ≤ λ+ r

λ

}
∈ [0,∞) (12)

(note that if b̂ = 0 then l is nonincreasing on (0,∞)). Together with l(0) > 0 and l(∞) < 0,
this proves uniqueness of the zero of l.
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We let (U, b) be the unique solution of the free boundary problem (9), and we extend the
domain of definition of U by defining

U(x) = U(b)+ x − b for x > b. (13)

Note that U is C2 on (0,∞) by construction.

Proposition 1. The function U satisfies LU(x)+ λSf (x) ≤ 0 for all x ∈ (0,∞).

Proof. Define

H(x) := LU(x)+ λSf (x) = σ 2

2
U ′′ + μU ′(x)− (λ+ r)U(x)+ λSf (x).

To see that H(x) ≤ 0, first note that H(x) = 0 for x ≤ b by definition, so it suffices to show
that H ′(x) ≤ 0 for x ≥ b. For the unique b > 0 satisfying l(b) = 0, we have b > b̂, where b̂
is defined in (12). Consequently, by the concavity of Sf , (Sf )′(x) ≤ (λ+ r)/λ for all x ≥ b.
Thus,

H ′(x) = −(λ+ r)+ λSf ′(x) ≤ 0

for x > b, so H(x) ≤ 0 for x ≥ b.

Proposition 2. The function U satisfies U ′(x) ≥ 1 for x ∈ (0,∞), and U ′(x) > 1 for
0 < x < b.

Proof. First note that U ′(x) = 1 for x ≥ b by definition. Recall that, for x < b,

U ′(x) = ϕ′(x)
∫ x

0

CSf (y)

ϕ(y)
dy − ψ ′(x)

∫ x

0

CSf (y)

ψ(y)
dy

+ (ψ ′(x)− ϕ′(x))
1 + ψ ′(b)

∫ b
0 (CSf (y)/ψ(y)) dy − ϕ′(b)

∫ b
0 (CSf (y)/ϕ(y)) dy

ψ ′(b)− ϕ′(b)
.

Define k : [0,∞) → R by

k(x) := 1 + ψ ′(x)
∫ x

0 (CSf (y)/ψ(y)) dy − ϕ′(x)
∫ x

0 (CSf (y)/ϕ(y)) dy

ψ ′(x)− ϕ′(x)
,

so that

U ′(x) = ϕ′(x)
∫ x

0

CSf (y)

ϕ(y)
dy − ψ ′(x)

∫ x

0

CSf (y)

ψ(y)
dy + (ψ ′(x)− ϕ′(x))k(b).

Straightforward calculations show that

k′(x) = −ϕ′(x)ψ ′(x)l(x)
(ψ ′(x)− ϕ′(x))2

,

where l is defined in (11). Since l(x) > 0 for x < b, k is strictly increasing on (0, b).
Consequently,

U ′(x) > ϕ′(x)
∫ x

0

CSf (y)

ϕ(y)
dy − ψ ′(x)

∫ x

0

CSf (y)

ψ(y)
dy + (ψ ′(x)− ϕ′(x))k(x) = 1

for x < b, which completes the proof.
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Theorem 4. Let f ∈ F, and let (U, b) be the solution to the free boundary problem (9), with
U extended linearly above b as in (13). Then U = Jf , and the supremum in (6) is attained for
the dividend strategy Db.

Proof. The lower bound U ′ ≥ 1 in (i) of Theorem 2 follows from Proposition 2, and the
upper boundU ′ ≤ C holds sinceU ′ has a finite limit at 0 (sinceU solves an ordinary differential
equation with nondegenerate coefficients) and satisfies U ′(x) = 1 for x ≥ b. Condition (ii)
holds by Proposition 1. Finally, (iii), (iv), and (v) are fulfilled by construction. Consequently,
Theorem 2 applies, which yields the result.

We end this section by providing a condition under which Jf ∈ F.

Theorem 5. Assume that f ∈ F ∩C2([0,∞)), where f ∈ F is extended to [0,∞) by f (0) :=
f (0+). Furthermore, assume that

μf ′(0)+ λSf (0) ≥ 0. (14)

Then U = Jf ∈ F ∩ C2([0,∞)).

Remark. The assumption that f isC2 can easily be removed using an approximation argument,
but, for simplicity, we include it since we only need the result below for functions f in C2.
Condition (14) is trivially satisfied in the case μ ≥ 0. We do not know whether Jf is also
concave without (14).

Proof of Theorem 5. Clearly, Jf (x) ≥ x. Moreover, using f (x) ≤ x + (μ + λε)/r , it is
straightforward to check that

L

(
x + μ+ λε

r

)
+ λSf ≤ μ− (λ+ r)

(
x + μ+ λε

r

)
+ λ

(
x + μ+ λε

r
+ ε

)

= −rx
≤ 0.

Thus, applying the first part of Theorem 2 gives also the upper bound

Jf (x) ≤ x + μ+ λε

r
.

To prove the concavity of U = Jf , let u(x) = U ′′(x). Differentiating the differential
equation in (9) twice gives

σ 2

2
uxx + μux − (λ+ r)u+ λ(Sf )′′ = 0.

By the definition of b, we have u(b) = U ′′(b) = 0. Therefore, by the maximum principle, it
suffices to show that u(0) ≤ 0. Using U ′(0) ≥ 0, U(0) = 0, and f ≥ 0 in (9) shows that
U ′′(0) ≤ 0 provided the drift μ is nonnegative.

The case μ < 0 is more involved, and we deal with it as follows. First define the affine
function f̃ : [0,∞) → [0,∞) by

f̃ (x) = λSf (0)

−μ x + Sf (0)− λεSf (0)

−μ .
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We claim that Sf̃ ≥ Sf . Indeed, this follows since the function

h(x) := Sf̃ (x)− Sf (x) = λSf (0)

−μ x + Sf (0)− Sf (x)

satisfies h(0) = 0,

h′(0) = λSf (0)

−μ − (Sf )′(0) ≥ λSf (0)

−μ − f ′(0) ≥ 0

(by (14)), and h′′(x) = −(Sf )′′(x) ≥ 0.
Define

Ũ (x) := λSf (0)

−μ x. (15)

Then Ũ satisfies

LŨ + λSf ≤ LŨ + λSf̃ = −r λ(Sf )(0)−μ x ≤ 0.

Applying the first part of Theorem 2 gives U ≤ Ũ . It then follows from (15) that U ′(0) ≤
λSf (0)/(−μ). The differential equation in (9) thus yields

σ 2

2
U ′′(0) = −μU ′(0)− λSf (0) ≤ 0,

which completes the proof.

4. An iterative procedure to determine V

In this section we define a sequence {vn}∞n=0 of functions vn : [0,∞) → [0,∞) by v0(x) = x

and
vn+1(x) = Jvn(x) for n ≥ 0.

Proposition 3. Each function vn belongs to F, so the sequence {vn}∞n=0 is well defined. More-
over, the sequence is increasing in n.

Proof. First note that v0 ∈ F ∩ C2([0,∞)) and v0 satisfies (14) by (5). Moreover, v1 ≥ v0
since Jf (x) ≥ x for any f ∈ F.

Now assume that vn ∈ F ∩ C2([0,∞)), vn+1 := Jvn ≥ vn, and that vn satisfies (14) for
some n ≥ 0. Then vn+1 ∈ F ∩ C2([0,∞)) by Theorem 5. Moreover,

μv′
n+1(0)+ λSvn+1(0) ≥ μv′

n+1(0)+ λSvn(0) = −σ
2

2
v′′
n+1(0) ≥ 0,

where we have used (9) and the concavity of vn+1. Consequently, vn+1 also solves (14).
Moreover, vn+1 ≥ vn clearly implies that vn+2 ≥ vn+1 since J preserves order. The result thus
follows by induction.

Since {vn}∞n=0 is an increasing sequence of concave functions with a pointwise bound x +
(μ+ λε)/r , the sequence has the limit

v∞(x) := sup
n≥0

vn(x), (16)

which is also concave, and the limit satisfies the same pointwise bound. Consequently, the
limit v∞ belongs to F. We show below that the limit v∞ coincides with V defined in (3).
Consequently,V is determined as the limit of a sequence of standard stochastic control problems
(where the underlying process contains no jumps).
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Lemma 1. The function v∞ is a fixed point of the operator J .

Proof. For x ≥ 0, we have

v∞(x) = sup
n≥0

vn(x)

= sup
n≥0

sup
D∈


Ex

[∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSvn(YDt ) dt

]

= sup
D∈


sup
n≥0

Ex

[∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSvn(YDt ) dt

]

= sup
D∈


Ex

[∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tS

(
sup
n≥0

vn

)
(YDt ) dt

]

= Jv∞(x),
where the second last equality follows by applying the monotone convergence theorem twice.

Remark. In fact, the function v∞ is the smallest fixed point of J that is larger than x. Indeed,
let v∗ be any function satisfying v∗(x) = Jv∗(x) and v∗ ≥ x = v0. Assuming that vn ≤ v∗,
we find that vn+1 = Jvn ≤ Jv∗ = v∗ since J preserves order, so vn ≤ v∗ holds by induction
for all n ≥ 0. Consequently, v∞ ≤ v∗.

Corollary 3. The function v∞ belongs to F ∩C2([0,∞)) and satisfies v∞(0) = 0. Moreover,
if b is the unique solution of the boundary equation l(b) = 0, where in the definition of l given
in (11) we let f = v∞, then v∞ satisfies v′∞ ≥ 1 and

Lv∞(x)+ λSv∞(x) = 0 for x ≤ b,

Lv∞(x)+ λSv∞(x) ≤ 0 everywhere,

v∞(x) = v∞(b)+ x − b for x ≥ b.

Proof. The claims follow from the fact that v∞ = Jv∞ together with Theorems 3 and 4 and
Propositions 1 and 2.

Theorem 6. LetV be the value function in (3), and let v∞ be the limit of vn as in (16). Moreover,
let b be the corresponding barrier defined as in Corollary 3. Then V ≡ v∞, and Db is an
optimal dividend strategy in (3).

Proof. This is a direct consequence of Theorem 1 and Corollary 3.

Remark. It can be shown that the functional operator J in (6), acting on the space of continuous
functions bounded below and above by x and x + (μ+ λε)/r , respectively, and equipped with
the metric defined by d(f1, f2) = supx |f1(x) − f2(x)|, is a contraction. Consequently, by
the Banach fixed-point theorem, there exists a unique fixed point (which then by uniqueness
has to coincide with V = v∞ above). Moreover, any choice of v0 would produce a sequence
converging exponentially fast to V = v∞. For example, choosing v0 = x + (μ + λε)/r

would give rise to a decreasing sequence vn. However, in this case we do not know whether
the corresponding vn is concave, and, in particular, whether the optimal dividend strategy is
automatically a barrier strategy.

Another reason to choose v0 = x is that it can be shown that vn then has a natural
interpretation as the value function of a dividend problem with time horizon γD ∧ Tn, where
Tn is the nth jump time of the process

∫ t
0

∫ ∞
0 yN(dt, dy); cf. [12, Theorem 1]. In fact, this can
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be seen by noting that vn satisfies a variational inequality involving vn−1 and then appealing to
an appropriate verification argument. However, we do not provide details since this fact is not
used in the analysis.

5. Rate of convergence

In this section we provide some further properties of the value function V and the optimal
dividend barrier b. In particular, we study the rate of convergence of (vn, bn) to (V , b). As
noted above, the Banach fixed-point theorem shows that vn converges exponentially fast to V .
Rather than proving that J is a contraction and then applying the fixed-point theorem, we first
give a direct proof of this fact.

Theorem 7. (Rate of convergence of vn to V .) The inequality

0 ≤ vn+1(x)− vn(x) ≤ μ+ λε

λ+ r

(
λ

λ+ r

)n
(17)

holds for all x and n ≥ 0. Consequently,

vn(x) ≤ V (x) ≤ vn(x)+ μ+ λε

r

(
λ

λ+ r

)n
, (18)

so the sequence {vn}n≥0 converges uniformly to V , and the rate of convergence is exponential.

Proof. The first inequality in (17) is proved in Proposition 3. For the second inequality, we
use an induction argument. First note that the function ṽ(x) := x + (μ+ λε)/(λ+ r) satisfies

Lṽ + λSx ≤ 0,

so applying Theorem 2 yields v1 = Jx ≤ ṽ. Consequently, v1 − v0 ≤ (μ + λε)/(λ + r),
so (17) holds for n = 0. Next, assume that (17) holds for some n ≥ 0. Then we have

vn+2(x) = sup
D∈


Ex

[∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSvn+1(Y

D
t ) dt

]

≤ sup
D∈


Ex

[∫ τD

0
e−(r+λ)t dDt + λ

∫ τD

0
e−(r+λ)tSvn(YDt ) dt

]

+ λ

∫ ∞

0
e−(r+λ)t μ+ λε

λ+ r

(
λ

λ+ r

)n
dt

= vn+1(x)+ μ+ λε

λ+ r

(
λ

λ+ r

)n+1

,

which completes the proof of (17).
Finally, note that (18) is a consequence of (17). Indeed, using (17), we have

v∞(x)− vn(x) =
∞∑
k=n

vk+1(x)− vk(x)

≤
∞∑
k=n

μ+ λε

λ+ r

(
λ

λ+ r

)k

= μ+ λε

r

(
λ

λ+ r

)n
.
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Figure 1: The convergence of the value functions for a constant jump size ε = 0.2, λ = 0.5, r = 0.1,
σ = 0.4, and μ = 0.2.
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Figure 2: The convergence of the corresponding optimal boundaries.

For an illustration of the convergence of the value functions, see Figure 1. We next show
that bn increases monotonically in n and that the limit is b, where b is defined as in Corollary 3.
The convergence of the boundaries is illustrated in Figure 2.

Theorem 8. The sequence {bn}∞n=1 is nondecreasing, and limn→∞ bn = b. Moreover, we have
b ≤ (μ+ λε)/r .

Proof. We first treat the monotonicity of bn. Since bn = inf{x ∈ (0,∞) : v′
n(x) = 1}, it

suffices to show that the functions vn+1(x) − vn(x) are nondecreasing. We do this using an
inductive argument.

Note that, since v0(x) = x and v1 is concave with v′
1 ≥ 1, the function v1 − v0 is certainly

nondecreasing. Now assume that vn(x)− vn−1(x) is nondecreasing for some n ≥ 1. Let ln+1
and ln be defined as in (11) with f = vn and f = vn−1, respectively. Note that, in this notation,
ln(bn) = 0. Since vn(x)−vn−1(x) is nondecreasing, Svn(x)−Svn−1(x) is also nondecreasing,
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so
Svn(y)− Svn−1(y) ≤ Svn(x)− Svn−1(x)

for 0 < y ≤ x. Consequently,

ln+1(x)− ln(x)

C(γ2 − γ1)
=

(
1

γ2ψ(x)
− 1

γ1ϕ(x)

)
(Svn − Svn−1)(x)

−
∫ x

0

(
1

ϕ(y)
− 1

ψ(y)

)
(Svn − Svn−1)(y) dy

≥
(

1

γ2
− 1

γ1

)
(Svn − Svn−1)(x)

≥ 0

for all x > 0. It follows that bn+1 ≥ bn.
Now, define g(x) := v′

n+1(x)− v′
n(x). Since vn+1(0) = vn(0) = 0 and vn+1 ≥ vn, we

have g(0) ≥ 0. Moreover, bn+1 ≥ bn, so we also have g(x) ≥ 0 for all x ≥ bn. Since g
satisfies

Lg = λ(Sv′
n−1 − Sv′

n)

on (0, bn), and since Sv′
n−1 − Sv′

n ≤ 0 by the induction hypothesis, it follows from the maxi-
mum principle that g ≥ 0 on (0, bn) also. Consequently, vn+1 − vn is nondecreasing, which
completes the proof of the monotonicity of bn.

Let l∞ be defined as in (11) with f = v∞. Recall from above that ln(x) is increasing in
n. Since vn ↗ v∞ as n → ∞, we have Svn ↗ Sv∞ by monotone convergence. Another
application of the monotone convergence theorem shows that ln(x) ↗ l∞(x) for all x > 0.
Since b = inf{y > 0 : l(y) ≤ 0}, this implies that bn ↗ b.

Finally, to show the upper bound of b, note that, for x = b, we have Uxx = 0 and Ux = 1.
Moreover, SU(b) = U(b)+ ε, so it follows that

0 = LU(b)+ λ(SU)(b) = μ− (λ+ r)U(b)+ λ(U(b)+ ε) = μ+ λε − rU(b).

Since U(b) ≥ b, the result follows.

Theorem 9. (Rate of convergence of bn to b.) The inequality

0 ≤ bn+1 − bn ≤ μ+ λε

r

(
λ

λ+ r

)n
(19)

holds for all n ≥ 1. Consequently,

bn ≤ b ≤ bn + (λ+ r)(μ+ λε)

r2

(
λ

λ+ r

)n
, (20)

so the rate of convergence of the sequence {bn}n≥0 to b is exponential.

Proof. Define ln, n ≥ 1, as in (11) but withf = vn−1. Recall that ln(bn) = ln+1(bn+1) = 0,
bn ≤ bn+1, and ln+1(bn) ≥ 0. For x ∈ [bn, bn+1], we have

l′n+1(x) =
(
γ1

ψ(x)
− γ2

ϕ(x)

)(
1 − λ

λ+ r
(Svn)

′(x)
)

=
(
γ1

ψ(x)
− γ2

ϕ(x)

)
r

λ+ r

≤
(

γ1

ψ(bn)
− γ2

ϕ(bn)

)
r

λ+ r
, (21)
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where the second equality is obtained from (Svn)
′(x) = 1 for x ≥ bn and the inequality holds

since

l′′(x) = γ1γ2(1/ϕ(x)− 1/ψ(x))r

λ+ r
≤ 0.

On the other hand, by the definition of ln and ln+1 we have

0 ≤ ln+1(bn)− ln(bn)

≤ C(γ2 − γ1)

(
1

γ2ψ(bn)
− 1

γ1ϕ(bn)

)
(Svn − Svn−1)(bn)

≤ C(γ2 − γ1)

(
1

γ2ψ(bn)
− 1

γ1ϕ(bn)

)
μ+ λε

λ+ r

(
λ

λ+ r

)n−1

, (22)

where the last inequality follows from (17). Inequalities (21) and (22) imply that

bn+1 − bn ≤ μ+ λε

r

(
λ

λ+ r

)n
,

which completes the proof of (19).
Finally, the estimate (20) follows from (19) since

b − bn =
∞∑
k=n

bk+1 − bk ≤
∞∑
k=n

μ+ λε

r

(
λ

λ+ r

)k
= (λ+ r)(μ+ λε)

r2

(
λ

λ+ r

)n
.

6. Parameter dependencies

In this section we study parameter dependencies. We first show that the value function V
depends monotonically on the drift, the jump intensity, the discount rate, the jump size, and the
volatility.

Theorem 10. The value function V is increasing in the drift μ and in the jump intensity λ,
and it is decreasing in the discount rate r and in the volatility σ . Moreover, V is increasing in
the jump size in the sense that if F1(x) ≥ F2(x) for all x ∈ R+ then the corresponding value
functions satisfy V1 ≤ V2.

Proof. Assume that 0 < λ1 < λ2, μ1 < μ2, F1(x) ≥ F2(x) for all x ∈ R+, 0 < r2 < r1,
and 0 < σ2 < σ1. Denote the corresponding differential operators by A1 and A2, and the
corresponding weighted translation operators by S1 and S2, respectively. Then

(A1 − r1)V2 + λ1S1V2 ≤ (A2 − r2)V2 + λ2S2V2 ≤ 0

since V2 is nonnegative, increasing, and concave. Using the first part of Theorem 1 gives
V2 ≥ V1.

The dependencies of the optimal barrier on μ, λ, and σ seem more involved. In fact,
numerical experiments suggest a nonmonotone dependence on μ and λ; cf. Figures 3 and 5. In
Figures 3–5 the value of the constant parameters are λ = 0.5, r = 0.1, σ = 0.4, μ = 0.2, and
ε = 0.2.
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Figure 3: The dependence of b on λ.
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Figure 4: The dependence of b on σ .
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Figure 5: The dependence of b on μ.
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