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Understanding the transport of micro-organisms in pipes is crucial to many fundamental
problems, such as bioconvection and biodiesel production. In this work, we investigate
the velocity profile and dispersion of a suspension of negatively buoyant, gyrotactic
micro-organisms in a vertical pipe. With an imposed flow rate, the non-uniform radial
cell concentration typical of gyrotaxis distorts the simple Poiseuille flow through
inhomogeneous buoyancy, which in turn affects the cell concentration distribution.
By solving the fundamental Smoluchowski equation and the Navier–Stokes equation
simultaneously, we account for this bidirectional buoyancy–flow coupling effect.
Asymptotic dispersion coefficients, namely, drift velocity and dispersivity, are further
calculated with the obtained radial velocity and cell concentration profiles, which
are assumed to be steady, symmetric and axially invariant. Using the gyrotactic
micro-organism Chlamydomonas augustae as an example, detailed results are given to
illustrate the effect of buoyancy–flow coupling. In downwelling flows, the buoyancy–flow
coupling effect intensifies with the Richardson number Ri quantifying the mean cell
concentration, but is strongest at a moderate flow strength. The buoyancy–flow coupling
effect significantly enhances the velocity and cell concentration in the central region,
as well as the drift velocity and dispersivity. In contrast, the buoyancy–flow coupling
effect is comparatively limited in upwelling flows, due to the dominant influence of the
no-slip boundary condition imposed at the wall. Comparisons with predictions of existing
approximate models are also presented.
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1. Introduction

Motile micro-organisms are ubiquitous in various environments and exhibit fascinating
phenomena. A classical phenomenon named ‘gyrotactic focusing’ was illustrated in
a series of experiments by Kessler (1984, 1985a,b, 1986) using the suspension of
Chlamydomonas augustae (mistakenly classified as Chlamydomonas nivalis Bees 2020,
§ 2.1). Gyrotactic focusing describes the centreline-accumulating behaviour of gyrotactic
micro-organisms (a micro-organism whose mass centre is located at the far end of the
buoyancy centre, e.g. C. augustae) in downwelling pipe flows (Denissenko & Lukaschuk
2007; Bees & Croze 2010; Bearon, Bees & Croze 2012; Croze, Bearon & Bees 2017;
Jiang & Chen 2020) and channel flows (Croze et al. 2013). On the contrary, gyrotactic
micro-organisms scatter towards the wall in upwelling flows (Kessler 1985a,b; Croze et al.
2013; Fung & Hwang 2020; Jiang & Chen 2020). In addition, because micro-organisms
are typically heavier than water (Pedley & Kessler 1992), the focused micro-organisms in
the central region exert an excessive negative buoyant force, thereby accelerating the local
flow. This beam is subjected further to instability: when the background flow is weak and
the average background cell concentration is high, axisymmetric blips with increased cell
concentration and radius compared with the beam were observed (Kessler 1985a, 1986;
Denissenko & Lukaschuk 2007).

Predicting the macrotransport process of micro-organisms in an external flow with
a precise continuum model is crucial to relevant research and applications, such as
understanding aforementioned instabilities (Hwang & Pedley 2014a,b; Saintillan 2014;
Maretvadakethope, Keaveny & Hwang 2019; Bees 2020; Fung, Bearon & Hwang 2020;
Fung & Hwang 2020) and optimising the efficiency of artificial cultivation (Chisti 2007).
For gyrotactic micro-organisms, Kessler (1985a,b, 1986) introduced a primitive model.
He proposed that the swimming directions of micro-organisms are deterministic and
shear dependent, and micro-organisms are subject to isotropic diffusion. Kessler (1985a,
1986) subsequently derived an exponential profile of the steady radial cell concentration
distribution in a downwelling pipe flow and analysed the instability. Pedley & Kessler
(1990) later proposed a pioneering continuum model, which is denoted as the PK model in
the remainder of this paper and also referred to as the FP model by some researchers.
Compared with the model of Kessler (1986), the PK model incorporates biological
random reorientation of micro-organisms and gives a more reasonable approximation for
anisotropic diffusion in the position space. The PK model first finds the shear-dependent
probability density distribution (p.d.f.) of the orientation by solving a Fokker–Planck
equation in the orientation space and then uses a semi-empirical direction correlation time
to calculate the diffusivity tensor.

Following the same routine to calculate the p.d.f. in the orientation space (and thus
average swimming direction) with a specified shear rate, the generalised Taylor dispersion
(GTD) theory (Frankel & Brenner 1989; Brenner & Edwards 1993) was introduced by Hill
& Bees (2002) and Manela & Frankel (2003) to derive a more sophisticated but, at the
same time, more sensible diffusivity tensor. It should be noted that both the PK model and
the GTD model assume that micro-organisms relax in the orientation space with much
smaller time and length scales relative to the corresponding scales of micro-organisms
swimming in the position space, that is, quasi-steadiness in the orientation space. Bearon,
Hazel & Thorn (2011) further extended the GTD model to flow fields with inhomogeneous
shear, and a quasi-homogeneous assumption is further employed: the shear is slow varying,
with time and length scales larger than those of relaxation in the orientation space.

Extensive efforts have been made to test the performance of the PK model and the
GTD model. Croze et al. (2013) investigated the dispersion of gyrotactic micro-algae in
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Dispersion of a gyrotactic micro-organism suspension

the laminar channel flow with the PK model and the GTD model. Brownian dynamics
simulation, in which an individual cell performs a random walk according to the stochastic
differential equations (the equivalent of the Smoluchowski equation, i.e. the equation
accurately describing the cell’s rotation in the orientation space, movement in the position
space and the effect of white noise), is employed as a benchmark; the dispersion in the
turbulent regime was also simulated using Brownian dynamics simulation. They found
that the three models agree well in weak flows, while the GTD model outperforms the PK
model in strong flows. The difference originates from the GTD model providing a more
rigorous diffusivity tensor than the PK model (Bearon et al. 2012; Fung et al. 2020): as
the flow becomes stronger, the diffusivity tensor of the PK model approaches a constant
scalar matrix asymptotically (in Cartesian coordinates), whereas the diffusivity tensor of
the GTD model approaches a zero matrix. Many studies have indicated the superiority of
the GTD model over the PK model, not only because of its better accuracy in investigating
the dynamics of gyrotactic micro-organisms (Bearon et al. 2012; Croze et al. 2013; Fung
et al. 2020; Fung, Bearon & Hwang 2022), but also due to its versatility in studying
other kinds of micro-organisms, such as run–tumble chemotactic bacteria (Bearon 2003).
Fung et al. (2020) recently analysed the bifurcation and stability of the suspension of C.
augustae in downwelling pipe flows, employing both the GTD model and the PK model for
comparison. With the GTD model, a trend consistent with the experimental observation
of Kessler (1986) was found in the variation of stability as a function of the average cell
concentration and flow rate; in contrast, the PK model predicted inconsistently.

Despite the foregoing merits, the GTD model has its inherent restriction. This restriction
stems from simplifying the fundamental Smoluchowski equation to an advection–diffusion
equation in position space. It is important to note that the GTD theory by Frankel &
Brenner (1989) was not initially devised to facilitate a position–orientation separation
to approximate the Smoluchowski equation. Instead, one should identify all bounded
coordinates as the local space and all unbounded coordinates as the global space,
and the obtained drift velocity and dispersivity only characterise the dispersion in the
global space (Brenner & Edwards 1993; Jiang & Chen 2019, 2020). Rigorously, the
GTD model extended by Hill & Bees (2002) as well as Manela & Frankel (2003)
should be only applied to unbounded steady flows with homogeneous shear, and the
obtained dispersion coefficients are valid only for long times. When the GTD model
facilitating a position–orientation separation is applied to other situations, quasi-steadiness
of the orientation dynamics of the micro-organisms, quasi-homogeneity of the flow
shear and negligible boundary effect in the position–orientation space must be assumed
to obtain an advection–diffusion equation in the position space. For example, Bearon
et al. (2011) showed the discrepancies between the results of the GTD model and the
Smoluchowski-equation-based simulation when the assumptions are not met. In another
example, where the distribution of non-biased slender bacteria was considered in a channel
flow, Bearon & Hazel (2015) showed how the GTD model predicted a uniform cell
concentration profile across the width and failed to reproduce the experimentally observed
shear-induced trapping (Rusconi, Guasto & Stocker 2014), whereas the results of the full
numerical simulation of the Smoluchowski equation are in qualitative agreement with
the experimental observations. Bearon & Hazel (2015) then showed a multi-time-scale
analysis of the Smoluchowski equation where an effective drift velocity can be derived to
explain the shear-induced trapping phenomenon. This multi-time-scale analysis is further
formalised by Vennamneni, Nambiar & Subramanian (2020) into an advection–diffusion
model, which can capture shear-induced migration of bacteria in a channel flow (Rusconi
et al. 2014; Barry et al. 2015).
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Although the model of Vennamneni et al. (2020) succeeded in capturing shear-induced
trapping of micro-organisms, it only works when the motility is not biased, and
therefore cannot be extended to case of cells with an orientation bias, such as gyrotactic
micro-organisms. This limitation is overcome by the recent work of Fung et al.
(2022), as they first devised an exact transformation of the Smoluchowski equation
into an advection–diffusion equation in the position space, before applying a similar
multi-time-scale method. In effect, Fung et al. (2022) has extended the work of Bearon
& Hazel (2015) and Vennamneni et al. (2020) by including the effect of biased motility in
the multi-time-scale asymptotics. This new model, however, still cannot elude the defects
inevitably involved in the position–orientation separation.

As noted previously, the Smoluchowski equation can be referred to as a benchmark for
other up-scaled models. Solving the full continuum Smoluchowski equation has therefore
also attracted some researchers (Chen & Jiang 1999; Saintillan & Shelley 2008a,b; Ezhilan
& Saintillan 2015; Jiang & Chen 2021). However, it is not always possible to resolve the
full Smoluchowski equation in a three-dimensional flow field due to numerical difficulty.
Only in some simplified circumstances, such as in unidirectional flows, can the dimension
of the Smoluchowski equation be reduced. Recently, Jiang & Chen (2019) devised the basis
functions and solved the Smoluchowski equation in the cross-section of a two-dimensional
channel with a Galerkin method. The cross-sectional average drift and diffusivity were
accurately derived by directly applying the standard GTD theory (Frankel & Brenner
1989; Brenner & Edwards 1993) without a position–orientation separation invoking
assumptions of quasi-steadiness, quasi-homogeneity and negligible boundary effect. Jiang
& Chen (2020) further investigated the dispersion of gyrotactic micro-organisms in pipe
flows: a detailed comparison with the PK model and the GTD model was presented,
explicitly demonstrating the inaccuracy of the PK model and the GTD model when the
micro-organisms are highly motile or when the background flow is strong. Alternatively, as
a compromised substitute of the Smoluchowski equation, Brownian dynamics simulations
are mostly employed for computational convenience (Thorn & Bearon 2010; Bearon et al.
2011; Croze et al. 2013; Peng & Brady 2020). Although straightforward, if Brownian
dynamics simulations are used, one has the problem to include the forces and stresses
on the flow induced by the micro-organisms, and these effects are non-negligible in
semi-dilute and dense suspensions.

The objective of the present study is to address the buoyancy–flow coupling effect
with the transport of micro-organisms directly described by the Smoluchowski equation,
hence extending the results in Jiang & Chen (2020). In the dilute regime, buoyancy–flow
coupling is the dominant effect that negatively buoyant micro-organisms exert on the
flow (Pedley & Kessler 1990), and is therefore crucial to the transport and stability of
the suspension (Bees 2020). For the fundamental case within a vertical pipe, there are
only a handful of works considering the buoyancy–flow coupling effect. Bees & Croze
(2010) formulated a dispersion scheme resembling the classical Taylor–Aris dispersion
theory (Taylor 1953; Aris 1956), using the asymptotic results from the PK model.
Croze et al. (2017) presented an experimental study and directly compared the measured
cross-sectional average drift velocity with predictions from the PK model and the GTD
model. The bifurcation and stability in such a configuration were analysed by Fung et al.
(2020) and Fung & Hwang (2020) for downwelling and upwelling flows using the PK
model and the GTD model. Fung (2021, § 5.1) further performed a bifurcation analysis
using an analytical solution of the simplified Smoluchowski equation in a vertical pipe
considering the buoyancy–flow coupling effect. Although this solution is still coupled
to the Navier–Stokes (N–S) equation (because it is related to the flow profile) and only
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Dispersion of a gyrotactic micro-organism suspension

applies to the steady state of spherical micro-organisms, it offers a more accurate basic
state compared with those calculated by the PK model and the GTD model.

In this work, we consider a suspension flowing either downwards or upwards on average.
The velocity and cell concentration profiles in the radial direction are assumed to be
axially invariant and axisymmetric, as in Bees & Croze (2010) and Croze et al. (2017).
The stability analysis of the solution, such as Fung et al. (2020) and Fung & Hwang
(2020), is beyond the scope of this work. Due to the buoyancy–flow coupling effect,
the flow velocity profile will deviate from a simple Poiseuille flow and must be solved
simultaneously with the Smoluchowski equation. Compared with cases only considering
the unidirectional effect of the flow on the cells (Jiang & Chen 2020), the bidirectional
buoyancy–flow interaction couples the velocity and the cell transport, which is the major
contribution of this work. In addition, the effect of buoyancy–flow coupling on the
dispersion coefficients, namely the drift velocity and the dispersivity, will be discussed.
At last, we shall present comparisons between the results of the Smoluchowski equation,
the PK model and the GTD model, thus assessing their performances in the presence of
the buoyancy–flow coupling effect. This assessment is difficult to realise in the Brownian
dynamics simulations.

2. Formulation

2.1. Governing equations
As shown in figure 1, a cylindrical coordinate (r∗, ψ, z∗) identified by unit vectors er, eψ
and ez characterises the dynamics in the position space and two angles θ and φ with the
corresponding unit vectors eθ and eφ characterise the orientation of a micro-organism.
Under the Boussinesq approximation, the N–S equation of the steady, unidirectional,
axially invariant and axisymmetric flow velocity u∗ = U∗(r∗)ez is

0 = − 1
ρ∗

dp∗

dz∗ + ν∗ 1
r∗

d
dr∗

(
r∗ dU∗

dr∗

)
+ n∗v∗�ρ∗

ρ∗ g∗. (2.1)

On the right-hand-side of (2.1), the first term is the imposed pressure gradient (ρ∗ is the
density of water, and dp∗/dz∗ is the constant pressure gradient along the axial direction ez),
the second term is the viscous stress (ν∗ is the kinematic viscosity of water) and the third
term is the negative buoyancy of the cells (n∗ is the cell number density in the position
space (r∗, ψ, z∗), v∗ is the volume of a cell,�ρ∗ is the density difference between the cell
and water and g∗ is the gravitational acceleration).

In the N–S equation (2.1), the only effect of the micro-organisms on the flow is
buoyancy. Here, we further consider the effect of active hydrodynamic stresslet (Saintillan
2018)

Σ∗
p = n∗T∗

(∫
pp

f ∗

n∗ d2p − 1
3

I

)
, (2.2)

where T∗ = 10−10 g cm2 s−2 for C. augustae (Pedley 2010; Fung et al. 2020), p is
the vector for the orientation of the micro-organism, and I is the identity tensor. The
z-component of (1/ρ∗)∇∗ · Σ∗

p is now added to the right-hand side of (2.1). A scaling
analysis for the relative strength of the stresslet and buoyancy can be readily achieved by
examining T∗/(ν∗�ρ∗g∗R∗). Substituting the parameters used in this work (shown later
in table 1), we obtain a relative strength of 0.01. Therefore, the stresslet can be safely
neglected.

Assuming that the total number of cells is conserved, the governing equation of the
steady-state cell number density f ∗ in the full position–orientation space (r∗, ψ, z∗, θ, φ),
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(a)

R∗

U∗(r∗)

r∗

g∗g∗

z∗

(b)

(c)

Gravitactic

torque

p –ez

ez er

–er

eψ

eψ

φ
θ

Figure 1. Sketch of the problem. (a) In an exemplary downwelling flow, the cells accumulate in the central
region and thus accelerate the local flow via their negative buoyancy. (b) The top view of the pipe. Unit
vectors er, eψ and ez identify the cylindrical coordinate in the position space. (c) The spherical coordinate
characterising the orientation of the micro-organism is featured with a polar angle θ between p and eψ and an
azimuthal angle φ between −ez and the projection of p on the r–z plane.

Parameters Symbols Values & Ranges Units

Mean swimming speed V∗
s 6.3 × 10−3 cm s−1

Gravitactic reorientation time B∗ 3.4 s
Rotational diffusivity D∗

r 0.067 s−1

Translational diffusivity D∗
t 0 cm2 s−1

Excess buoyant mass v∗ �ρ∗
ρ∗ 1.05 × 10−12 cm2 s−2

Kinematic viscosity of water ν∗ 0.01 cm2 s−1

Gravitational acceleration g∗ 9.81 × 104 cm2 s−1

Pipe radius R∗ 0.094 cm
Mean cell concentration N∗ (0–1.0)× 106 cells cm−3

Flow rate Q∗ 0–0.3498 cm3 s−1

Shape parameter α0 0 —
Bias parameter λ 2.2 —
Reynolds number Re 0.0592 —
Richardson number Ri 0–100 —
Dimensionless settling speed Se 0.023 —
Dimensionless flow rate Q 0–62.83 —
Dimensionless rotational diffusivity Dr 1 —
Dimensionless translational diffusivity Dt 0 —

Table 1. Values and ranges of relevant parameters of C. augustae, most of which are taken from Pedley &
Kessler (1990) and Hwang & Pedley (2014a,b).

namely the Smoluchowski equation, is

∇∗ · [(u∗ + V∗
s p + V∗

d ez)f ∗ − D∗
t ∇∗f ∗] + ∇p · (ṗ∗f ∗ − D∗

r ∇pf ∗) = 0. (2.3)

Here, ∇∗ = er(∂/∂r∗)+ eψ(1/r∗)(∂/∂ψ)+ ez(∂/∂z∗) and ∇p = eθ (∂/∂θ)+ eφ(1/ sin θ)
(∂/∂φ) denote the gradient operators in the position space and in the orientation space,
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Dispersion of a gyrotactic micro-organism suspension

respectively; V∗
s is the swimming velocity of the micro-organisms, with the orientation

denoted by p; V∗
d is the settling velocity; D∗

t and D∗
r are respectively the intrinsic

translational and orientational diffusivities (since we do not consider the hydrodynamic
interaction between cells (Ishikawa & Pedley 2007), these two diffusivities are purely due
to the physiology of the micro-organisms); ṗ∗ is the time derivative of p, and is related to
the angular velocity of the micro-organism (denoted by Ω∗) via

ṗ∗ = Ω∗ × p,

=
[

1
2
ω∗ + α0p × (E∗ · p)− 1

2B∗ (p × ez)

]
× p,

= 1
2
ω∗ × p + α0p · E∗ · (I − pp)+ 1

2B∗ p(p · ez)− 1
2B∗ ez, (2.4)

with
ω∗ = ∇∗ × u∗, (2.5)

being the vorticity of the flow, and

E∗ = 1
2 [∇∗u∗ + (∇∗u∗)T ], (2.6)

being the rate of strain; B∗ is the gravitactic reorientation time (smaller for a strong
gyrotaxis); α0 = (AR2 − 1)/(AR2 + 1) characterises the shape of the cell (AR ≥ 1 is
the aspect ratio of the spheroid). It is important to note that, since the micro-organisms
considered in this work are spherical, i.e. α0 = 0, we have neglected the settling velocity
component not parallel to ez in (2.3), which is, however, non-zero for ellipsoids.

Integrating f ∗(r∗, θ, φ) over the orientation space yields the cell concentration in the
position space, which is denoted by n∗

n∗(r∗) �
∫ π

0

∫ 2π

0
f ∗ sin θ dφ dθ. (2.7)

From here on, we will eliminate the dependences of f ∗ and n∗ on the position coordinates
ψ and z∗ using the symmetric and axially invariant assumption.

Dimensionless variables are introduced as

t = t∗V∗
s

R∗ , r = r∗

R∗ , z = z∗

R∗ , Dt = D∗
t

V∗
s R∗ ,

Dr = D∗
r R∗

V∗
s
, u = u∗

V∗
s
, f = f ∗

N∗ , n = n∗

N∗ , p = p∗

ρ∗V∗
s

2 ,

λ = 1
2B∗D∗

r
, Re = R∗V∗

s

ν∗ , Ri = N∗v∗�ρ∗g∗R∗

ρ∗V∗
s

2 , Se = V∗
d

V∗
s
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

Here, Dt and Dr are the dimensionless translational and rotational diffusivities,
respectively; λ is the dimensionless bias parameter; f and n are respectively the cell p.d.f. in
the radius–orientation space (r, φ, θ) and the dimensionless cell concentration in the radial
direction (r) normalised by the mean cell concentration N∗, thus we have the normalisation
condition ∫ 1

0

∫ π

0

∫ 2π

0
2rf sin θ dφ dθ dr =

∫ 1

0
2rn dr = 1; (2.9)

Re is the Reynolds number quantifying the viscous effect; Ri is the Richardson number
quantifying the mean cell concentration; and Se is the dimensionless settling velocity.
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The dimensionless form of (2.1) is

− dp
dz

+ 1
Re

1
r

d
dr

(
r

dU
dr

)
+ Ri n = 0, (2.10)

and the dimensionless form of (2.3) becomes

∇ · [(u + p + Seez)f − Dt∇f ] + ∇p · (ṗrf − Dr∇pf ) = 0. (2.11)

Note that
ṗr = ṗ − ṗc, (2.12)

is the dimensionless time derivative of p expressed with basis vectors in the orientation
space, namely eθ and eφ , thus a term

ṗc = cos θ
r

ez × p, (2.13)

representing the Coriolis effect must be subtracted from ṗ defined in the inertial
coordinate. Specifically, ṗc emerges due to the swimming of micro-organism in the
eψ -direction and the dependence of spherical coordinate characterising the orientation of
the micro-organism on the cylindrical coordinate fixed in the position space. The angular
velocity of the rotating spherical coordinate is cos θ/rez. The detailed expression of ṗr is

ṗr = θ̇eθ + φ̇ sin θeφ, (2.14)

where

θ̇ = cosφ cos θ
(

Drλ+ α0
dU
dr

sinφ sin θ
)

− cos θ sinφ
r

, (2.15)

φ̇ = −1
2

dU
dr

+ 1
2
α0

dU
dr

cos 2φ − Drλ csc θ sinφ − cosφ cos θ cot θ
r

. (2.16)

The steady-state Smoluchowski equation (2.11) for the cell p.d.f. f (r, θ, φ) is expressed
as

Lf � − sin θ sinφ
1
r
∂(rf )
∂r

− Dt
1
r
∂

∂r

(
r
∂f
∂r

)
+ 1

sin θ
∂(θ̇ sin θ f )

∂θ
+ ∂(φ̇f )

∂φ

− Dr

[
1

sin θ
∂

∂θ

(
sin θ

∂f
∂θ

)
+ 1

sin2 θ

∂2f
∂φ2

]
= 0, (2.17)

where L denotes the operator characterising the transport in the radius–orientation space
(r, θ, φ).

2.2. Solutions for velocity and cell p.d.f.
The total flow rate is calculated by

Q =
∫ 1

0
2πrU(r) dr = πUm, (2.18)

where Um denotes the mean flow velocity. We shall prescribe the mean flow velocity Um,
then there are two variables U(r) and f (r, θ, φ) along with (2.10) and (2.17). Theoretically,
the coupled equations can be solved with appropriate constraints and boundary conditions.
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The boundary conditions for U(r) are a no-slip condition at the wall and a boundedness
condition at the centreline

U(1) = 0, (2.19)

U(0) /=∞. (2.20)

For f (r, θ, φ), following Jiang & Chen (2020), we use specular reflection boundary
conditions to ensure the no-flux requirement of cell concentration at the wall

f (r, θ, φ, t)|r=1 = f (r, θ,−φ, t)|r=1, (2.21)

∂f (r, θ, φ, t)
∂r

∣∣∣∣
r=1

= −∂f (r, θ,−φ, t)
∂r

∣∣∣∣
r=1

. (2.22)

We note that the reflection boundary conditions may not be appropriate for
micro-organisms featuring wall adhesion, for example, non-biased bacteria accumulate
at walls (Berke et al. 2008; Li & Tang 2009). However, we suppose that the reflection
boundary conditions are suitable for a vertical pipe configuration, because most of the
suspended gyrotactic micro-organisms accumulate in the central region in a downwelling
flow and the high shear rate at the wall dominates the reorientation of cells in an upwelling
flow. Furthermore, as noted previously, the PK model and the GTD model are unable to
incorporate boundary conditions in the position–orientation space, and no-flux boundary
conditions in the position space are imposed; therefore, using the reflection boundary
conditions does not affect the comparisons between the PK model, the GTD model and
the Smoluchowski equation (Bearon et al. 2011; Croze et al. 2013; Bearon & Hazel 2015;
Jiang & Chen 2020).

The boundedness condition for θ is

f |θ=0 /=∞, f |θ=π /=∞, (2.23a,b)

and the periodic boundary conditions for φ are

fφ=2π = f |φ=0, (2.24)

∂f
∂φ

∣∣∣∣
φ=2π

= ∂f
∂φ

∣∣∣∣
φ=0

. (2.25)

In this work, we shall use a Galerkin method for the Smoluchowski equation and an
eigenfunction expansion method for the N–S equation. To resolve the buoyancy–flow
coupling, an iterative method is employed (Hwang & Pedley 2014b). The details of the
numerical method are given in Appendix A.

2.3. Solutions for dispersion coefficients
The drift velocity Ud and the dispersivity DT constitute two key parameters in
the drift–dispersion equation for the cross-sectional average cell concentration at the
asymptotically long time. However, care must be taken in understanding these two
coefficients in the current situation: they only describe the dispersion of a small number
of labelled cells in an existing background flow formed by the imposed flow and a large
number of unlabelled cells. Specifically, compared with the unlabelled cells, the distortion
on the flow induced by the labelled cells is negligible. This assumption decouples the
dispersion of labelled cells from the background buoyancy–flow coupling problem and
ensures the background flow is always steady (Bees & Croze 2010; Croze et al. 2017),
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which are required for the application of Taylor–Aris theory (Taylor 1953; Aris 1956; Guan
et al. 2022; Jiang et al. 2022) and the GTD theory (Frankel & Brenner 1989; Brenner &
Edwards 1993; Jiang & Chen 2019, 2020).

With the solved velocity profile U(r) and cell p.d.f. profile f (r, θ, φ), one can apply the
standard GTD theory (Frankel & Brenner 1989; Jiang & Chen 2019, 2020) to evaluate
the cross-sectional average drift velocity Ud and dispersivity DT . Let 〈(·)〉 denote the
integration 2

∫ 1
0

∫ π

0

∫ 2π

0 (·)r sin θ dφ dθ dr, the cross-sectional average drift velocity Ud
and dispersivity DT are calculated by Jiang & Chen (2020, (3.34) and (3.35))

Ud = 〈Vz(r, θ, φ)f (r, θ, φ)〉, (2.26)

DT = Dt + 〈Vz(r, θ, φ)b(r, θ, φ)〉, (2.27)

where
Vz(r, θ, φ) = U(r)+ pz(θ, φ)+ Se = U(r)− sin θ cosφ + Se, (2.28)

is the local effective velocity, and b(r, θ, φ) is a scalar field constituting the solution of the
equation (Frankel & Brenner 1989; Brenner & Edwards 1993; Haugerud, Linga & Flekkøy
2022)

Lb = f (Vz − Ud). (2.29)

An additional normalisation condition for b(r, θ, φ) is imposed to ensure its uniqueness

〈b(r, θ, φ)〉 = 0, (2.30)

note that this normalisation condition does not affect the dispersivity. Then b(r, θ, φ) is
also solved by a Galerkin method (see Appendix A for details).

3. Results and discussion

Following Jiang & Chen (2020), among others (Pedley & Kessler 1992; Bees & Hill 1998;
Hwang & Pedley 2014a,b; Zeng & Pedley 2018), parameters of the gyrotactic species C.
augustae are used for calculation to illustrate the buoyancy–flow coupling effect, as listed
in table 1.

It is noteworthy that, at high flow rate, the Richardson number Ri must be below a
threshold Ric to avoid blow-up of the focused beam, i.e. to ensure the existence of a steady
solution. We adopt a formula from Fung et al. (2020, § 3.3) to estimate this threshold, that
is, Ric = 16/(λRe). This formula is deduced using the analytical solution of the simplified
Smoluchowski equation (Fung 2021, § 5.1), and can be also obtained from a simplified
model resembling the GTD model. Substituting the values of λ and Re in our case, we
obtain Ric = 122.85. If Ri is larger than Ric at a high flow rate, a steady solution may
not exist and the numerical method in this work becomes invalid. It is acknowledged that
this threshold numerically estimated by the full Smoluchowski equation may slightly differ
from the one given by the formula which assumes that all cells are concentrated in a narrow
core around the axis; however, since the bifurcation structure is not the focus of this work,
we do not try to find out the exact Ric and an upper limit of Ri = 100 is tested to guarantee
a steady solution.

3.1. Velocity and cell concentration profiles
We first report the results in downwelling flows, as shown in figure 2 (the profiles of the
velocity deviation above the mean) and figure 3 (the cell concentration profiles) for three
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Figure 2. The velocity deviation profiles χ(r) in the downwelling flows with Ri = 0, 36.6 and 73.1. The cell
transport is calculated using the Smoluchowski equation; (a) Um = 1, (b) Um = 5, (c) Um = 10.
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Figure 3. The cell concentration profiles n(r) in the downwelling flows with Ri = 0, 36.6 and 73.1. The cell
transport is calculated using the Smoluchowski equation; (a) Um = 1, (b) Um = 5, (c) Um = 10.

Richardson numbers (Ri = 0, 36.6 and 73.1) and three mean flow velocities (Um = 1, 5
and 10). The velocity deviation above the mean is defined as

χ(r) = U(r)
Um

− 1. (3.1)

As seen in figure 2, when Ri = 0, i.e. the buoyancy–flow coupling effect vanishes and
the velocity profile is completely decoupled from the cell concentration profile, the flow
is exactly a Poiseuille flow characterised by χ(0) = 1 and χ(1) = −1 with r = 0 and 1
corresponding to the centreline and wall, respectively. As Ri increases, we see that the
flow profile deviates from the Poiseuille flow, as evidenced by an increased velocity at
the centreline (χ(0) > 1). In addition, we observe that χ(0) varies non-monotonically
with Um when Ri is set to positive (see also figure 5c), indicating a competition between
the buoyancy–flow coupling effect and the background flow. We shall investigate this
non-monotonicity quantitatively later. The cell concentration profiles typical of gyrotactic
focusing at the central region in the downwelling flows are depicted in figure 3. The
increases of both Um and Ri have a profound enhancement on the gyrotactic focusing,
as reflected by the increased cell concentration at the centreline.

Now we turn to the upwelling flows, the velocity deviation profiles with Um = −10 are
shown in figure 4(a). We find no discernible difference between the profiles obtained with
different Ri at this selected Um, which is relatively large, i.e. profiles almost identical to an
upwelling Poiseuille flow are predicted. This observation is the key result in the upwelling
cases, and is also in deep contrast to the downwelling cases where the buoyancy–flow
coupling effect has a significant influence on the velocity deviation profile even when
|Um| = 10. In the upwelling flows, the gyrotactic cells scatter towards the wall where they
were expected to distort the flow via their negative buoyancy. Nonetheless, near the wall,
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Figure 4. (a) The velocity deviation profiles χ(r). (b) The cell concentration profiles n(r) in the upwelling
flows. The cell transport is calculated using the Smoluchowski equation. Note that the velocity deviation profiles
χ(r) at all sampled mean flow velocity (Um = −1, −5 and −10) are very close, and therefore only profiles with
Um = −10 are shown here.

the no-slip condition (2.19) dominates the buoyancy–flow coupling effect, and thus the
velocity deviation profiles do not vary as much as they do in the downwelling cases when
Ri is increased. Although we see in figure 5(c) that the buoyancy–flow coupling effect still
accelerates the peripheral flow (in the ex direction) and consequently leads to an increased
velocity deviation at the centreline (χ(0) > 1), this effect vanishes faster than that in the
downwelling flows as |Um| increases. We present the cell concentration profiles in the
upwelling flows with Um = −10 in figure 4(b), and the almost identical cell concentration
profiles at different Ri can be understood by the almost identical velocity deviation profiles.
Meanwhile, since micro-organisms are mostly located in the near-wall region where the
buoyancy–flow coupling effect is insignificant, we do not see a notable difference between
the cell concentration at the wall n(1) at different Ri as shown in figure 5(b).

As noted previously, there exists a competition between the buoyancy–flow coupling
effect and the background flow, as evidenced by the non-monotonic variation of χ(0) with
increasing Um (see e.g. figures 3 and 5a): χ(0) first experiences an increase and then a
decrease to unity as Um increases when Ri > 0. An intuitive impression on the strength
of the buoyancy–flow coupling effect in the Um–Ri plane is given in figure 6, where
the contours of the velocity deviation at the centreline χ(0) and the cell concentration
at the centreline n(0) are plotted. We observe that, while χ(0) increases monotonically
with Ri regardless of the value of Um, χ(0) is maximally enhanced at a moderate Um
(approximately equals 2). In contrast, n(0) increases monotonically with both Um and Ri.

3.2. Drift velocity and dispersivity
Figure 7 illustrates the variations of the drift velocity Ud and the dispersivity DT as
functions of the mean flow speed Um for three Richardson numbers (Ri = 0, 36.6 and
73.1). In the downwelling flows, Ud increases monotonically with Um and Ri. This
trend can be well understood by the accelerated flow velocity and concentrated cell
concentration in the central region, both of which contribute to a larger Ud. For DT , we
observe a boost with increasing Ri, which can be probably explained by the enhanced
shear in the central region benefiting dispersion; however, since DT is a quantity related to
the complex scalar field b(r, θ, φ), an intuitive understanding of its variation with the flow
strength and the cell concentration profile is potentially difficult. For example, as shown in
figure 7(a), in the downwelling flows, DT exhibits a non-monotonic variation with Um: DT
first increases and then decreases as Um increases, which is also reported in non-coupling

962 A39-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.279
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Figure 5. (a) Variations of the cell concentration at the centreline n(0) as a function of the mean velocity Um
in the downwelling flows. (b) Variations of the cell concentration at the wall n(1) as a function of the mean
velocity Um in the upwelling flows. (c) Variations of the velocity deviation at the centreline χ(0) as a function
of the mean velocity Um. Here, ‘S’, ‘G’ and ‘P’ denote results obtained from the Smoluchowski equation, the
GTD model and the PK model, respectively.
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Figure 6. Contours of (a) the velocity deviation at the centreline χ(0) and (b) the cell concentration at the
centreline n(0) in the Um–Ri plane.

cases (Croze et al. 2013; Jiang & Chen 2020) and coupling cases (Croze et al. 2017). This
non-monotonic variation is due to the effect of the enhanced gyrotactic focusing on the
dispersion. We shall consider two extreme cases to understand this variation: first, there is
no flow, and thus dispersivity DT is solely contributed by swimming, which is very small
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Figure 7. Variations of drift velocity Ud and dispersivity DT as functions of the mean velocity Um (a,b) in the
downwelling flows and (c,d) in the upwelling flows. Here, ‘S’, ‘G’ and ‘P’ denote results obtained from the
Smoluchowski equation, the GTD model and the PK model, respectively.

due to biased swimming induced by gyrotaxis; second, there is an extremely strong flow,
and thus nearly all the cells are located in the centre, meaning that differential advection
again contributes nothing to dispersivity; between these two extremes, the dispersivity is
increased by both the swimming-induced dispersion and differential-advection-induced
dispersion.

In the upwelling flows, Ud is negative because both the advective velocity of the
background flow and the average swimming velocity of the gyrotactic micro-organisms
are directed upwards. In contrast to the downwelling cases, Ud finally saturates in the
upwelling flows. A sensible explanation for this phenomenon is that, in the limit of
extremely strong upwelling flow, all micro-organisms scatter towards the wall, thus Ud
is independent of Um and is solely determined by the near-wall orientation distribution of
the micro-organisms (which determines the swimming-induced drift). The non-monotonic
variation of DT with Um in the upwelling flows is analogous to that observed in the
downwelling flows, and is also due to an initial increment and a following reduction of
the differential-advection-induced dispersion as the flow becomes strong. Although the
buoyancy–flow coupling effect is relatively weak in the upwelling flows because of the
dominance of the no-slip wall, we are still able to observe slight differences of Ud and DT
between cases with different Ri at a moderate range of Um (around 2). It is seen that Ud is
increased with a larger Ri, this is due to the fact that the micro-organisms now accelerate
the flow near the wall in the ex direction, while the background flow is in the −ex direction;
this counteracting effect finally leads to the increase of Ud with Ri. The decrease of DT
with Ri can be probably also understood by the modification on the flow profile: the shear
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Dispersion of a gyrotactic micro-organism suspension

in the near-wall region where the micro-organisms accumulate is decreased, and thus the
contribution of differential advection to the dispersion is weakened.

3.3. Comparisons with PK model and GTD model
For dispersion of gyrotactic micro-organisms in a pipe, we can employ a simplified method
for the calculation using the PK model and the GTD model, see e.g. Bearon et al. (2012,
Appendix E). Now using the parameters of C. augustae and the calculation method
presented in Appendix B, we shall compare the results obtained from the Smoluchowski
equation with those from the PK model and the GTD model (the comparisons are already
included in figure 5 and figure 7). It is also noteworthy that Croze et al. (2017) used
a different species called Dunaliella salina in their experiment. We note that λ = 0.21
for D. salina, which means that their gyrotactic focusing will be weak, and thus the
effect of buoyancy–flow coupling will be less significant. In Appendix C, we present the
comparisons between the results of D. salina calculated using the PK model, the GTD
model, the Smoluchowski equation and the results measured in the experiments.

We first discuss the comparisons in the downwelling flows. As shown in figure 5(a),
when Ri = 0, the Smoluchowski equation and the GTD model predict almost the same
n(0) profiles, typical of gyrotactic focusing, while n(0) predicted by the PK model is
very close to unity. As Ri increases, we see that the flow deviates from a Poiseuille
flow for all models, as evidenced by an increased velocity at the centreline χ(0) > 1
(figure 5c). However, the buoyancy–flow coupling effect is less profound predicted by
the PK model, while the GTD model slightly overestimates the effect at a moderate Um
and underestimates it at a large Um. The unsatisfactory performance of the PK model
in high-shear flows has long been recognised (Croze et al. 2013, 2017; Bees 2020; Fung
et al. 2020; Jiang & Chen 2020). This weakness is because the diffusion tensor calculated
by the PK model cannot reflect the shear-induced dispersion in the position space (Croze
et al. 2013). In a Poiseuille flow, if the flow rate continues increasing, the cell concentration
profile predicted by the PK model will tend to be uniform, e.g. Bearon et al. (2012, figure 2)
and Croze et al. (2017, figure 1a), as a result of the mean swimming velocity approaching
to zero and the diffusivity tensor approaching to a constant scalar matrix (in Cartesian
coordinate). In other words, gyrotactic micro-organisms will behave in a similar manner
to passive tracers if one applies the PK model in a high-shear flow. For the buoyancy–flow
coupling effect, although the velocity deviation at the centreline χ(0) does reflect the
buoyancy–flow coupling effect to some extent, we do not see a noteworthy variation of
n(0) as Ri increases with the PK model.

The velocity deviation at the centreline χ(0) predicted by the Smoluchowski equation
and the GTD model are close (figure 5c). Nonetheless, when it turns to the cell
concentration at the centreline n(0), an apparent difference is seen when Ri > 0, as is seen
in figure 5(a). The GTD model underestimates the gyrotactic focusing in the presence of
the buoyancy–flow coupling effect. This result is due to these models sharing the same
governing equation for the flow but fundamentally different governing equations for the
cell transport (Bees 2020). In the analytical solution of the Smoluchowski equation (Fung
2021, § 5.1) and in models assuming a position–orientation separation, the radial cell
concentration has an exponential scaling with the flow profile (see e.g. Fung 2021, (5.1))
or the ratio between the radial components of the local drift velocity and the diffusivity
tensor (see e.g. (B6)), which also depends on the flow profile. Thus, any perturbation on
the flow profile will result in a remarkable change in the cell concentration, causing the
cell concentration to be more sensitive to the models.
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Now we turn to cases where the flow is upwards, the comparisons of the velocity
deviation at the centreline χ(0) and the cell concentration at the wall n(1)with varying Um
are shown in figures 5(c) and 5(b). We find that all models predict almost identical χ(0).
Furthermore, as the flow becomes strong, χ(0) values obtained with all models approach
unity. This coincidence is again in deep contrast with the downwelling cases where the
cell transport model has a significant influence on χ(0), and can be also attributed to the
no-slip boundary condition imposed at the wall. For n(1), we see relatively good agreement
between the predictions of the Smoluchowski equation and the GTD model at weak and
moderate flow strengths, deviation is, however, observed in strong flow. In contrast, the PK
model yields a much more uniform concentration profile and a decreasing trend of n(1) as
the flow becomes strong when Um is smaller than −2.

Figure 7(a) compares the variations of the drift velocity Ud as functions of the mean
flow speed Um in the downwelling flows between different models. We see that Ud
predicted by the GTD model and the Smoluchowski equation are nearly twice as large
as the one predicted by the PK model with a large Um. This is because both the GTD
model and the Smoluchowski equation can effectively capture the gyrotactic focusing
phenomenon in a strong flow. Specifically, cells accumulate at the centreline where the
local advective speed is twice the mean flow velocity in non-coupling cases. In contrast,
Ud predicted by the PK model gradually approaches Um, as a consequence of the nearly
uniform radial cell concentration profile resembling that of solute tracers. For the effect of
buoyancy–flow coupling, we see that the GTD model and the Smoluchowski equation still
give almost identical Ud (figure 7a). Although we have seen that the cell concentration
at the centreline n(0) of the Smoluchowski equation is significantly larger than that of the
GTD model (figure 5a), this concentration enhancement in the central region does not lead
to a discernible increase of Ud, since the area of the narrow central core scales with r2.
In addition, the curves of the PK model at all sampled Ri nearly overlap except for a very
small Um.

The variation of dispersivity DT as a function of the mean flow speed Um in the
downwelling flows between different models is presented in figure 7(b). Different from
the results of the Smoluchowski equation, the GTD model predicts a saturated instead of
a decreasing DT . In contrast, although the PK model captures the variation of DT with
increasing Ri, it fails to reflect neither the decrease nor the saturation of DT when the
flow becomes strong. In summary, for the cases in the downwelling flows, the GTD model
outperforms the PK model, but still overestimates DT .

The dispersion predictions in the upwelling flows by different models are plotted in
figures 7(c) and 7(d). First, although Ud of the GTD model finally becomes nearly a
constant with an initial drop as |Um| increases, an extra turning point is observed compared
with the curve predicted by the Smoluchowski equation. In comparison, the curves of the
PK model still behave very differently from the other two models: a tracer-like dispersion
behaviour is predicted again as |Um| increases. For the dispersivity DT , although the GTD
model also predicts a non-monotonic trend as the flow becomes strong, the agreement with
the results of the Smoluchowski equation remains qualitative.

4. Concluding remarks

In this paper, by solving the N–S equation and the Smoluchowski equation simultaneously,
we investigate the effect of buoyancy–flow coupling on the velocity profile, cell
concentration profile and Taylor dispersion of a suspension of gyrotactic micro-organisms
in a vertical pipe. The buoyancy–flow coupling effect is more significant when the average
flow is directed downwards, as a consequence of gyrotactic focusing of negatively buoyant
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micro-organisms accelerating the flow in the central region. In contrast, the buoyancy–flow
coupling effect has a minor influence in the upwelling flows because the negative buoyancy
of the wall-accumulated micro-organisms is inferior to the effect of the no-slip condition
imposed at the wall. In the downwelling flows, the buoyancy–flow coupling effect leads to
enhanced flow velocity and gyrotactic focusing in the central region, as well as enhanced
drift velocity and dispersivity. The strength of the buoyancy–flow coupling effect can be
quantified by the Richardson number Ri; however, its modification to the flow, which we
use the velocity deviation at the centreline χ(0) to quantify, is largest at a moderate mean
flow velocity Um. This phenomenon is understood by considering that a small Um does
not arouse obvious gyrotactic focusing and thus the cell concentration is too uniform to
result in acceleration of the flow in the central region, while a large Um due to the imposed
pressure gradient overwhelms the buoyancy–flow coupling effect.

Another contribution of this paper is giving a benchmark test for the PK model and the
GTD model in the presence of the buoyancy–flow coupling effect. It has been shown in
previous studies that the PK model performs unsatisfactorily in strong shear flows (Croze
et al. 2013, 2017; Jiang & Chen 2020). Here, we further confirm its defect in the presence
of the buoyancy–flow coupling effect. In comparison, although the GTD model captures
some trends in the variations, its predictions of the dispersivity still deviate a lot from the
exact results of the Smoluchowski equation.

One may inevitably question the extent to which the Smoluchowski equation can
explain the pioneering experimental measurements in Croze et al. (2017). We show the
comparisons in Appendix C; however, no obvious improvement on the GTD model is
seen, since λ = 0.21 for D. salina and thus assumptions of the GTD model basically hold.
Although somewhat disappointed, we still advocate using the Smoluchowski equation in
relevant problems, at least as a benchmark test, because we have shown the inaccuracy of
the GTD model when the assumptions associated with orientation–position separation are
not met. The fact that the experimental results do not agree satisfactorily with the GTD
model and the Smoluchowski equation is open to many possible explanations, such as
heterogeneity of micro-organisms (Bees, Hill & Pedley 1998), cell–cell interactions in the
central core (Fung et al. 2020) and the microscopic kinematic model of the cell (Omori
et al. 2022; Walker et al. 2022; Zeng, Jiang & Pedley 2022), which deserve in-depth
research.

Another important issue not covered by the current study is the possible bifurcation
and stability of the steady-state solutions. Since we have limited the Richardson number
Ri to less than 100, we can safely evade the regimes with bifurcation and instability. It
is of great interest to extend the current work to linear hydrodynamic stability analysis
of the solutions; however, great difficulty arises in converting the linearised equation to
an eigenvalue problem due to the non-parallel perturbed flow field and complex axial
transport of cells. Fung (2021, § 5.1) has given a preliminary analysis and this problem
should be explored in future work.
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Appendix A. Numerical method

In this appendix, we show the numerical method for solving (2.10) and (2.17).
For the N–S (2.10), we use the eigenfunction expansion method. The basis functions for

U(r) are adopted as the eigenfunctions of operator

Δr = 1
r
∂

∂r

(
r
∂

∂r

)
, (A1)

and are found to be

RD
i (r) =

√
2

J0(γir)
J1(γi)

, i = 1, 2, . . . . (A2)

Here, the superscript ‘D’ denotes the Dirichlet boundary condition (2.19) at r = 1; J0 and
J1 are the Bessel functions of order 0 and 1, respectively; γi is the ith zero of

J0(γi) = 0, i = 1, 2, . . . , (A3)

and the corresponding eigenvalue is −γ 2
i (ΔrRD

i = −γ 2
i RD

i ).
For the Smoluchowski equation (2.17), a Galerkin method is employed. The basis

functions for f (r, θ, φ) are adopted as the eigenfunctions of operator

Δq = 1
r
∂

∂r

(
r
∂

∂r

)
+ 1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 , (A4)

and take the form of (Jiang & Chen 2020, § 3.2.1)

RN(r)

√
2l + 1

4π
Pl(cos θ), (A5)

RN(r)
√

2

√
2l + 1

4π

(l − m)!
(l + m)!

cos(mφ)Pm
l (cos θ), m = 1, 2, . . . , l, (A6)

RD(r)
√

2

√
2l + 1

4π

(l − m)!
(l + m)!

sin(mφ)Pm
l (cos θ), m = 1, 2, . . . , l, (A7)

where l = 0, 1, 2, . . .. Here, Pl are the Legendre polynomials and Pm
l are the associated

Legendre polynomials,

Pm
l (x) = (−1)m(1 − x2)m/2

dm

dxm Pl(x); (A8)

where RN(r) is the eigenfunctions of the operator Δr (A1) with Neumann boundary
conditions (‘N’ denotes Neumann boundary condition), thus we obtain

RN
i (r) =

√
2

J0(βir)
J0(βi)

, i = 1, 2, . . . , (A9)

where βi is determined by

J1(βi) = 0, i = 1, 2, . . . . (A10)
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Dispersion of a gyrotactic micro-organism suspension

We denote the basis of f (r, θ, φ) as {ej(r, θ, φ)}Nf
j=1, where Nf is the truncation degree;

f (r, θ, φ) is subsequently expanded into

f (r, θ, φ) ≈
Nf∑
j=1

ajej(r, θ, φ). (A11)

Similarly, U(r) is expanded into

U(r) ≈
Nu∑
j=1

bjRD
j (r). (A12)

For the buoyancy–flow coupling problem (2.10) and (2.17) are rewritten abstractly as

T ( f ,U) = 0, (A13)

M( f ,U) = 0. (A14)

The solution procedure is summarised as follows:

(i) Assign an initial guess denoted by U0(r) to U(r). Here, we use a Poiseuille flow first,

U0(r) = 2Um(1 − r2) ≈
Nu∑
j=1

b0
j RD

j (r), (A15)

where

b0
j = 2Um

∫ 1

0
(1 − r2)rRD

j (r) dr, (A16)

by orthogonality of the eigenfunctions.
(ii) Substitute U0(r) into the Smoluchowski equation (A13)

T ( f 0; U0) = 0, (A17)

and obtain f 0(r, θ, φ) ≈ ∑Nf
j=1 a0

j ej(r, θ, φ). The coefficients {aj}Nf
j=1 are solved with

a Galerkin method, as detailed in Jiang & Chen (2020).
(iii) Substitute f 0(r, θ, φ) into the momentum equation (A14)

M(U1; f 0) = 0, (A18)

and use the eigenfunction expansion method with the constraint (2.18) to solve
U1(r) ≈ ∑Nu

j=1 b1
j RD

j (r).
(iv) Repeat steps (ii) and (iii) for numerical convergence. The convergence is evaluated

by the second moments of differences of successive coefficients
∑Nf

j=1(a
k
j − ak−1

j )2

and
∑Nu

j=1(b
k
j − bk−1

j )2, as well as the second moments of differences of successive
concentration and velocity sampled from 201 equally spaced radial positions from
r = 0 to 1 (here, the superscript k denotes the kth iteration). Thus we obtain the
steady-state velocity profile U(r) and cell p.d.f. profile f (r, θ, φ).

(v) To obtain the drift velocity and dispersivity, we need to solve (2.29) with the
normalisation condition (2.30). It is noted that b(r, θ, φ) shares the same boundary
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Determine parameters

Give an initial guess U0 for U according to (A15)

Solve  f  by (A13) with the initial guess U0

Solve U by (A14) with latest  f

Solve  f  by (A13) with latest U

Do not converge

Converge

Obtain drift and dispersivity

Check convergence of  f  and U by evaluating the

second moment of difference of successive results

Figure 8. Flowchart of the iterative solution procedure.

conditions (2.22), (2.23a,b) and (2.25) with f (r, θ, φ), thus it can be also expanded
into b(r, θ, φ) ≈ ∑Nf

j=1 cjej(r, θ, φ) and solved by a Galerkin method.

The flowchart of the iterative solution procedure is summarised in figure 8. In the
calculation, we truncate imax = 80 in the radial direction and lmax = 10 in the orientation
space for the cell p.d.f. f (r, θ, φ), yielding a total basis number of Nf = 5316. The number
of basis functions for the velocity is Nu = 40. The level of numerical convergence is set to
10−6.

Appendix B. Calculation with GTD model and PK model

Here, we briefly introduce the simplified calculation of the GTD model and the PK model
for dispersion of a suspension of gyrotactic micro-organisms in a vertical pipe with the
flow–buoyancy coupling effect, we refer readers to Bearon et al. (2012) and Croze et al.
(2017) for more details.

Corresponding to (2.10) and (2.17), the governing equations for the GTD model and the
PK model are (Bees & Croze 2010; Croze et al. 2017; Fung et al. 2020)

−dp
dz

+ 1
Re

1
r

d
dr

(
r

dU
dr

)
+ Ri n = 0, (B1)

qrn = Drr

Dr

dn
dr
. (B2)
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Dispersion of a gyrotactic micro-organism suspension

Here, qr and Drr are the radial components of the local drift velocity and the diffusivity
tensor, respectively. Extending Pedley & Kessler (1990) and Bees et al. (1998) to fit the
orientation p.d.f. calculated by the steady Fokker–Planck equation, Bearon et al. (2012)
has given the well-fitted expressions for qr and Drr, both of which are functions of a
dimensionless shear rate σ = −(1/2Dr) dU/dr and fitting coefficients (ar, br, arr and brr,
each vector contains three coefficients) solely determined by the bias parameter λ,

qr = −σP(σ ; ar, br), (B3)

Drr = P(σ ; arr, brr), (B4)

where P are functions in the form of

P(σ ; a, b) = a0 + a2σ
2 + a4σ

4

1 + b2σ 2 + b4σ 4 . (B5)

Equation (B2) can be readily solved as

n(r) = n(0) exp
(

Dr

∫ r

0

qr

Drr dr
)
. (B6)

Therefore, one can also adopt an iterative approach to solve (B2) and (B1) simultaneously.
The cross-sectional average drift velocity and dispersivity in the current notation are

given by (Bearon et al. 2012; Croze et al. 2017)

Ud = − 1
Dr

Drz dn
dr

+ (U + qz)n, (B7)

DT = − 1
Dr

Drz dg
dr

+ (U − Ud + qz)g + 1
Dr

Dzzn, (B8)

where

(·) � 2
∫ 1

0
(·)r dr, (B9)

g(r) = n(r)
∫ r

0

(
Drz(s)
Drr(s)

− 1
2

U∗
d − Dr(Ud − Um)m∗

0(s)
sDrr(s)n(s)

)
ds, (B10)

with

U∗
d(r) = 2

∫ r

0
s
[
−Drz dn

dr
+ Dr(U − Um + qz)n

]
ds, (B11)

m∗
0(r) = 2

∫ r

0
sn(s) ds. (B12)

Note that qz, Drz and Dzz are also components of the local drift velocity and diffusivity
tensor, taking the same fitting forms as qr and Drr (see (B3) and (B4)). Bearon et al. (2012,
Appendix E) and Croze et al. (2017, table 2) have already calculated the specific values
of the fitting coefficients with λ = 2.2 (C. augustae) and λ = 0.21 (D. salina) for both the
GTD model and the PK model.

In figure 9, we validate our iterative solver against an independent boundary value
problem (BVP) solver for three cases using the GTD model. The results in Croze et al.
(2017, figures 1b and 1c) are also presented. It is seen that our iterative solution results
agree well with the results of the BVP solver, whereas the results of Croze et al. (2017,
figures 1b and 1c) deviate at large Ri (293.3).
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2.0 102
(b)(a)

100

10–2

10–4
n(r)

10–6

10–8

1.5

1.0

0.5χ (r)

0

–0.5

–1.0

0

Iteration

Ri = 0 Ri = 180.8 Ri = 293.3

BVP Croze et al. (2017)

0.40.2
r

0.6 0.8 1.0 0 0.2 0.4
r

0.6 0.8 1.0

Figure 9. Validation of the iterative solver (GTD model) against a BVP solver and the results in Croze et al.
(2017, figures 1b and 1c). (a) Velocity deviation profile χ(r). (b) Cell concentration profile n(r). Parameters are
taken from table 2 with Um = 77.9. ‘Iteration’ and ‘BVP’ denote the results obtained using the iterative solver
and the BVP solver, respectively, and the cell transport is calculated by the GTD model.

Parameters Symbols Values & Range Units

Mean swimming speed V∗
s 6.27 × 10−3 cm s−1

Gravitactic reorientation time B∗ 10.5 s
Rotational diffusivity D∗

r 0.23 s−1

Translational diffusivity D∗
t 0 cm2 s−1

Excess buoyant mass v∗ �ρ∗
ρ∗ 9.2 × 10−14 cm2 s−2

Kinematic viscosity of water ν∗ 8.93 × 10−3 cm2 s−1

Gravitational acceleration g∗ 9.81 × 104 cm2 s−1

Pipe radius R∗ 0.35 cm
Mean cell concentration N∗ (0.70–3.65)× 106 cells cm−3

Flow rate Q∗ 0–0.4117 cm3 s−1

Shape parameter α0 0 —
Bias parameter λ 0.21 —
Reynolds number Re 0.2459 —
Richardson number Ri 56.2–293.3 —
Dimensionless settling speed Se 0.024 —
Dimensionless flow rate Q 0–137.03 —
Dimensionless rotational diffusivity Dr 12.84 —
Dimensionless translational diffusivity Dt 0 —

Table 2. Values and range of relevant parameters in calculation of D. salina, most of which are taken from
Croze et al. (2017).

Appendix C. Comparisons using a weakly gyrotactic alga D. salina

As noted in the introduction, the most crucial assumptions underlying the GTD model and
the PK model are quasi-steadiness in the orientation space and quasi-homogeneity in the
position space. In the main text, we have chosen the species C. augustae with relatively
strong gravitactic bias (λ = 2.2). This strong bias inevitably challenges the quasi-steady
and quasi-homogeneous assumptions: the strong bias dominates the rotational diffusion,
and thus, disrupts the quasi-steadiness in the orientation space; in the meantime, the strong
bias can cooperate with self-propulsion to enable micro-organisms to sample varying shear
rapidly, which can also lead to the breakdown of quasi-homogeneity in the position space
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2.0
25(b)(a)

20

15
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5

0

1.5

1.0

0.5χ (r) n(r)

0

–0.5

–1.0

0 0.2

S

G

P

Um = 32.7, Ri = 56.2 Um = 32.7, Ri = 237

Um = 21.8, Ri = 80.4

Um = 43.6, Ri = 108.8

Um = 21.8, Ri = 293.3

0.4
r

0.6 0.8 1.0 0 0.2 0.4
r

0.6 0.8 1.0

Figure 10. Comparisons between the results calculated by the Smoluchowski equation (‘S’), the GTD model
(‘G’) and the PK model (‘P’) using the parameters of the five runs in the experiments of Croze et al. (2017).
(a) Velocity deviation profile χ(r). (b) Cell concentration profile n(r).

Um Ri Ud(E) Ud(S) Ud(G) Ud(P) DT (S) DT (G) DT (P)

32.7 56.2 65.8 58.0 58.0 43.8 716.8 723.6 1922.0
21.8 80.4 45.8 36.3 36.3 29.7 602.9 606.2 798.3
43.6 180.8 91.6 90.5 90.4 57.2 1048.3 1060.2 3886.4
32.7 237 78.5 72.3 72.2 44.4 1393.7 1403.1 2185.8
21.8 293.3 65.9 52.5 52.2 30.8 1892.3 1886.4 1021.2

Table 3. Comparisons between the drift velocity Ud measured in the experiments of Croze et al. (2017) (‘E’),
calculated by the Smoluchowski equation (‘S’), the GTD model (‘G’) and the PK model (‘P’). Predictions of
the dispersivity DT by the three models are also listed.

(Fung et al. 2022; Wang, Jiang & Chen 2022). If we consider a less gyrotactic species,
such as D. salina (λ = 0.21) used in the experiments of Croze et al. (2017), we can expect
that the difference between the results of the Smoluchowski equation and the results of the
GTD model will be less significant.

Using the parameters of D. salina (see table 2), as well as the mean flow velocity
and Richardson number of the five runs in the experiments of Croze et al. (2017), we
calculate the velocity deviation profile χ(r) and the cell concentration profile n(r) using
three models, as shown in figure 10. The comparisons of the calculated and measured drift
velocity Ud are listed in table 3. Although we see that the PK model performs poorly, the
GTD model only slightly underestimates the central flow velocity and cell concentration
in some runs. Therefore, Ud predicted by the GTD model are only slightly smaller than
those predicted by the Smoluchowski equation, and both of them are smaller than those
measured experimentally.
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