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Point-Counting

The Counting Function

We will count the rational points in a set in real Euclidean space according
to their height. Height serves as a convenient complexity measure for rational
points.

2.1 Definition The height of a rational number r = a/b, where a, b are
integers and the fraction is in lowest terms, is

H(r) = max{|a|, |b|}.

This is extended to tuples r = (r1, . . . ,rn) ∈ Qn by setting

H(r) = max
{
H(ri), i = 1, . . . ,n

}
.

2.2 Definition For a set Z ⊂ Rn and T ≥ 1, set

Z(Q,T) =
{
z ∈ Z ∩ Qn : H(z) ≤ T

}
,

and then define the counting function to be

N(Z,T) = #Z(Q,T),

considered as a function of the height parameter T .

Analytic Curves

The most basic counting result of the type we consider is the following theorem
concerning the graph Z ⊂ R2 of a function f : [0,1] → R that is real analytic
on an open neighbourhood of [0,1] and transcendental, meaning that there is
no algebraic relation (over R) satisfied identically by x and y = f (x).

2.3 Theorem ([419, Theorem 9]) Let Z be as above and ϵ > 0. Then there is
a constant c( f , ϵ) such that N(Z,T) ≤ c( f , ϵ)T ϵ for all T ≥ 1.
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10 2. Point-Counting

An estimate of this form for the counting function is our sense of “Z contains
few rational points”. This result is proved in [419] using the methods introduced
in Bombieri–Pila [93], which focussed on counting integer points on the dilation
of a plane curve, variously assumed to be analytic, sufficiently smooth, or
algebraic.

We employ the following mean-value theorem for alternants (determinants of
the form of det

(
ϕi(xj)

)
for functions ϕi, i = 1, . . . ,n and points xj, j = 1, . . . ,n).

2.4 Lemma (H. A. Schwarz [478] or [93, p. 342]) Let D be a positive integer
and J ⊂ R a compact interval. Let ϕ1, . . . , ϕD ∈ CD−1(J), x1, . . . , xD ∈ J and
set

∆ =
(
ϕi(xj)

)
i, j=1,...,D

.

Then there exist points ξi j ∈ J (intermediate to the points xi) such that

∆ = V(x1, . . . , xD) det
(
ϕ
(j−1)
i (ξi j)

)
,

where V(x1, . . . , xD) is the Vandermonde determinant.

2.5 Corollary With the notation as above we have

|∆| ≤ c(ϕ1, . . . , ϕD) |J |D(D−1)/2,

where c(ϕ1, . . . , ϕD) depends on the maximum sizes of the functions ϕi and
their first D − 1 derivatives on the interval J.

The proof of Theorem 2.3 is a typical transcendence-style argument, involv-
ing the “fundamental theorem of transcendence theory” (namely, that there are
no integers between 0 and 1) and a “zero estimate”.

Proof of Theorem 2.3 Fix a positive integer d and set D = (d + 1)(d + 2)/2.
Suppose

(
x1, f (x1)

)
, . . . ,

(
xD, f (xD)

)
∈ Z(Q,T) with x1, . . . , xD ∈ J some

subinterval of I. Apply Corollary 2.5 to these points with the D monomial
functions

ϕi j = xi f (x)j, 0 ≤ i, j ≤ i + j ≤ d

to conclude that

|∆| ≤ c( f ,D) |J |D(D−1)/2,

where c( f ,D) = c
(
ϕi j,0 ≤ i, j ≤ i + j ≤ d

)
is the constant in Corollary 2.5.

The denominator of each row of ∆ can be cleared by multiplying through by
a suitable integer of absolute value at most T2d (the product of the dth powers
of the denominators of xi and f (xi)). Hence (clearing all the rows), if ∆ , 0,
then |∆| ≥ T−2dD .
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2. Point-Counting 11

The crucial point is the ratio of the exponents: D(D − 1)/2 � d4 in the
estimate for |∆| and 2dD � d3 in the height estimate. Thus, if

c( f ,D)|J |D(D−1)/2T2dD < 1,

then we must have ∆ = 0 (the fundamental theorem of transcendence theory),
and this holds provided

|J | ≤ c′( f , d)T−4dD/D(D−1),

which, after simplification, becomes

|J | ≤ c′( f , d)T−8/(d+3).

On such an interval J, a determinant of the form of ∆ must vanish. This
means that if we form the rectangular array

(
xi
k

f (xk)j
)
, where k indexes rows

and i, j : i+ j ≤ d index columns, using all points xk ∈ J for which
(
xk, f (xk)

)
∈

Z(Q,T), then this array has rank less than D. Then there exists ai j ∈ R, i+ j ≤ d,
not all zero, such that (summing over i + j ≤ d)∑

i, j

ai j xik f (xk)j = 0, for all k;

that is, the points
(
xk, f (xk)

)
∈ Z(Q,T) with xk ∈ J all lie on a single real

algebraic curve V of degree d determined by the ai j .
Now we consider such intersections V ∩ Z , where V is a real algebraic curve

of degree d. Since f is transcendental, the number of intersection points is
finite, and indeed there is a uniform bound γ( f , d) on #

(
V ∩ Z

)
over all curves

V of degree d (this is the zero estimate). This follows, for example, from the fact
that Z is definable in an o-minimal structure; see Remark 8.14.2. For Z of this
specific (analytic or subanalytic) form, it follows from Gabrielov’s Theorem
[222] (see alternatively [61]). Since I may be covered by at most

c′′( f ,D)T8/(d+3) + 1 ≤ c′′′( f ,D)T8/(d+3),

subintervals J of length at most c′( f ,D)T−8/(d+3), we have

N(Z,Q) ≤ 2 c′′′( f ,D) γ( f , d)T8/(d+3).

The proof is completed by choosing d so that 8/(d + 3) ≤ ϵ . □

2.6 Remarks

1. For the lemma one does not need analyticity but only D − 1 continuous
derivatives. So for the theorem one needs somewhat less as well. This may
seem a minor point but is important. We require that (i) given ϵ > 0, the graph
Z can be divided into finitely many pieces on which it can be parameterized
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12 2. Point-Counting

by functions with sufficiently (but finitely) many bounded derivatives; and
(ii) given d, the cardinalities #

(
Z ∩ Y

)
, where Y is an algebraic curve of

degree d, are uniformly bounded. O-minimality provides both of these for
its definable sets.

2. A proof of Theorem 2.3 using Siegel’s Lemma instead of determinants is
given in [531], also used in [530]. A proof via complex analysis (and Siegel’s
Lemma) is given in [351] (see also [353, 354]).

Improved Bounds

Theorem 2.3 cannot be much improved in general, as shown by constructions in
[421, 498] of complex analytic functions for which the ϵ goes to zero arbitrarily
slowly along some (lacunary) sequence of values of T . In the other direction,
it is shown in [498] that, for an entire function, a bound polynomial in logT
always holds on a sequence of T going to infinity (even in arbitrarily long
intervals [234]). A much stronger bound for integer points on curves definable
in Ran is established in [530].

Various results give bounds polynomial in logT for all T , moreover effective
or even explicit, under additional assumptions on f . See generally [293]. The
main difficulty is to control the growth of the Bézout bounds γ( f , d) with d. For
complex analytic functions, various conditions ensuring polynomial growth
of Bézout bounds are explored in [156], with corresponding polynomial-in-
logT improvements of Theorem 2.3. Bézout bounds for solutions of algebraic
differential equations are given in [68].

In the real variable setting, a variant method in [93] enables a bound using
only estimates for the number of zeros of successive derivatives of the function
f , rather than the norms of derivatives, and the γ( f , d). If one works with
Pfaffian functions (see §8.28), then one has strong bounds [223] on the required
quantities. Bounds polynomial in logT are obtained in this way in [294, 423].
For real analytic functions, local conditions governing the γ( f , d) are explored
in [419], using a mean value theorem [447] for linear homogeneous differential
equations.

Results under other conditions, utilizing transcendence measures of a known
value of f , or suitable growth restrictions, are obtained in [98, 99, 125, 126,
127] (see also [100]). Transcendence measures are exploited in more general
settings in [234]. Results for various classical functions are given in [59, 97,
299, 351], and for certain oscillatory functions in [155]; see also [250].

In the complex setting, the ideas are close to the classical Schneider–
Lang method in transcendence theory, see, for example, [325]. Interpolation
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2. Point-Counting 13

determinants (alternants) were introduced into transcendence theory by Lau-
rent [330]. Independently, the ideas of [419] were used to give proofs of some
classical transcendence statements in the real variable setting via determinants
in [420]; see also [114; 298, Proposition 5.6; 426].

Complex-variable methods seem to be less flexible for higher-dimensional
sets.

Higher-Dimensional Sets

Consider now a set Z ⊂ Rn. We would like an estimate for the counting function
registering that non-algebraic sets have few rational points in our height density
sense. There are two points to consider regarding the kind of result one might
anticipate.

First, as for plane curves, one cannot hope to do this meaningfully for an
arbitrary set, and some tameness assumption is needed along the lines of
analyticity. Our condition is that Z is definable in an o-minimal structure. We
postpone defining this notion until Part II, but we note that it includes sets of a
form naturally generalizing the graphs in the planar case.

2.7 Proposition Let Z ⊂ Rn be the union of a finite number of images of
maps ϕ : (0,1)k → (0,1)n, where ϕ is real analytic on an open neighbourhood
of [0,1]k . Then Z is definable in an o-minimal structure.

Proof Such sets are definable in the o-minimal structure Ran; see §8.21. □

This gives quite a broad class of sets, though the sets definable in an o-
minimal structure are significantly richer, and indeed this is crucial in the
applications.

Second, and a new feature when n ≥ 3, such a set Z of real dimension k ≥ 2,
even if it is non-algebraic, could nevertheless contain semi-algebraic sets of
positive dimension, and these might contain many (i.e. not few) rational points.
For example, the set

Z =
{
(x, y, z) ∈ R3 : z = xy, x, y ∈ [2,3]

}
contains, for each rational value of y, a segment of the rational curve z = xy ,
and every such arc contains � Tη rational points up to height T for some
η = η(y) > 0.

2.8 Definition ([189, p. 1]) A semi-algebraic set in Rn is a finite union of sets
each of which is defined by finitely many equations and inequalities between
polynomials with real coefficients.
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14 2. Point-Counting

Thus, in the first instance, we count rational points of Z not lying in any
connected positive-dimensional semi-algebraic subset of Z , and so make the
following definition.

2.9 Definition Let Z ⊂ Rn. We define the algebraic part of Z to be the
union of all positive-dimensional connected semi-algebraic subsets A ⊂ Z , and
denote it Zalg. The complement Z − Zalg is referred to as the transcendental
part of Z , and denoted Z trans.

The connectedness condition is essential. Otherwise, if Z contained a positive-
dimensional semi-algebraic set A, then this set, together with any individual
point z ∈ Z , would be a semi-algebraic set of positive dimension, and we would
get Zalg = Z .

The basic point-counting result is the following. We refer to Theorem 2.10,
and its various elaborations such as Theorems 2.13 and 9.14, as the Counting
Theorem.

2.10 Theorem ([439, Theorem 1.8]) Let Z ⊂ Rn be definable in an o-minimal
structure, and ϵ > 0. Then there is a constant c(Z, ϵ) such that

N(Z trans,T) ≤ c(Z, ϵ)T ϵ

for all T ≥ 1.

2.11 Remarks

1. One can view the theorem as a crude analogue of Lang’s general conjecture,
with Zalg as a crude analogue of the special set in diophantine geometry.
The result says that, away from Zalg, there are few rational points.

2. Since definable sets are more general than the real analytic images we
have been using as provisional representatives, even in dimension one, this
theorem generalizes Theorem 2.3 to a larger class of real curves.

3. By examining the proof one can do better than simply exclude all of Zalg:
only some parts need to be excluded for any given ϵ . Furthermore, the points
are contained in few connected semi-algebraic subsets. This is important in
some applications.

4. The result is uniform in definable families; see Definition 8.6. This is an
essential feature required in the proof, but leads to strong uniformities in
applications; see Chapter 23.

5. The bound in Theorem 2.10 is qualitative and is what follows from
o-minimality. It is natural to ask whether the bound � T ϵ can be improved
to � (logT)O(1). This is not possible in general, as already remarked, but
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2. Point-Counting 15

Wilkie conjectured that it should hold in certain special (but central) cases.
Various results in this direction are discussed in Chapters 10 and 11.

An estimate of the same form holds for algebraic points up to some given
bounded degree k ≥ 1. This is stated in terms of the absolute multiplicative Weil
height H(α) of an algebraic number that extends the height of a rational number
as in Definition 2.1. A definition is given, for example, in [85, Definition 1.5.4].
(So h(α) = log H(α) is the absolute logarithmic Weil height.)

We can then define the counting function for algebraic points of degree
k ≥ 1.

2.12 Definition For a set Z ⊂ Rn, integer k ≥ 1, and a T ≥ 1, we set

Z(k,T) =
{
z = (z1, . . . , zn) ∈ Z : [Q(zi) : Q] ≤ k,H(zi) ≤ T, i = 1, . . . ,n

}
,

N(k, Z,T) = #Z(k,T).

2.13 Theorem ([424, Theorem 1.6]) Let Z ⊂ Rn be definable in an o-minimal
structure, k ≥ 1, and ϵ > 0. Then there is a constant c(Z, k, ϵ) such that

N(k, Z trans,T) ≤ c(Z, k, ϵ)T ϵ

for all T ≥ 1.

Theorems 2.10 and 2.13 follow from the stronger version given in Theo-
rem 9.14.

Counting Rational and Integral Points on Algebraic Varieties

The paper [93] also establishes a result on integer points of bounded height
on a plane algebraic curve, getting a uniform bound for (irreducible) curves of
given degree.

2.14 Theorem ([93, Theorem 5]) Let F ∈ R[X,Y ] be irreducible of degree
d. Then the number of integer points (x, y) with F(x, y) = 0 and |x |, |y | ≤ T is
at most

c(d, ϵ)T1/d+ϵ .

The exponent 1/d is best possible in view of the example Y = Xd . Heath-
Brown [271] develops a p-adic version of the method applicable to rational
points on projective varieties in all dimensions, in particular giving the analogue
of Theorem 2.14 for rational points of height up to T with exponent 2/d + ϵ .
The exponent 2/d is best possible here (same example; non-uniformly such a
bound was established in [419]; see also [204]).
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16 2. Point-Counting

The applicability of the p-adic methods of [271] to higher-dimensional al-
gebraic varieties suggested investigating the applicability of the real variable
determinant approach to higher-dimensional non-algebraic sets. This was in-
stigated in [421], for integer points on the dilation of a subanalytic surface (and
then [422] for rational points). The real variable approach is applied to rational
points on higher-dimensional algebraic varieties in [347].

These determinant methods (real, p-adic, and the global version of Salberger)
have been useful in a variety of applications to counting rational points on
algebraic varieties (see e.g. [272]), in particular towards the dimension-growth
conjecture [269, 486]; see [271, Conjectures 1, 2]. This posits an exponent
dim X + ϵ for the counting function for a projective variety X ⊂ Pn. In the
strongest form one asks for the constant dependent only on n,deg X , and ϵ . This
is proven (in the strong form) for d ≥ 4 in work of Browning, Heath-Brown,
and Salberger [108, 464]; see also [123].

The T ϵ in Theorem 2.14 was improved to a power of logT in [425] and
removed altogether from the corresponding result for rational points in [526].
In higher dimensions, real variable parameterization is used in [77] to replace
the ϵ by a power of logT , with polynomial dependence of the constants, for
rational points on hypersurfaces. This is further refined in [123], using the
global determinant method, eliminating the ϵ factor entirely in the dimension-
growth conjecture while retaining polynomial dependence of the constants; see
further [403].

W. M. Schmidt [477] conjectured that, for curves of positive genus, one has
a bound of the form of Theorem 2.14 but with exponent ϵ instead of 1/d + ϵ .
Here one has finiteness for an individual curve by a famous theorem of Siegel,
and the issue is the uniformity. Some progress towards this for elliptic curves is
obtained in [273]. AT ϵ bound for integral points on moduli spaces of varieties is
proved in [206]. One would also expect stronger estimates for rational points on
curves of positive genus, and such an improvement is obtained in [207]. Under a
suitable hypothesis on ranks of elliptic curves, a uniform bound N(Z,T) �ϵ T ϵ

for rational points on non-singular cubic plane curves is established in [270].

Counting Rational and Integral Points on Sufficiently
Smooth Curves

The paper [93] also considered functions with a finite number of derivatives,
generalizing results of Jarnik [291].

2.15 Theorem ([93, Theorem 7]) Let f ∈ C∞([0,1]) be strictly convex with
graph Γ and let ϵ > 0. Then, for t ≥ 1,

#
(
tΓ ∩ Z2) ≤ c( f , ϵ)t1/2+ϵ .
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Further conjectures and results in this direction are given in [93] and [419,
477]. See also [288] on estimating integer points on or near a plane curve, and
references there for such problems with rational points. On rational points near
a definable set, see [260] and Theorem 9.17.
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