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KOROVKIN THEOREMS FOR INTEGRAL OPERATORS 
WITH KERNELS OF FINITE OSCILLATION 

M. J. MARSDEN AND S. D. R I E M E N S C H N E I D E R 

Introduction. There has been considerable interest recently in the investi­
gation of "Korovkin sets". Briefly, for X a Banach space and J?7" a family of 
linear operators on X, a subset K C X is a Korovkin set relative to $~ if 
for any bounded sequence {Tn} C ^ ~ , Tnk —» k in X for each k Ç K implies 
Tnx —> x for each x 6 X. A large portion of these investigations have been 
carried out for X being one of the spaces C(S),S compact Hausdorff, the 
usual LP spaces of functions on some finite measure space, or some Banach 
lattice; while$~ is one of the classes^"+-positive operators, J^i-contractions 

(i.e., ||r|| g i),orjr+n^Y 
In his paper [8], P. P. Korovkin showed that {1, t, . . . , tm+2\ forms what 

is now called a Korovkin set for operators $fm (defined below) and the space 
C[a, b]. We shall consider the class 5^w as operators on the spaces Lp[a, b], 
1 ^ p < oo, of Lebesgue measurable functions on the interval [a, b]. The 
operators will have the form 

A[f:x] = I K(pc,t)j(t)dt, 
J a 

where K(x, t) is a [a, b] X [a, b] Lebesgue measurable function. 

Definition. An integral operator A is of class S^m if for almost all x, there exists 
a partition of [a, b] into at most m + 1 intervals, IltX, . . . , ITtX, (r = r(x)), 
such that the kernel K(x, t) is of one sign ( ^ 0 a.e. or 5^0 a.e.) on each IjtZ, 
and alternates in sign on these intervals. 

When the operators under consideration are algebraic or trigonometric 
polynomial valued, then certain quantitative results about the rate of con­
vergence can be obtained. P. P. Korovkin first proved such results for C[a, b] 
and algebraic polynomial valued operators of class ¥m in [9]. For trigono­
metric polynomial valued convolution operators of class j ^ w on the LP spaces, 
corresponding results have been established by Dzjadyk [6] for m = 0, and 
by Butzer, Nessel, and Scherer [7] for other values of m. 

A wealth of literature has developed on operators of class Sfm, concerning, 
for example, existence, relation to classical kernels, and optimal orders of 
convergence. We refer the interested reader to the survey article by P. L. 
Butzer [2] where a history and much of the literature appears. 
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In section 2 of the present work, a simple combination of the techniques 
of Dzjadyk [6] and Korovkin [9] yield that {1, ty . . . , t

m+2} is also a Korovkin 
set for S^m on Lv[a, b]. Further, the techniques can be modified to establish 
the results for other sets of functions; in particular, the periodic case for 
Lp[0, 27r] (sections 3 and 4). In section 5, we derive quantitative results whose 
form resembles those in [3], although their proofs are related to the original 
method of Korovkin [9]. 

In the sequel, we use the notation 

A[h(xtt):x] = I K(x,t)h(x,t)dt 
J a 

where x and t always refer to the variables in the image space and domain 
space respectively. Usually, h(x,t) will be of the form 2Z*=i gj(x)fj(t). Also, 
the phrase "agreeing in sign" allows zero to agree with anything. Further, 
the constants obtained in our proofs may depend on the length of the interval 
[a, b], although this will not be explicitly stated. 

This problem arose in a seminar on Korovkin sets at the University of 
Alberta, and we would like to thank the participants of that seminar, parti­
cularly, Professors A. Meir, Z. Ditzian, and T. R. Turner. 

2. The Korovkin Theorem for powers. We begin with a lemma which 
is the essential idea used by Dzjadyk [6] in his proof for positive operators 
(i.e., m = 0). 

LEMMA 2.1. / / {An} is a sequence of integral operators for which \\An[fk : x] — 
fk(x)\\LP->0for each fk(t) = /*, k = 0 , 1 , . . . ,m,then \\An[p : x] — p(x)\\LP-+0 
uniformly for all polynomials 

P(t) =Z?-oa*(* f»)/ i f c(0, lk(* ,») | | z« , ^ M < + o o , 

where M is an absolute constant. 

Proof. For such polynomials, we have 
m 

An[p:x] - p(x) = X ak(x, n){An[fk :x] - fk(x)} 
k=0 

for almost all x. Thus, 
m 

\\An[p:x]-p(x)\\ItP g M Z \\An[fk:x]-Mx)\\LP 
* = 0 

which tends to zero by hypothesis so that the lemma is proven. 

We shall also require the following remark. 

Remark 2.1. Let x be fixed and suppose that either f(t) or — /( /) agrees in 
sign with K{x, t). If g(t) € L°°[a, 6], then 

) K(x,t)g{t)f(t)dt\ ^HslU00 ) K(x,t)f(t)dt 
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THEOREM 2.1. Suppose that the sequence of integral operators [An] on Lv[a, b] 
satisfy: 

(1) An[f:xl= ) Kn(x,t)f(t)dt 

is of class S^mfor each n, (n = 1 ,2 , . . . ) ; 
(2) \\An\\LP ^ M < + o o ; and 
(3) ||-4n[/* : x1 ~" fkM\\Lp —-> 0 as n —» oo for each function fk(t) = tk, 

(k = 0, 1, . . . fm + 2). Then \\An[f : x] - f(x)\\LP -> 0 for each f in Lp[a,b]. 

Proof. Since \\An\\ ^ M uniformly in n, it suffices to prove the theorem for 
functions with at least m + 2 continuous derivatives. In the sequel, 
/ £ Cm+2[af b], and x will be such that Kn(x, t) has the sign change property 
for each n (this excludes only a set of measure zero). 

For each fixed x and n, we construct an interpolating polynomial px,n(t) 
agreeing with f(t) at the endpoints hjX>n, . . . , trtXtn of the intervals 
Ii,x,n, • • • i Ir+i,x,n (/ = K#> w) = w ) which are not a or b. Further, if x is not 
one of the tj>x>ni we require px,n(x) = f(x) and px,n

f (x) = f '(x). The degree, 
J = .̂«» of Px,n(t) is n o greater than m + 1. 

Writing the remainder term of the interpolating polynomial in the Lagrange 
formula, we obtain 

i ( H-l) / \ r=r(x,n) 

fit) = />,..(*) +jl-+ry. n (' - '*...)(' - *)" 

= £*,n(0 + &r,n(0?*.n(0 

where c = c(t,x, n), and a = 0 if x is some ^far,w, a = 2 otherwise. Here 
px,n(t) and qx,n(t)

 a r e polynomials of degree at most m + 2 whose coefficients 
are uniformly bounded (the bound, Mi, depends only o n / , its derivatives up 
to order m + 2, and m). Further, \gx,n{t)\ ^ M2 where M2 depends only on / 
and ra, while qx>n(t) agrees in sign with Kn(x, t) or — Kn(x, t) and qz,n(x) = 0. 

Therefore, since/(x) = px,n(x), 

\\An[f : *] - / ( * ) | U P ^ Pnl>*.n : *] - PX,UW\\LP 

+ \\An[gx,nqx,n : x]\\ LP 

S \\An[px>n : x] - px,n{x)\\Lv + M2\\An[qx 

= ll^nO*,» : tf] - pXtn(x)\\LP 

+ M2\\An[qXiTl : x] - qx,n(x)\\Lv 

by Remark 2.1. Consequently, by Lemma 2.1, ||<4n[/ : x] —f(x)\\LP con­
verges to zero as n tends to infinity. The theorem is proven. 

Remark 2.2. Let M) = \\fU)\\L
œ,c = max{|a|, |&|},anda„ = c^/ilfj - i)l. 

By carefully retracing the steps in the proof of Theorem 2.1, using Newton's 
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formula to represent px,n(t) ( s e e section 5 below), one can show that 

ra+2 j 

\\A.[f:x] -f(x)\\L„ ^ l A f , I aij\\An[ti:x]-xi\\LV. 
j=0 i=0 

This bound, which is useful only for / £ Cm+2[a, b], should be compared with 
a result by Ditzian and Freud [5]. 

3. The Korovkin Theorem for general systems. In this section we 
modify the arguments of the preceding section so as to obtain a theorem for 
a general system of functions. Included in this discussion are extended com­
plete Chebyshev systems. 

Let 

Lmy - Dmy + g a^D^y = 0, (D = | ) 

be a linear differential equation with at G C(a, P). Either a or fi, or both, may 
be singular points and we do not exclude the possibility that /3 is infinite. We 
do require a to be finite. 

We suppose that Lmy = 0 is disconjugate on [a, ff]. This means that all 
solutions have m — 1 or fewer zeros on [a, f}]. For a definition of zeros at 
singularities and other information concerning disconjugate equations see 
Willett [11] and the references therein. When Lmy = 0 is disconjugate on 
[a, 13], there are functions £< G Cw+1-*(a, 0), £, > 0 on (a, 0) such that Lm 

can be factored as 

LM = u(t)Dn...D*D1 

where Z ^ = D(y/^) and co = l/£m+i = £i£2 . . .&». Moreover, £2, . . . , £TO 

are integrable only on proper subintervals [a, c] of [a, 13] and the w-tuple 
(ui, . . . , #OT) of solutions defined by DjDj-i . . . Diuj+1 = £ m , Dkuj+1(a) = 0 
for & = 0, . . . , j — 1, is a fundamental principal system on [a, (3], (See 
Willett [11, Theorem 2.1].) 

As an example, the differential equation 

(3.1) L2r+1y = D(D> + l)(D* + 4) . . . (Z)2 + r2);y = 0 

corresponds to 

(3.2) MO - "in* ( * f i ) , W O = * sin ( ^ ) / 2 S i n * ( ^ ) , 

* = 1, . . . , 2r 
and 

«»(0 = sin2r+1-* ( ^ ) sin4-1 ( ^ ) iora^t^p 

provided that fi — a < 2w. Observe that, in this example, uk(t) behaves like 
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(/ — a)* - 1 for t near a. These uk(t) are more convenient than the usual set 
{1, cos t, sin J, . . . , cos rt, sin rt\ because of this fact an the fact that "poly­
nomials" are more easily factored. In particular, 

Uj(t) = ïïj(t; h, t2, . . . , tj-i) = Uj(t) + ^ a&iif) 
l 

defined by requiring îij{ti) = Uj{h) = . . . = Uj(tj-i) = 0 can be represented 
by 

This representation holds for j both even and odd if 0 — 2w < tt < &. 
We need an interpolation formula based on (wi um+z) whose remainder 

includes a factor agreeing in sign with Kn(x, t). 
For functions gi, . . . , gk and numbers h, . . . , tk, let 

gl g2 . • • glcl 
h h • . • 4 J 

denote the determinant of the k X k matrix whose (i,j) entry is gi(tj). The 
notation 

[ g i . • • / • • >g*~] 
Lh ...tt... tk\ 

will mean that the function/ has replaced the function gt in defining the ith 
row. We often suppose that h ^ . . . ^ tk. When ratios of such determinants 
are encountered with, for example, ^_i < tj = tj+1 = . . . = tj+k we replace 
the j + k column in both numerator and denominator by Dk . . . Digt(tj). 
This is consistent with an evaluation by 1'Hospital's rule. 

The following statement is the analog of Lemma 2.1. 

LEMMA 3.1. Let (ui, . . . , um) be a fundamental principal system on [a, ff\ 
for Lmy = 0, and [a,b] C [a, 0]. If {An} is a sequence of integral operators on 
Lv[a, b] for which \\An[uk : x] — uk(x)\\LP —» 0 for k = 1, . . . , m, then 
\\An[pn • x] — PTI(X)\\LP —> 0 uniformly for all 

m 

Pn(t) = PxAl) = Z) ak(x,n)uk(t), \\ak(x, n)\\L<» < M < + oo. 

The proof follows exactly as the proof of Lemma 2.1. 

The next lemma will be an induction step in a proof that the coefficients 
ak(x} n) in the interpolation formula are bounded independently of x and n. 

LEMMA 3.2. Let (u\, . . . , um) be a fundamental principal system on [a, 0] for 
Lmy = 0. Let f G Cr_1[a, 0] with 1 ^ r ^ m, and se/ g = Z>i/ awd vt = .Di^+i 
/or i = 1, 2, . . . , m — 1. Let a < h S h ^ . . . ^ tr < /3, awd i be fixed. Then 
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there exist numbers rjj = rji3for j = 1, 
if2£i£r, 

. . / . . . ur 

. . tt . . . tr 

. , r — 1 such that tj ^ rjtj S tj+\ and, 

I \u\. . . ur~\ _ 
I L h • • • U J " 

Vv! . . . g . . . flr_i~| / Vvx . . . z;r_il 
[_77! . . . î?i_i . . . î ? r - l j / L^l ' ' • Vr-lJ 

while, if i = 1, 

7 /a w wo/ a singular point for Lm, h = a is permitted in these statements. 

In the right members above, the relations ?7s_i < r]s = . . . = rjs+k require 
that Dk+i . . . D% be applied to the s + k column in both numerator and 
denominator. Note that (vi, . . . , vm-i) is a fundamental principal system on 
[a, fi] for Dn... DZD2. 

Proof. Because of continuity, it suffices to assume that h < t2 < . . . < tr. 
In this case, 

Vui . . . / . . . ur~\ I Vui . . . ur~\ 
lh... tt...tr J / \_h...tr J 

G U2/U1. .f/U! ur/ui 
tr 

U2/U1 

h 
UT/U\ 

tr 

Upon setting the numerator equal to (G/ui)(tr) = G(tr)/ui(tr) and the 
denominator equal to (H/ui)(tr), this ratio becomes 

(G/ui)(fr) 
(H/in)(tr) 

(G/Ui)(tr) - (G/U!)(tr-l) DiG(vr-i) 
DiHivr-i) 

with tr-i < 7jr-i < tr by Cauchy's extended theorem of the mean. 
Since tr appears only in the last column of G/ui, DiG differs from G/ui only 

in the last column, which is differentiated. By continuing in this way, columns 2 
through r of both the numerator and denominator may be replaced by deriva­
tives. If i > 1, each of these columns is headed by a zero and the determinant 
orders may be reduced. If i = 1, then expansion on the first column of the 
numerator produces the desired expression. 

LEMMA 3.3. Let (uu . . . , um) be a fundamental principal system on [a, /5] for 
Lmy = 0. Let [a, 6] C (a, 0) and f G CT~l[a, b] with 1 ^ r ^ m. If 
a ^ h ^ . . . S tr S b and 1 ^ i ^ r ^ m, then 

i r « i . . . / . . . « r i / r « i . . . « , ] i <M 

\\mh...ti...tr\/ L^l ' -^rJI ~ 
< 00 
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independent of the tj. If a is not a singular point for Lm, a may be set equal to a 
in these statements. 

Proof. This follows from the previous lemma by induction on r since 
/ , Ui, . . . , um-i are sufficiently smooth on [a, b]. Indeed, the induction process 
gives the quotient as a linear combination of generalized derivatives of the 
form 

(3.4) &k-lf(v) = [l/Mn)]D*-i • • • Difiv). 

Since the ^ are strictly positive on [a, b], the coefficients aik(r)) in 

(3.5) g^fh) = £ aai^D^m 

are bounded uniformly and independently of / . These latter facts will be 
useful in section 5. 

For disconjugate equations, the following theorem, similar to Theorem 2.1, 
holds: 

THEOREM 3.1. Let Lm+^y = 0 be disconjugate on [a, /3] and let [a,b] C («, /3) 
be a fixed interval. Suppose that the sequence of integral operators \An) on 
Lp[a, 6], 1 ^ p < oo satisfy: 

(1) An[f:x] = }Kn(x,t)f(t)dt 

is of class ^m for each n; 
(2) \\An\\LP S M < + co; and 
(3) ||-4n[«i : x] — Ui(x)\\LP —» 0 as n —•» oo for i = 1, . . . , m + 3, where 

(nu . . . , um+%) is a fundamental principal system on [a, fi\ for Lm+3. Then, for 
each f (E Lp[a,b], there holds 

\\An[f:x] -f(x)\\LP-+0, n-*co. 

Moreover, if a is not a singular point for Lm+%, then a = a is permitted in these 
statements. 

Proof. L e t / G Cm+2[a, b] and let x be such that Kn(x, t) has the sign change 
property for each n. For fixed n, let tj = tjtXtn, for 1 ^ j ^ r = r(x, n) S m 
be as in the proof of Theorem 2.1. If x equals some tjtXtU, set / = r — 1. Other­
wise, set / = r + 1 and tr+ijXtH — tr+2,x,n — %-

Consider 

When expanded, the right member of (3.6) indicates a formula for inter­
polating/ at h, . . . , ti+i by a "generalized polynomial" of * 'degree" /. 
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On the one hand 

Ru\ = rr^i • • • ui+i / i / r«i • • • ^+1 ^+2~n 

x [[": : : : "r" r'M]/["::::r,:;]] = -<«-«> 
where gx>n(t) is bounded independently of x, n, t, and the tj by Lemma 3.3 
with m replaced by m + 3. Moreover, since D l+2D l+1 . . . Dxy = 0 is discon-
jugate on [a, 0], qx,n{t) or — qx,n(t) agrees in sign with Kn(x, t). 

On the other hand, R(t) = /( /) — px,n(t) where 

(,7) ,...(«) = 5 «.«)[:':;;{:;;•;:;]/[:'::;»::] 
Z+2 

= S ak{x,n)uk(t) 
k=l 

where, again by Lemma 3.3, the ak(x, n) are uniformly bounded. 
Finally, 

2,..(o = M ) - i: «.(o [r • • • T • • • H / r*1 • • • T] 
k=i i-li . . . h . . . ^ z + i J / l_£i . . . ti+\J 

1+2 

= Z) bk(x,n)uk(t) 
k=l 

where, again by Lemma 3.3, the bk(x, n) are uniformly bounded. 
Now, since/(x) = ^ltXak(x, n)uk(x), we have 

4 » [ / :*] - / ( * ) = Z) ûi(*.«)M»[«* :*] - «*(*)} + ^n[gx,nqx,n :x]. 

By Remark 2.1, we have 

ra+2 

X Z I M n K : ^ ] - uk(x)\\LP + M2\\An[qx,n:x]\\LP 
k=l 

where Mi and Mi are bounds on \ak(x, n)\ and |gz,n(/)| respectively. Since 
QxAx) =Hkltlbk(x,n)uk(x) = 0, 

1+2 

An[qXtn :x] = 2 **(*> n){An[uk :x] - uk(x)) 
k=l 

so that 

where M3 is a bound on \bk(x, n)\. The proof of the theorem is complete. 
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Remark 3.1. As a corollary of the above proof, we have that if x is one of 
the tjtX,n for almost all x and all n, then um+2 and um+z may be deleted from 
hypothesis (3). 

The discussion in this section could have been framed in terms of extended 
complete Chebyshev systems (see Karlin and Studden [7]). We have preferred 
the language of disconjugacy because it emphasizes the primary role of the 
operator Lm and because of the applicability to trigonometric polynomials 
(see the next section). 

4. Trigonometric polynomials. In this section, we consider the space 
Lp[0, 2TT] of 27r-periodic functions. To account for periodicity, the definition 
of the class j ^ m is modified to include a possible sign change at t = 2TT (t = 0). 
The modification is easily implemented by requiring that m be even. 

Let m ^ 0 and r be integers such that 

(4.1) 2r ^ m + 2. 

Consider the set K = {1, sin t, cos / , . . . , sin rt, cos rt}. We now show the 
following theorem. 

THEOREM 4.1. Let r,m ^ 0 and K be as above. Then K is a Korovkin set for 
integral operators of class y \ on LP[Q, 2ir], 1 ^ p < co. Further, for those 
integral operators of class S^m on Lp[0, 2ir] whose kernels satisfy: the kernel 
K(x, t) changes sign at t = x (i.e., x is one of the tjtXt7l) for almost all x, then K 
is still a Korovkin set when (4.1) is replaced by 

(4.2) 2r ^ m. 

We cannot directly use the results of section 3 because the differential 
equation (3.1) is not disconjugate on an interval [a, /3] for which [0, 2ir] C [a, /5). 
Since the expressions 

(4.3) ( 1 / W 0 ) # * . . . Dij{t) 

are non-singular at t = fi only for k = 2r and k = 2r + 1, Lemma 3.3 cannot 
be extended to the full interval [/3 — 2w, /3], Here the £*, i = 1, . . . , 2r + 1 
are given by (3.2). 

The device we shall use is to select a, /3 and r' ^ r after x and {tjtXtTl : j = 
1, 2, . . . , 2l'\ have been specified. Then £i(t) in (4.3) is replaced by 

&(*) = sin2 / (£•=-*) . 

By selecting /3 = (3(x) and a = /3 — 2w + ô so that a + ô ^ x ^ j 3 — ô and 
each of the tjtXt7l are more than ô away from a, /3,a ± 27r, and /3 dz 27r, and 
then invoking periodicity to translate to the interval \fi — 2ir, j8], we will 
obtain the interpolation formula 

(4.4) f(t) = px,n(t) + gx,n(t)qXtn(t) 
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for periodic functions / having 2 / continuous derivatives. Here 

Pz.n(t) = X <ik(x,n)uk,x,n(t) 

M-2 

ÇzAt) = 12 bk(x,n)uktX,n(t), 

and 

= (l/in.t(v))Dn-i • • • Difiv) (P - 2ir < r, < (3) 

with a + 5 g, t} = tjiX,n(±2ir) g 0 — ô and u}(t) = uiiXM(t) given by 

Uj(t) = li(f) f fc(r) • • • fT Ur)(dr)J-\ 

Here, also, I = 2V — 1 if x equals some tjtX>n and I = 21' + 1, tt = tt+i = x ii 
x does not equal some tjtXtn. As before, px,n(tj)

 ==/(^)> 9x,n(h) = 0> and, if 
l = 2l' + 1, £>£*,n(x) = £>/(*). 

With 5 < 27r/3w, the above construction is possible for almost all x. Since 
a + ô ^ tj? ^ jo — 5, Lemma 3.3 assures that ^ ( x , n)\ ^ ikfi and |&*(x, n)\ ^ ikf3. 
To insure that |g»,»(0| = -^2, we must choose 2rf = / + 1 (see (4.3) and the 
lines that follow it). Since 2V ^ m, we may do so with r satisfying (4.1) or 
(4.2). Here Mi and M2 depend o n / a n d perhaps on its first 2r + 1 derivatives. 
This dependence will be explored more deeply in section 5 when we consider 
constraints on the tjfX,n as n —» 00. 

Finally, 

r' 

tt*,*.n(0 = Y, icj,k(x, n) cos jt + djtk(x, n) sin7/] 

with |cy>fc(x, ») | S Me and ^-^(x, w)| ^ Af4 independently of/ and r'. Thus, 
as in the manner of section 3, 

2r+l 

\\An[f:x] -f(x)\\LP ^ (Mi + M2MZ) ]T I K K x . n ^ ] - w^ i n | |Lp 

^ (Mi + M2ikr3)(2r + 1)AT4 

r 

X 13 {|Mn[cos//:x] - cos/x| |L P 

+ I |^4n[sin j / :x] - sin/x||LP} 

and Theorem 4.1 is proved. 
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5. Quantitative results. We now consider the question of rate of con­
vergence to zero of | |-4n[/ : x] — f(x)\\LP when the operators An are of class 
5^m and are polynomial valued. 

There are two cases. The first case is when An is an nth degree algebraic 
polynomial valued operator on Lp[a, b] and Ki = {1, t, . . . , tm+2}. The 
second is when A n is an nth degree trigonometric polynomial valued operator 
on Lp[0, 2ir] and K2 = {1, sin /, cos t, . . . sin rt, cos rt} (m + 3 = 2r + 1). 
We shall show that there exist functions / Ç Cm+2 such that 

limsupnm+2\\An[f:x] -f(x)\\LP > 0. 
W~»oo 

This question was studied extensively for convolution kernels by Butzer, 
Nessel and Scherer [3]. 

If we know more about the structure of the kernel, then we can improve 
the result. To this end, we make the following definition. 

Definition. Let {An} be a sequence of integral operators of class £fm. The 
essential number of sign changes for the sequence \An) is the smallest jo for 
which there exist 5 > 0 and n0 such that for each x (except possibly a set of 
measure zero) and each n ^ no at most j 0 of the tjfXt7l lie in any interval of 
length ô. For the periodic case, we consider intervals of length ô on the circle. 

The notion of essential number of sign changes means that at most j 0 of the 
tjfXtn cluster at some point in the interval. A more natural condition would be 
that at most jo of the tjtX>n cluster at x (see for example, Butzer, Nessel and 
Scherer [3]). 

LEMMA 5.1. Let Lm+^y = 0 be disconjugate on [a, fi] with (ui, . . . , wm+3) as 
the corresponding fundamental principal system. Let [a,b] C («, 0) and let 
{An) satisfy the conditions of Theorem 5.1. Then 

\\An[f:x] - f(x)\\L, ^ M I H / I U + | | /° '0 + 2 ) |Uî 
ra+3 

X X) \\An[uk :x] - uk(x)\\LP 
k=l 

for all f G Cj0+2 where M is independent of f. Moreover, if x equals some tjtXtU 

for almost all x and all n, then 

ra+3 

P . [ / : * ] - / ( * ) I U - £ M { | | / | L + | | / < f t ) | | } E \\An[u:x]-uk(x)\\LV 
k=l 

forf e Cj°. 

Lemma 5.1 will apply directly to Ki and Lp[a, b] if we set a = 0 and /3 = oo . 
With the modifications described in section 4 (see (4.3) and the lines which 
follow it), the conclusions of Lemma 5.1 will apply to K2 and Lp[0, 2w]. In 
particular, jo may be even or odd. 
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Note that in the case j0 = m, this lemma follows from a careful look at our 
proofs in section 3 since the coefficients there are bounded by the derivatives 
of/. For the general case, we need the coefficients given by certain "generalized" 
divided differences. We begin by giving an alternate form for the interpolating 
1 'polynomials" px,n(t) defined in (3.7). As in section 3, we suppose that 
Lm+zy — 0 is disconjugate on [a, ft] and consider x, t, tjjXjn Ç [a, b] C (a, fi). 

Let the j th order (generalized) divided difference / [ti, . . . , tj] be specified 
by 

/ [h, • • • , tj] = (coefficient of Uj(t) in the generalized polynomial u(t) 
of order j which interpolates/^) at t\, . . . , tj). 

Here Dlu{t^) = Z> */(£*) if tk occurs with multiplicity i + 1 or more. The 
unique existence of u(t) is guaranteed by the disconjugacy of Dj... Dxy = 0. 
Indeed, 

u{t) = f(t) -

so that 

(5.1) f[h,-..,hl = 

Mi . . . Ujf~\ I ["̂ U\ . . . Uj~\ 

_ *i . . . M J / L h . . . h\ 

Vux... Uj-X f i I r ^ i . . Mj 

F o r / G C*-1^, /3), Lemma 3.2 yields 

(5.2) / [tl9..., Q = ^ - y w 

where i^* -1 is as in (3.4) (see also DeVore and Richards [4]). For the set 
Ku 2ky = Dky/k\. For K2, 2ky is given by (4.3) and (3.2). 

With the Newton polynomials ut(t) = ut(t; tly . . . , tt-i) specified by 

ut(t) 

we have 

Vui . . . Ut-i Ui~\ I [~Mi . . . ^_i~j 

(5.3) u(t) = E / [* i , . . . , '<]«<( ' ) . 

We shall use (5.3) with j = / + 1, /̂  = ^,»,w, and, possibly tt = tl+i = x 
(notation established in the proof of Theorem 3.1) to represent u(t) = px,n(t) 
as given by (3.7). Note that the coefficients of the Uj in Ui(t) are bounded 
independently of/ (see Lemma 3.3). From (3.6), 

(5.4) 22(0 = £*.»(0ff*.«(0 = / Pi. • • • » 'H-1, fl«H-2(0 

with / + 1 ^ m + 2. Thus, to establish Lemma 5.1, we must show that 

(5.5) | / [* i , . . . , *d | g M I I / I L + ll/0'»+2)IU 

for i = 1, . . . , m + 3. 
If i ^ Jo + 3, then (5.5) follows from (5.2), (3.5) and the well-known 
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relation H / ^ I L ^ Afi[ | | / | |œ + ||/°'0+2)||co] (see, for example, Ditzian and 
Freud [5, Lemma 3.2]). 

If i > jo + 3, we use the recurrence relation 

(5.6) f[h, . . . , * , ] = [uj-1(tj)/uj(tj)]{f[tly..., *,_2, tj\ -f[tu . . . , Vi]} 

to replace / [h, . . . , tj] by a linear combination of (j 0 + 3)-order divided 
differences. Relation (5.6) is easily proved by interchanging tj-i and tj in the 
discussion preceding (5.3). The coefficients îlj-i(tj)/uj(tj) are bounded if 
and only if t3--i — t3- is bounded away from zero. Since the essential number 
of sign changes is j 0 , the tj may be ordered so that |^-_i — tj\ > ô > 0. This 
fact together with the result for i S Jo + 3 establishes (5.5). 

By combining the above results, we have Lemma 5.1 proved once we remark 
that jo + 2 may be replaced by j0 in the above discussion if x equals some 
tjtXtn for almost all x and all n. 

We note that for the set Ki, the coefficient in (5.6) is u j-\(t f) j u j(t f) = 
l/(h — h-i) because of cancellation. For the set K2, we use the alternative 
basis given by (3.3). Then we have 

* (t \ A7 (t \ - (sin | ( j 8 - ^ i ) ) ( s i n | (P - ts)) Uj^tj)/Uj{tj) - ( g i n ^ ^ _ a ) ) { s i n i ^ _ ^ _ i ) } , 

which shows why we require intervals of length 8 on the circle in the periodic 

THEOREM 5.1. Let An be nth degree algebraic (trigonometric) polynomial 
valued integral operators of class if m on Lp[a, b] (respectively, Lp[0, 2T]) with 
jo essential sign changes. Then at least one of the sequences 

nj°+2\\An[f : x] -f(x)\\LP, f £ K± (respectively,/ G K2) 

does not converge to zero. In addition, if x equals some tjtXtnfor almost all x and 
all n large, then nJ0+2 may be replaced by nio in the assertion. 

Proof. We first consider K\ and algebraic polynomial valued operators. If 
the theorem wTere not true, then by Lemma 5.1, 

n»+i\\AH[f :x] -f(x)\\L, =S M{\\f ||„ + | | / ( * ' + 2 > | | 0 V + î 

m+2 

X E \\A»[f:x] - X * | U P - » 0 
A;=0 

as n —•» oo. To obtain a contradiction, we obtain fn 6 Cj0+2 for which 
11 AIL ^ 1, ll/»( ia+2)IL ^ 1 and \\An[fn : x] - fn(x)\\Ll ^ C/n^2 for suffi­
ciently large n, where C is an absolute constant. The following simple con­
struction is due to A. Meir. 

Consider the nth degree Chebshev polynomial on [ — 1, + 1 ] Tn(x) = 
xn + p(x) (p(x) lower order terms) (see Achieser [1]). Then | |rw | |œ = 2~n+1, 
so we select a polynomial Qn(x) so that Qn

Uo+2)(x) = 2n~1Tn(x) and 
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||Qn(x)|| g 1. For any algebraic polynomial P{x) of degree at most n, we have 

£ \Qn(x) - P(pc)\ = 2n~1[(n +70 + 2) . . . (n + l ) ] " 1 

X J |^0+2-P(x)|Jx 

where P(x) is a polynomial of degree n + j 0 + 1. By a well-known result 
(Achieser [1, p. 94]), we obtain 

P_t \Qn(x) - P(x)\dx > 2-j°-2(n +jo + 2)-j°-\ 

A simple change of variable transforms Qn to fn on [a, b]. 
For the trigonometric case, a similar argument utilizes the fact that zero 

is a best ^-approximation (1 ^ p < oo ) to cos(j0 + n + 2)x by trigono­
metric polynomials of degree j0 + n + 1 (see Shapiro [10, p. 57]). The proof 
is complete. 

6. Remarks . The above theorems may be extended to a wider class of 
operators; namely, those operators belonging to the operator norm closure of 
the integral operators of class Sfm. This would permit certain differences to 
be considered; e.g., L*[0, 2TT], Af(x) = f(x + 5) + f(x - Ô) - f(x) would be 
in the extended class S^2> 

A careful look at the proofs indicates that most do not depend on the IP 
norm per se. In fact, we only require that (i) the Cm+2 functions be dense in 
our space, and (ii) that | / | ^ |g| implies | | / | | ^ C||g||. Thus, the theorems 
are valid for any Banach space of measurable functions which enjoy these 
properties. 

The discussion in section 3 allows infinite intervals to be included. Since 
functions in Cm+2 with compact support are dense in the Lp-spaces on an 
infinite interval, the bounds on the coefficients of the interpolating polynomials 
depend on the generalized derivatives (3.4) evaluated only on a compact set 
(depending on / ) which avoids the singularities. Thus, the arguments may be 
carried out. As an example, on [0, oo ), the equation 

Lm+Zy s (D + 1) . . . (D + m + 3)y = 0 

has the fundamental principal system (e~x, e~2x, . . . , e~(m+3)x). Consequently, 
the set K = {e~x, . . . , e-^

m+3)x} is a Korovkin set for ym on Lp[0, oo ) 
1 S P < oo. 
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