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CONGRUENCES ON SEMIGROUPS GENERATED BY
INJECTIVE NILPOTENT TRANSFORMATIONS
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To Gordon Preston with respect and gratitude on his 80th birthday

In 1987, Sullivan characterised the elements of the semigroup NI(X) generated by
the nilpotents in I(X), the symmetric inverse semigroup on an infinite set X; and, in
the same year, Gomes and Howie did the same for finite X. In 1999, Marques-Smith
and Sullivan determined all the ideals of NI(X) for arbitrary X. In this paper, we
use that work to describe all the congruences on NI(X).

1. INTRODUCTION

Throughout this paper, X is a non-empty set. In addition, P(X) denotes the semi-
group under composition of all partial transformations of X (that is, all transformations
a whose domain, doma, and range, ran a, are subsets of X). Note that P(X) contains a
zero (namely, the empty mapping©): we say a € P{X) is nilpotent with indexr if aT = 0
and aT~l ^ 0, and we let NP(X) denote the semigroup generated by all nilpotents in
P(X). In like manner, if I(X) denotes the symmetric inverse semigroup on X, we write
NI(X) for the semigroup generated by all nilpotents in I(X).

In [6] the authors described the ideals of NP(X) and NI(X) as a prelude to deter-
mining all congruences on these semigroups. In fact, in [6, Section 4], they found all the
congruences on every principal factor of NI(X) for infinite X. Here, we use the notation
and results of [6], as well as ideas from [1, Section 10.8], to describe all congruences on

2. PRELIMINARY RESULTS

All notation and terminology will be from [1] and [6] unless specified otherwise. In
particular, if a € P(X), we let r(a) denote the rank of a (that is, \Xa\) and put

D(a) = X\Xa, d{a) = \D(a)\,

G(a) = X\dom a, g{a) = \G{a)\.
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394 M.P.O. Marques-Smith and R.P. Sullivan [2]

The cardinal numbers d(a) and g(a) are called the defect and the gap of a and were used
by Sullivan to characterise the elements of NI(X) for infinite X [8, Corollary 4]. Note
that if a e I{X) then g(a - 1) = d{a) and d(a~l) = g(a). Hence, when X is infinite,
the fact that NI(X) is an inverse semigroup follows from the first part of the following
result.

THEOREM 1. Suppose X is an infinite set with cardinal k and let a € I(X). Then
a is a product ofnilpotents in I(X) if and only ifd(a) = g{a) = k. Moreover, when this
occurs, NI(X) is an inverse semigroup and each a € NI(X) is a product of 3 or fewer
nilpotents with index 2.

To state the corresponding result for finite sets, we need some notation. If X is an
arbitrary set with cardinal k and 1 ^ r < k, we write

DT = {a € I(X) : r(a) = r}

(1) IT = {a e I(X) : r(a) < r}

and recall that each Dr is a P-class of I(X) and that the IT constitute all the proper
ideals of I(X). Moreover, if k = n < No then each a € A»-i has a unique completion
a £ G(X), the symmetric group on X, defined by:

{ xa, if x € doma,

b, if x = a,

where X \ doma = {a} and X \ ran a = {b} ([2, p. 388]). We write

£•„_! = {a 6 Dn-i : a is an even permutation}.

By [2, Lemma 2.1], if X is finite then a € I(X) is nilpotent if and only if Aa ^ A

for each non-empty A C dom a. Clearly, if this condition holds for a, it also holds for
a"1. Hence, if X is finite and /3 is a product of nilpotents in I(X) then f5~l is also, and
thus again NI(X) is an inverse semigroup. In [2, Theorem 3.18], the authors proved the
following result.

THEOREM 2 . IfX is finite and \X\ = n ^ 3, tien NI(X) is an inverse semigroup.

In fact,

(a) ifn is even then NI(X) = /„, and

(b) ifn is odd then NI(X) = In-i U £„_!.

Moreover, in each case, each non-zero a € NI(X) is a product ofn—1 or fewer nilpotents,

each with index n (and rank n — I).

In what follows, we extend the convention introduced in [1, Vol. 2, p. 241]: namely,

if a e P(X) is non-zero then we write

a =
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and take as understood that the subscript i belongs to some (unmentioned) index set / ,
that the abbreviation {x*} denotes {x< : i € / } , and that ran a = {x*}, Xja"1 = At and
doma = \J{Ai : i € / } . In particular, if d o m a = {a} and r a n a = {6}, we write a more
simply as ab. Also, we let id/i denote the identity on A.

For notational convenience, if p is a congruence on a transformation semigroup, we
often write a ~ 0 to mean (a, /?) 6 p . Also, sometimes we write xa = 0 to mean
x £ dom a.

The following result is comparable with [1, Lemma 10.64].

LEMMA 1 . Suppose \X\ ^ 3 and let p be a non-identity congruence on NI(X).

Then the p-class containing 0 is an ideal of NI(X) and it contains D\.

P R O O F : Suppose (a, /?) € p where a ^ /?. Then xa ^ x/3 for some x € X and,
without loss of generality, we can assume xa — y ^ 0. Let a, 6 € X and A = ax, n = y<,.
Then A, (i € NI(X), and Aa/i = a6 and A/?/i = 0 (even if x € dom/3). Hence oj ~ 0 and
it follows that £>i is contained in 0p, the p-class containing 0, which is clearly an ideal
otNI{X). D

The proper ideals of NI(X) were described in [6, Theorems 6 and 14] as follows.
However, note that if \X\ = k ^ Ho and a e /(X) satisfies r(a) < r ^ k then d(a)
= $(a) = k and so a € NI(X) by Theorem 1. Hence, Ir C NIT and it follows that
NIT = IT- In fact, a similar statement holds in almost all cases when X is finite. Despite
this, we prefer to retain a distinctive notation for the ideals of NI(X).

THEOREM 3 . For any set X with (finite or infinite) cardinal k ^ 3, the proper
ideals ofNI(X) are precisely the sets

NIr = {a € NI{X) : r(a) < r}

where 1 ̂ r ^ k.

Consequently, if p is a non-identity and non-universal congruence on NI(X) then
0/9 = NIT for some r such that 2 < r < \X\. We call r the primary rank of p and denote it
by r](p) (compare [1, Vol. 2, p. 231]). For what follows, we also need the characterisation
of Green's 2?-relation on NI(X) given in [6, p. 309 and Theorem 17].

THEOREM 4 . If X is any set with at least three elements, and ifa,@ e NI(X),
then P = Xafi for some X,n G NI(X) if and only ifr(p) ^ r(a). Hence, V = J for

If 1 ^ r ^ |X|, we let DIr denote the D-class of NI(X) which contains all elements
with rank r. Also, as in [1, Vol. 2, p. 227], we let NI* denote the Rees congruence
on NI(X) determined by the ideal NIr. The following result is similar to [1, Theorem
10.65].

LEMMA 2 . If p is a non-identity congruence on NI(X) and T) = rj(p) then

NIlCpCNIluV.
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396 M.P.O. Marques-Smith and R.P. Sullivan [4]

PROOF: We have NI* C p since NI* = idNi{X) U {NI,, x NIV) and NIV x NIV C p by
the definition of r){p). For the other inclusion, let (a,/3) G /o and assume r(f3) < r(a) = r
(if r(a) = r(/?) then (a, /3) e V and the required inclusion holds). We aim to show that
r < j), which clearly implies the desired result.

(a) r IS INFINITE. This means X is infinite and NI(X) is described by Theorem
1. Also | r ana \ r an /3 | = r(a) since r = r(a) is infinite and r(/3) < r(a). Hence, if
\X\ = k and 7 is any bijection from ran a \ ran/3 onto ran a, then g(j) ^ d[a) = fc and
d(j) = d(a). Therefore 7 € NI(X) and it follows that cry ~ 0. Since r(cry) — r, this
implies r < 77, as required.

(b) r IS FINITE. In this case, X may be finite or infinite, but the following argument
holds in both situations with appropriate justification. Let \X\ = n (finite or infinite)
and write r(/J) = s < r = r(a) < n: note that if X is infinite, then r < No < n; and if X
is finite, then r < n since a £ G(X). Now suppose ranafl ran/3 = 0. If this happens,
then 7 = idrana is an element of NI(X) (for example, in the finite case, if n is odd and
r = n — 1 then 7 = id*, an even permutation of X, hence 7 € 2?n-i; and in the infinite
case, the gap and defect of 7 equal \X\ since r is finite). Now cry = a and /?7 = 0, so
a ~ 0 and hence r < rj. Therefore, we may suppose

ran a n ran /3 = C = {ci,..., ct}

where 0 < t ^ s < r < n . Let 70 = idrana 6 NI(X) (as before) and note that 070 = a
and ran(/37o) = C. For each i = 1, ...,<, let 7̂  be the idempotent in I[X) with domain
ran a \ {c^}. Note that, since r(7i) = r — 1 and this is at most n — 2 if n is finite, each
7, € NI{X) by Theorems 1 and 2 (that is, regardless of whether X is infinite or finite).
Now

ran(c*7o7i) = rana \ {cx}, r

= ran a \ {ci, 02}, ran(/37o7i72) = C\ {cu c2},

and so on. Write a,- = cryo • • • 7* and /?, = /fy0 • • • 7* for each i = 0, ...,*. Clearly, f3t = 0
but at 7̂  0 (since s < r). That is, r(at) ^ 1 and, since at ~ /3t, this implies 77 > 2 and
at e 0p. Since r(ft-i) = 1, this implies f3t-i € %p. But r(at-i) ^ 2 and at_i ~ /3t_i,
so 77 ^ 3 and at_i G 0p. In like manner, we deduce that 0t-2,ott-2, A-3, •. • ,a0 = a all
belong to 0p, and hence r < 77. D

Next we recall Hall's Theorem [3, Proposition II.4.5]: namely, if S is a regular
subsemigroup of a semigroup T then the C and 11 relations on 5 are the restrictions to
5 of the corresponding ones on T. Now, the C and "R relations on I(X) are well-known:
namely, a £ 0 if and only if ran a = ran/3; and a 11 0 if and only if dome* = dom/3
[3, Exercise V.8.2]. And NI(X) is a regular (in fact, inverse) subsemigroup of I(X) by
Theorems 1 and 2. Therefore we can prove a result for NI(X) which is analogous to [1,
Theorem 10.66].
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LEMMA 3 . Let pbea congruence on NI(X) and suppose r)(p) is finite. If (a, P) € p

and r){p) ^ r ( a ) < No then {a,P) e U.

P R O O F : Clearly we may assume p is not the identity congruence, so 7j(p) > 1 and,
by Lemma 2, r(a) = r(P) = r, say. Suppose ran a ^ ran/3 and let y = idranQ, which is
an element of NI(X), as discussed in case (b) for the proof of Lemma 2. Now ay = a

and r(Py) ^ r — 1 (note that ran/9 \ ran a ^ 0 since a and P have the same finite rank
but, by supposition, their ranges are not equal, so one cannot be contained in the other).
Since Q7 ~ Py, Lemma 2 implies r < r)(p), a contradiction. Therefore, ran a = ran/9
and hence a £ p .

Suppose dome* ^ dom/3 and let S = iddoma- Then 6 6 NI(X) (as for 7) and
r(6p) < r -1 (also as before). Since a = 6a ~ (5/3, this implies r < ri(p), a contradiction.
Hence d o m a = dom/3 and so a TZ /3. D

LEMMA 4 . Let pbea non-identity congruence on NI(X) and suppose r](p) is finite.

If (a, P) G p where a / p and •q(p) ^r(a) < No then r ( a ) = ri(p).

PROOF: By Lemma 3, (a,/3) G %. Hence d o m a = dom/3 = {a\,...,aT}, say, and
ran a = ran/3. Thus we can write

a = h ••• j ' V P=

for some permutation n of {1 , . . . ,r}. Since a ^ P, there exists i such that i 7̂  in; and,
since /? is not the identity congruence, we know T)(p) ^ 2 and thus r ^ 2. If 7 is the
identity on { d , . . . , aj_i, a i + i , . . . , ar}, then 7 € NI(X) (via the usual justification when
X is finite or infinite) and so 7a ~ 7/3. But, since in'1 ^ i, ran(yP) contains 6j, whereas
ran(7a) does not. Therefore (7a, 7/3) ^ H and so, by Lemma 3, r(7a) = r — 1 must be
less than r)(p). Since r(a) = r ^ ??(p) by supposition, it follows that r = t](p). D

3. FINITE PRIMARY RANK

In [6, p. 316], the authors observed that, if X is finite and r < \X\, then NIT+i/NIr

is completely 0-simple. For what follows, we require a more general result: compare [1,
Vol. 2, Lemma 10.54 and p. 227, Exercise 3], and also [7, Lemma 2.4]. Ifr is any infinite
cardinal then r' denotes the successor of r (that is, the least cardinal greater than r).

LEMMA 5 . If X is any set with at least Eve elements and 4 ^ r < |X| then
NI^/NIr is 0-bisimple, and it contains a primitive idempotent if and only ifr is finite.
Consequently, ifr is finite then NIr+i/NIT is completely 0-simple.

PROOF: Suppose a,P € NI(X) and r(a) — r(P) = r (finite or infinite) and write
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Note that if X is infinite then \P\ = r < \X\ implies d{j) = 5(7) = \X\, hence 7 6 NI{X)
and likewise A 6 NI(X). Also, a = A7 and 7 = A-1a, thus a £ 7 and similarly 7 "R. 0.
In other words, if X is infinite then all elements of NI(X) with rank r are D-related,
and so NIri/NIr is O-bisimple.

Since 3(7) = <7(/3) 7̂  0 and r(7) — r(a) < \X\, the same conclusion holds, by
Theorem 4, when |.X"| = n < Ho and n is even, or n is odd and r < n — 1. If n is odd and
r = n — I, then NIr+\/NIr = En^x U {0} = 5, say. Hence, the completions a and 0 are
even permutations of S. Also, doma and dom/3 differ in at most one element.

If dom a = dom 0, we can write (after a re-ordering of dom 0, if necessary)

lax ... a n _A (ai ...
yX! . . . X n _ x y ^ ...

By [2, p. 388], a = /3./Z (since a = 0n), hence /Z is an even permutation of X and thus
H e En-i. Clearly, f3 = atfj,~l. It follows that a C a 11 /3 in S, so a V /? in 5, as desired.

If doma 7̂  dom/3, we suppose ai / 61 and â  = bt for i = 2 , . . . , n - 1 (after a
possible re-ordering of dom/3, hence a possible re-labelling of ran/8, but without loss of
generality). Thus, we now have:

a =
\

[b\ a2 a3 a4

7 =
V Xj X3 X 2 X 4

(bi a2 a3 a4 . . . an_i \ / zx z2 z3 z4 . . . zn_x

A = A* =
\ o,\ o3 a2 a4 . . . o-n-i I \xi x3 x2 x4

Note that, in this case, we have redefined 7 and A (but only after changing 0, if necessary)
and this is possible since r ^ 4. Also, observe that the completion of A equals the even
permutation (ai,bi)(a2,a3) of X, hence A e En_x. Moreover, 7 = Aa, so 7 € £n_i and
clearly a = A-17. Hence, a £ 7 in 5. Next, we see that n — 0~lj € i?n-i (since both 0
and 7 belong to £n_i). Since 7 = 0n and 0 = 7/i"1, it follows that 7 TL 0 in 5. Hence,
a V 0 in 5, and we conclude that NIn/NIn-i is O-bisimple when n is odd.

Suppose r is finite and let a = a/3 = /?a for non-zero idempotents a,/3 e NI(X),
each with rank r. Then ran a C ran/3, and both these sets contain r elements, so
ran a = ran/3. Hence, a = idranQ = idran^ = ^; that is, every non-zero idempotent in
NIr+i/NJr is primitive. Conversely, suppose 0 is a non-zero idempotent in NIr>/NIr

and assume r ^ No. Then /3 = ids where |B| = r. \i a £ B and 4̂ = B \ {a} then
|/1| = r and a = id^ £ NI(X) (since the gap and defect of a equals \X\); also, we have
a = a/3 = /?a. In other words, if r ^ No then no non-zero idempotent in NIr>/NIr is
primitive. D
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Next we prove a result which is similar to [1, Theorem 10.60]. However, although
NIr+i/NIr is completely 0-simple when r > 4 is finite, and hence its congruences are
known in that case, our proof differs from the one given in [1].

LEMMA 6 . Suppose X is any set and r is any positive integer with r + 1 ^ \X\. If

a is a non-universal congruence on NIr+\/NIT, then the relation o+ defined on NI(X)

by
o+ = [CT n (DIr x DITj\ U {NIr x NIT)

is a congruence on NI(X).

PROOF: Clearly CT+ is an equivalence, so we aim to show it is left and right
compatible with composition on NI(X). To do this, we consider only the case when
(a, /3) € CT and r(a) = r(/3) = r (the other possibilities are easy to check). First suppose
| rana n ran/3| = s < r and write B = ran/?. Then ids € DIT (by the usual argument)
and hence, in the semigroup NIT+i/NIr, a. ids = 0 but ft. ids = ft. Since CT is a congru-
ence on NIr+i/NIr, it follows that (0, ft) G a and hence a is universal on NIr+i/NIT, a
contradiction. Thus, s = r and this implies rana = ran/8 = Y say. Let p, € NI(X), and
note that the ranks of a/j. and /3p. are equal and at most r. In fact, if r(ap) = r(/3/z) < r,
then (ap., pp.) € NIr x NIr C CT+, as required. On the other hand, if r(an) = T-(/3/X) = r
then rana C domji. So, if // = n\Y then \i € DIT (by the usual argument); also,
ay! = ay, and Pfi' = /?/z. Therefore, (a/z, /3/i) e CT D (DIT x DIT) C CT+. Hence CT+ is right
compatible.

Now let A € NI(X) and suppose r(Xa) = r(A/3) = r for the same a, @ as at the
start. Let |doman dom/3| = t and C = dom/3. Then an argument similar to the one
above leads us to conclude that t = r and hence that dom a = dom ft — Z say. Moreover,
doma C ran A since r(Xa) = r = r(a) and a is injective. Therefore, if A' = A | (Z\~l)
then A' e DIT\ and, since A'a = Aa and X'fi = A/?, we conclude that (Aa, A/9) G CT+. D
REMARK 1. Recall that every non-universal congruence p on a 0-simple semigroup is
0-restricted: that is, Op = {0}; and clearly, by Lemma 5, NIT+i/NIr is 0-simple for each
(finite or infinite) r ^ 4. Consequently, in the above result, CTJ1" = CTJ" implies CTI = 02.
For, if CT+ = CTJ then, by their definition, CTX n (DIT x £>Jr) = CT2 n (DIr x Z?/r); and, since
each CTi is O-restricted, this implies O\ = cr2.

Using the results in section 2, we now determine all congruences p on NI{X) for
which T)(p) is finite (compare [1, Theorem 10.68] and [7, Lemma 2.6]).

THEOREM 5 . Let p be a non-identity and non-universal congruence on NI(X)
and suppose r = t]{p) is finite. Then p = CT+ where a is a non-universal congruence on
NIr+l/NIr.

PROOF: Suppose (a, f5) e p. By the definition of r](p), if one of a or /J has rank less
than r, then the other also has rank less than r, and thus (a, /?) 6 NI*. By Lemma 2, if
the rank of a or /? is at least r, then r(a) = r(0) = s say. We assert that if s is infinite
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then a = 0.
To see this, assume s ^ No and xa ^ x0 for some x G doma (without loss of

generality). Write xa = a and choose Y C doma such that x G Y, \Y\ = r and a £ Y0
(this is possible since s ^ Ho and r < No)- Let Z = Ya and observe that a' = idy .a. id^
has rank r, whereas 0' = idy .0. idz has rank at most r — 1 (since o G Z\Y0). Moreover,
by Theorem 1, idy and id^ belong to NI(X) since, by assumption, X is infinite but Y
and Z are finite. Therefore, (a', 0') G p. Since this contradicts the choice of r = v(p)>
the assertion follows.

Consequently, if s ^ No
 t n e n (<*>/?) 6 idw/^)- On the other hand, if r ^ s < No and

a ^ 0, then Lemma 4 implies r = s. That is, (a, ft) G pf~) (D/r x Z)/r). We assert that

cr = pD(DIr xU/ r )u{(0,0)}

is a congruence on NIr+i/NIr. For, clearly it is an equivalence on NIT+\/NIT. Also, if
(a, 0) € pC\ (DIr x Z?/r) and /i G D/r then (ap,, /9/x) G p, where the ranks of a/j, and 0(i
are at most r. However, by the choice of r = r}(p), either r{ap) = r(0fi) = r o r both
r(ap,) and r(y9^) is less than r: in the former case, (ap, fifj.) G p D (£>/r x DIT) and, in
the latter case, ay, = fin = 0 in the Rees factor semigroup NIT+i/NIr. That is, a is right
compatible on NIr+i/NIT, and similarly it is left compatible. Thus, we have shown that
p C a+ as defined in Lemma 6, and clearly a+ C p, so equality follows. Moreover, a is
non-universal on NIT+i/NIr: otherwise, pC\ (DIr x DIr) = DIr x £>Jr and hence

P = idjv/(jr> U (D/r x DIr) U (AT/r x iV/r)

which is not a congruence on NI(X) (for example, if \A\ = \B\ = r < Ho and ^ ^ B
then (idA, ids) € p, but (id4 . idA, id/i. idB) ^ p). D

Given the above result, we need more information about the congruences on
NIr+i/NIT- In fact, by Lemma 5, NIr+i/NIr is a completely 0-simple semigroup for
finite r ^ 4, and thus all of its congruences can be described (see [1, Section 10.7]).
To avoid the complication which that entails, we prove the following result. But, first
we recall the fact: if p is a congruence on an inverse semigroup and (a, b) G p then
(a-1,*)"1) G p (see [3, Proposition V.1.6]).

LEMMA 7 . Suppose X is any set with at least six elements, and let r be a positive
integer such that r + 1 < \X\. If a is a non-universal congruence on NIT+\/NIT then, for
each Y C. X with cardinal r, there exists N < G(Y) such that

a = {(A. idK .fj,, X.-y.fi) : A, /z G DIr and 7 G N) U {(0,0)}.

PROOF: Fix Y C X with |F | = r. If idy ~ a and aa~l = id^ then idy ~ a"1, so
idy ~ id,4 and hence idy ~ idynA- Since a is O-restricted, we deduce that \Y n A\ = r
and hence that Y = A (since r is finite). In other words, doma = Y and similarly
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ran a = Y, and thus a G G(Y). Put another way: the a-class containing the idempotent
idy is a subgroup N of G(Y). We assert that N<G(Y). To see this, suppose a e N and
7 € G(Y). If X is infinite then 7 e D / r by Theorem 1 (since r < No by supposition), and
hence 7cry~1 ~ 7. i d y 7 - 1 = idy, so 7 a 7 - 1 € N. On the other hand, if \X\ = n < N01
then r < n — 1 and, by Theorem 2, we deduce that 7 a 7 - 1 € N when n is even, and
when n is odd and r < n — 1. Hence, we assume n is odd and r = n — 1. In this case,
since each a € N permutes Y, its extension 5 t o X = F u {z} must fix z and be an even
permutation of X. Consequently, a is an even permutation of Y and hence a € Alt(Y),
the alternating group on Y. Clearly, each TT € Alt(Y) belongs to En-i — D/ n _ i , so
TTQTT"1 ~ idy and thus wan'1 € TV. That is, TV is a normal subgroup of Alt(Y)> which is
simple if \Y\ ^ 5. Hence, for such Y, N equals {idy} or Alt(Y), and thus it is a normal
subgroup of G(Y).

Now suppose a ~ /3 and let A = doma. Then a = id^ .a ~ id^ -0, so A = dom/3
(since a is O-restricted and /? is injective) and similarly ran a = ran j3. Therefore, we can
write

a=U ... a,\ U - ar\
\X\ ••• XrJ \Xl,, . . . XrTy

for some permutation 7 r o f { l , . . . , r } . Let Y = {2/1 , . . . , yr} and define

If X is infinite then A,/x e Z?/r = NI(X) n D r by Theorem 1 (since r < No). Suppose
\X\ = n < Ho. If n is even then r + 1 < n implies r < n, and so A, fi 6 i ? / r by Theorem
2(a). Clearly, by Theorem 2(b), we reach the same conclusion if n is odd and r < n - 1.
Moreover, a = A. idy fj, and /? = A.7./I, hence 7 = A"1/?/*"1 e £>/,. and so 7 6 N: that is,
the pair (a, /3) € a has the desired form.

Now we assume n is odd and r = n — 1. In this case, a, /J e #n_i and we obtain

(2) aa-=(

where TT is the same permutation as before (but now r = n — 1). Since \X\ — n, the

unordered sets {y i , . . . , y n - i } and {a i , . . . , an_i} differ in at most one element. In fact, if

y = {yi,---,Vn-i} = {ai , . . . ,Ot , - i} = A, say,

then from (2) we deduce that idy ~ /?a- 1 = V (say), where 7* 6 AT, a = idy . idy .a and
/? = idy .y.a. Suppose instead that Y ^ A and, after a possible re-ordering, but without
loss of generality, assume that yt = a, for each i = 1 , . . . , n — 2 and z/n_i 7̂  an_i. Define
/i € £„_! and its completion in G{X) as follows:

_ 10.1 ... an_3 an_2 y n - i | _ _ Aai . . . an_3 an_2 j / n - i a,,-!^

Vfll ••• an-3 a n - l a.n-2/' \ a l ••• a " -3 On-l a n-2 J/n-l/
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Then, since Y = {ai , . . . , On_2, yn-i} and A. = {ait..., an_2, On-i}, from (2) we obtain

H.idA -A4"1 = idy ~ /z.jSaT1.^"1 = 7' (say).

This means 7' 6 iV, and we observe that a = pTx. idy .fj.a and /? = n~l.^/.p.a, where
both JJ"1 and ^a belong to £•„_! = D/n-i . Hence, in all cases, we have shown that each
(a, /?) € a has the desired form, and so

ffC {(A.idK./Lt,A.7./i) : X,nGDIT and 7 € AT} U {(0,0)}.

Since the reverse containment is obvious, the result follows. D

REMARK 2. Suppose N < G(Y), where Y C X, |V| = r < No and r + 1 ^ X. We assert
that, if (a, p) € a, where

a = {(A. idy .fi, X.'y.n) : A,/i £ DJr and 7€iV}

then, in the Rees factor semigroup NIr+i/NIT, a = 0 if and only if 0 = 0. That is, a
is never the universal relation on NIT+i/NIr. To see this, let \,fj.€ DIT and 7 G AT.
Then, A7/L4 = 0 in NIr+i/NIr if and only if r(A7/z) < r and, since the given mappings
are injective, this is equivalent to saying: either |ranA ndom7| < r or (A7 ^ 0 and
|ran(A7) ndom/i| < r). Since dom7 = Y, the first condition implies r(A. idy ./x) < r and
so A. idy .fj, = 0 in NIr+i/NIr. Also, if A7 / 0 then, since r is finite and A € D/r, we
deduce that ran A = dom7 and thus ran(A7) = Y. Hence, the second condition implies
\Y n dom n\ < r and we again obtain A. idy .\i = 0. Conversely, if A. idy .\x = 0, then
I ran A n Y\ < r or (ran A = Y and | V n dom \x\ < r) and, in both cases, it follows that
A7/z = 0.

We now see, as a special case, that Theorem 5 describes the lattice of congruences
on NI(X) for finite X: compare the comment in [1, Vol. 2, p. 247] and in [7, p. 5].
However, the argument below does not require any knowledge of the congruences on
arbitrary completely 0-simple semigroups.

COROLLARY 1. For any finite set X with at least six elements, the lattice of
congruences on NI(X) forms a chain.

PROOF: Let pi and p^ be distinct congruences on NI(X), neither of which equals
the identity or the universal congruence on NI(X), and write rt = f){pi) for i = 1,2. Then
Pi = of for some (unique) congruence a* on NITi+i/NIri. If ri < r2 then NITi £ NIT2

and
ox D (DIri x DITl) $ NIri x NIT2,

from which we deduce that pi C p%. Suppose ri = r2 = r, say. By Lemma 7, <jx is
determined by some N\ < G(Y) and o2 by some A^ <J G{Y) where |V| = r (note: the
same Y can be used). Since the normal subgroups of G(Y) form a chain, it follows from
Lemma 7 that O\ C <j2 or CT2 C CT\ , and hence that pj C /^ or ^ C pi. D
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EXAMPLE. Suppose |X| = 4, an even integer. The normal subgroups of 54 form a chain:

{{!)}< K4<iA4<Sii

and hence there are four non-universal congruences CT4I, 0-42,043, CT44 on NIs/NI^. In turn,
there are four congruences p4t- = a j on NI(X). In fact, since Nh/NI^ = D / 4 U {0} and
DI4 = S4, each a4i is a congruence on a group with 0 adjoined and so the o^-classes are
simply the cosets of the corresponding normal subgroup of 5 4 together with {0} by itself.
In particular, 041 is the identity congruence on Sj and so

pn = idNI{x)U(NI4 x NI4).

Similarly, there are exactly three non-universal congruences p3x C p32 C p33 on NI(X)
corresponding to three congruences CT3I C CT32 C CT33 on NIi/NI3 which are determined
by the three normal subgroups of S3. In particular,

CT3
+

3 = idjv/(X) U [CT33 n (£>/3 x DIZ)} U (Nh x NIS),

which is properly contained in p4l as expected. In this way, we obtain the chain of
non-universal congruences on NI(X):

d P21 S P31 $ P32 $ p33 $ PAI $ P11 $ Pa $ Pa-

4. INFINITE PRIMARY RANK

Henceforth, X is an infinite set with cardinal k, and we write Y = A 0 B if A(~\B = 0.

Recall our comment before Theorem 3 and, in particular, the fact that if

!* = {<*€ I(X) : r(o) < k}

then h C NI(X). Therefore, if p is a congruence on NI(X) then

(3) P = [P n (Jt x /fc)] u [p n (£>/t x i>jfc)].

Clearly, p D (/* x /*) is a congruence on the semigroup /*. To say something about the
other intersection in (3), we need some notation (see [9, Section 3]). First recall our
convention: xa = 0 if and only if x $. dom a. Now, for each a, fi € P{X) and n ^ No> let

£>(a,/3) = {x € X : xa ^ z/3}, d r ( a ^ ) = max(|D(a,^)a|, \D(a,

An = {(a,^) e P(X) x P(X) : d r ( a ^ ) < n}

and note that, by [7, Theorem 3.1], each An is a congruence on P(X). Hence, its
reduction:

6n= [Ann(QlxQt)]u{(0,0)},
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to the Rees factor semigroup:

Qk = NIk,/NIk = DIk U {0}

is a congruence on Qk (see [6, p. 313]). In fact, we have the following result [6, Theorem
18].

THEOREM 6 . If \X\ = k ^ Ho then every non-identity, non-universal congruence
on Qk equals 6n for some n satisfying No ^ n < k.

Clearly, if p is a congruence on NI(X) then

Pk = pn(DIkxDIk)u{(0,0)}

is an equivalence on Qk. To show it is a congruence on Qk, we need the following result
[9, Lemma 3.4].

LEMMA 8 . Ifa,0€ P(X) and dr (a, 0) = f ^ NO then there exists Y C D(a, 0)
such that Ya n Y@ = 0 and max(|yo;|, |Y/3|) = £.

LEMMA 9 . If p is a non-identity, non-universal congruence on NI(X) then pk is a
congruence on Qk.

PROOF: Suppose {et,fi) G pk and n e Qk is non-zero. If r(a/j) < k and r(Pfi) = k
then the cardinal of (ran /? D dom n) D ran a is less than A;, so

| (ran 0 n dom /x) \ ran a| = A:.

Therefore, |ran^3\rana| = A;; and, if (ran/3 \ ra.Tia)0~l = {xi}, then ij/? ^ XiCt for
each i (it is possible some Xi £ dom a). In other words, dr(a, /?) = k and so, by Lemma
8, Ya n Yfi = 0 for some Y C D(a,0) with max(|ya|, \Y0\) = k. Without loss of
generality, suppose \Ya\ = k and choose disjoint sets U, V C Y n dom a with cardinal
k (possible since a is injective). Then idy G NI(X) (since |X \ f/| = A;), and so a ~ /?
implies id^a ~ idy^. Let C/ = {UJ}, and suppose 7 € I(X) has domain {ui«} and
7 : Uia )->• Uj for each i. Then 3(7) ^ d(a) = A; and ^(7) = \X \ U\ = k, so 7 G NI(X).
Therefore, idy = idy 07 ~ idy ^7 = 0 (the latter equality holds since U C Y implies
f//3 D Ua = 0). In other words, an element of NI(X) with rank A; is p-equivalent to 0,
so T](p) = k' and p is universal, a contradiction. In effect, this shows r(a/z) < k if and
only if r(/3ji) < A;; that is, pk is right compatible on Qk.

Similarly, suppose r(Xa) < k and r(A/3) = A; for some non-zero A G Qk. This implies
r(a~lA"1) < A; and r(p-l\~l) = k, where a"1 ~ 0'1 and A"1 G NI(X), contradicting
what we have just shown. Therefore, r(Xa) < k if and only if r(A/3) < A:, and so pk is left
compatible on Qk. U

In view of (3), to describe all congruences on NI(X), we need to know all congruences
on I*. To determine the latter, we recall Liber's Theorem regarding the congruences
on I(X) (compare [7, Lemma 3.10]). For convenience, we let Ax denote the identity
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congruence on I(X). Also, if p is a congruence on I(X), we let T}(p) denote the least
cardinal greater than r(a) for each a such that (a, 0) 6 p (compare the equivalent
definition for NI{X) before Theorem 4; and recall that the cardinals are naturally well-
ordered: see [5, Theorem 7.2.6]).

LIBER'S THEOREM. Suppose \X\ = k ^ N0- If P is a congruence on I(X) for
which r){p) is infinite then

(4) P = / ; u [A* n / ; ] u • • • u [Air_x n / ; ] u Afr

where r}\ = r}(p) and the cardinals &, »fc form a sequence:

£r < • • • < 6 < Vl < • • • < Vr < k,

in which every term is infinite, except possibly £r which equals 1 if it is finite.

LEMMA 10 . If a is a congruence on Ik and a" — a U idoik then a" is a congruence
on I{X).

P R O O F : Clearly, a° is an equivalence on I{X). To show it is right compatible on
I{X), suppose (ct,fi) G a and fi € DIk. Then r(an) < k and r(Pfj) < k. Let n' € I{X)

be the restriction of y, to (ran a U ran /3) n dom /z. Then / / 6 /*, since r(a/x) + r(/3/z) < A;;
and, since a/z = a/ / and /9/x = Pfj,', we conclude that (a^, 0/J.) 6 a.

Similarly, if r(\a) < k and r(A/9) < k for some A € DIk, we let A' e J(X) have
domain Z = (domaU dom/?)A"1 and satisfy:

z\' = zX, for all z € (domaUdom/?)A"1.

Then \Z\ < k (since A is injective and a,/? € /*) and hence A' € /*. Since A'Q = Xa and
A'/? = A/?, we conclude that (Xa, A/?) e CT and hence a is left compatible on I(X). D

THEOREM 7 . Suppose \X\ = k ^ Ko. If a is a congruence on Ik for which rj(a) is
inGnite then

(5) o = / ; u [A?1 n / ; ] u • • • u [A?r_, n / ; ]

wiere r/i = T;(CT) and t i e cardinals £i,r)i form a sequence:

f r_l < • • • < ^ ^ 77! < • • • < T)T ^ k,

in which every term is infinite.

PROOF: Suppose a is a congruence on 7* for which r](a) ^ No: that is, there exists
(a, 0) G a with r(a) ^ N0- Then cr° is a congruence on I(X) for which 77(<T°) ^ No. Hence

(6) a u idD/t = / ; u [A?1 n / ; ] u • • • u [A^.., n / ; ] u A{>
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where r)i = T){<JO) = T){a) and the cardinals £,77; form a sequence:

in which every term is infinite, except possibly £, which equals 1 if it is finite. Clearly,
I(X) contains elements (in fact, idempotents) with rank k which differ in at least one
place. Therefore, £, must equal 1: otherwise, Ait in the right-hand side of (6) contains
a pair of distinct elements of DIk which does not appear on the left-hand side of (6).
Consequently, (6) implies (5) where r = s. D

We need two more results before we can describe all congruences on NI(X): these
are comparable with [1, Lemmas 10.62(i) and 10.63(i)].

LEMMA 1 1 . If the ranks of a, ft £ NI(X) are not equal, and at ieast one of them

is infinite, then dr (a,/?) = max(r(a),r(/3)).

P R O O F : Suppose the condition holds and assume r(a) — r > s = r(/?). Then, by
supposition, r is infinite and \Xoc D X0\ ^ s < r, so r(a) = \Xa \ X/3\. If Xa \ X0
= {xia}, then xt € D(a,/3) for each i, so

/3) > | / | = r(o) =

Since dr (a, 0) < r(a) is always true, this gives the desired result. 0

LEMMA 1 2 . Suppose 771, r/2 are infinite cardinals satisfying r)\ ^ r)2. If a,0
€ NI(X) satisfy r(a) = r(/?) = 772 and No ^ dr(a,/3) = f ^ 771, t ien there exists
A G NI(X) such that r(Aa) = r(\@) = % and dr(Aa, A/3) = ^.

P R O O F : Let D = D(a,/3) and, without loss of generality, suppose |£>a| = £ and
C = Da U D0. Then ran a \ C = ran/? \ C = {e,} say, and, for each j , there exists TJ

€ dom andom /3 such that TJCL = e, = Tjfi (this is true by the definition of D(a, P) and our
convention: xa = 0 if and only if x $ dom a, at the start of this section). By Lemma 8,
we can assume (again, without loss of generality) that there exists Y = {y,} C D n d o m o
such that \Ya\ = £ and Ya (~l Y/3 = 0. Since g(a) = k, the identity transformation, A
say, on Y U {TJ} belongs to NI(X) and

where d, may not exist for some i (that is, when y4 £ dom/?). Since \Da\ = £ ^ \D/3\, we
know \C\ = £ = | y a | = | / | . Hence r(Aa) = r (a) = £ + |7 | = 772 ̂  77J (by supposition). If
| 7 | = 772, choose P C J with cardinal 771, and let A' be the identity on {y<} U {rp}. Then
A' e NI(X) since #(A') ^ g(a) = k, and we have

A'Aa = ( Vi Vp] , A'AjS
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Since {CJ} n {di} = 0, these are elements of NI(X) with rank r/i and difference rank f,
as required. On the other hand, if £ = % (hence 771 = 772) then AQ and A/? are elements
of NI(X) with rank 7/1 and difference rank £. D

THEOREM 8 . Suppose \X\ = k ^ No. If p is a non-universal congruence on NI(X)
for which rj(p) is infinite then

(7) p = / ; u [Aft n / ; ] u • • • u [ A ^ n / ; ] u [An n (Dik x Dik))

where % = r](p) and the cardinals &, 77* form a sequence:

71 ^ fr_! < • • • < ft ^ 7?! < • • • < T)T ^ k,

in which fr_! is infinite, either n—\ornis infinite, and ifn ^ No tien 77,. = A;.

Conversely, if p is a relation on NI(X) defined as in (7) for a sequence of cardinals

with the above properties, then p is a non-universal congruence on NI(X).

PROOF: If a = pD (Ik x Ik), then 77(0-) ^ No (since a C p and r\{p) ^ No)- Hence,
we know there are cardinals

No ^ Cr-i < • • • < 6 ^ 77! < • • • < 77,. ^ A:

such that

(8) p n (ik x ik) = / ; u [Aei n / ; ] u • • • u [Afr_2 n / ; _ j u [ A ^ , n / ; ]

and we also know

(9) p n (DIk x DIk) = An n (DIk x DIk)

where n = l o r H o ^ n ^ A ; . Taking the union of (8) and (9), we find

(10) p = / ; u [ ^ n / ; ] u • • • u [A{r_, n / ; ] u [A B n (Dik x Dlk)].

If n > 771, then p contains a pair of elements with rank A; which differ at r]i places and,
from this, we can find a pair (a, 0) 6 p where r(a) = TJI, contradicting the choice of 771.
Hence, n ^ TJI and, if n ^ 1, then Ho < n ^ A;. If n > fr_i then (9) implies that p

contains each pair of elements with rank A; which differ at £r_i < 77r_i < A; places. Thus,
by Lemma 12, there exists a pair of elements in p with rank 77,—t < 77,. which differ at
fr_! places, contradicting the expression for p(~) (Ik x Ik) in (8). Hence, n ^ £r_i.

Now, if n ^ No then (9) implies that p contains all pairs of elements with rank A;

which differ at less than n places. In particular, if X — AuBOC, where \A\ = \B\ = k

and \C\ < n, then (id^uc, id^) € p. Consequently, if 77,. < A; and Y C A has cardinal 77,.,

then idyuc 6 NI(X) and

(idyuC, idy) = (idyuC • id/iuc. idyuc • id/i) 6 p.
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That is, p contains a pair of distinct elements with rank r)T < k which differ at less than
n ^ fr-i places. Since this again contradicts the expression for p(~) (Ik x Ik) in (8), we
conclude that if n ^ No then r\T = fc.

Conversely, suppose p is defined as in (7) and its associated cardinals have the stated
properties. We now follow the first part of the proof of [1, Vol. 2, Theorem 10.72]. Clearly,
p is reflexive and symmetric. To show it is transitive, first note that i < j implies ^ < &
and so A{j £ A(i, and likewise rji < rjj implies I*. £ I*..

For convenience, we write & = k1, so that /^ = A{0 n I*v Now suppose (a,/3)
€ Afc D J*.+1 and (0,j) € A{j. n 7*i+1, where i < j . Assume r(a) ^ r(0). If both these
cardinals are finite then (a,/?) € /*, (since rji ^ No); and, if at least one of them is
infinite, then Lemma 11 implies

max(r(a),r{/3)) = dr (a, 0) < & ^ m

and so (a, 0) £ 1^. Similarly, if r{@) ^ r(y) then (/3,7) € I*t, and clearly the same is
true if r(/3) = r(y) since we already know r(/3) < r]i. Therefore, in all cases, r(a) ^ r(/3)
implies (a, 7) e /*,- Hence, we may assume that r(a) = r(0) — r(^). But, since
r(a) < T)i+i, we then deduce that (a, 7) € A^ D /^j+1. Finally, since both components of
each pair in An D (DIk x DIk) have rank k ^ r)T, it follows that p is transitive.

Now, each of the terms in p corresponding to %,...,rir is a compatible relation
on NI(X). Suppose n ^ No (hence r\T = k) and let (a,0) 6 An n (DIk x DIk) = a,
say. If (i € NI(X) and r(a/x) = r(/8//) = A; then (a/x, /8A*) € cr. On the other hand, if
r(ap) = k > r(0fi) then Lemma 11 gives the contradiction:

A; = max(r(a/i), T{0H)) = dr (a/i,/8/it) < n < A;.

Therefore, the only other possibility is that both r{ap) and r(/?/x) are less than k = r)T:
that is, (ap,,0n) G 7*r and di (afj.,/3/j.) < n ^ £,._!, so {ay.,0p) £ Afr_, n/^.. Similarly,
p is left compatible on NI(X), and so it is a congruence on NI{X). D

We now deduce part of [4, Theorem 4.10], and prove a little more.

COROLLARY 2 . Suppose \X\ = k ^ No and write

Tien A£ is the oniy maximal congruence on NI(X), and hence NI(X)/A^ is a
congruence-free nilpotent-generated inverse semigroup.

PROOF: Since NI(X) is nilpotent-generated and inverse (by Theorem 1), and AjJ"
is a congruence on NI(X), it follows that NI(X)/A% is also nilpotent-generated and
inverse.

Suppose Ajf C p for some non-universal congruence on NI(X). Now, r)(p) equals
the least cardinal greater than r(a) for each a e NI(X) such that (a, 0) € p. But
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(id^, 0) € A£ C p for each AC X with cardinal less than k (in particular, for infinite A)
and so T)(p) > N0- Therefore, p has the form displayed in (7). Clearly, (a, 0) e A£ C p
for each a € /*, so ^ = A;. Moreover, i fX = , 4 u £ u C where |A| = |C| = k and |B| < A;,
then

(idAuB, id^) € Ak n [D/it x £>/*],

and it follows that n > k. Since /£ C AjJ", this implies that each term in (7) is contained
in A^, hence p C A£ and equality follows. Finally, suppose p is a maximal congruence on
NI(X) for which there exists (a, P) € p with dr (a, £) = Jfc. Then r(a) = r(/3) = A; (by the
definition of 'difference rank'). Since such pairs (a, ft) do not belong to the congruences
described in Theorem 5, we deduce that rj(p) ^ Ho. However, then (7) implies that
n = k', and so we have a contradiction:

k' ^ £ . _ ! < • • • < £i Sj 77x < • • • < T)T ^ k.

Thus, dr(a,j3) < k for all (a, 0) E p, hence p C AjJ", and equality follows by the
maximality of p and the fact that AjJ" is non-universal. D
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