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A NOTE ON DIVISIBILITY IN H°°(X) 

FRANK FORELLI 

1. Let X be a Riemann surface, and H°°(X) the ring of bounded 
holomorphic functions in X. We offer here a question on divisibility in 
H°°(X), and then give in Section 2 a condition in which the answer is yes 
(Corollary 2 to Lemma 1). In Section 3 we use part 2 to prove a theorem 
on the separation of points by H°°(X). In Section 4 we study X/H°°(X). 

If fis meromorphic in X and z e X, then by o(f z) we mean the order 
o f / a t z. (We agree that o(f z) = oo if/ = 0.) Let h be memomorphic in 
X; then /i might be said to be of bounded type if /z = f/g w h e r e / g G 
//°°(X), g ^ 0. 

The question on divisibility is this. Let x £ X and let h be of bounded 
type. If o(h, x\ ^ 0, do we then have h = f/g w he r e / g e H°°(X) with 
g(x) * 0? 

There is a simple necessary condition. Put 

Ox = {o(f,x):fe H°°(X),f* 0}; 

then 

(1.1) Ox = {js:j = 0, 1 , 2 , . . . } 

if the answer to the question on divisibility is yes. 
To see this let z of bounded type be of least positive order at x (without 

loss of generality H°°(X) ¥= C). Put s = o(z, x). Let h be of bounded type, 
h ¥- 0; then by the division algorithm the order of h at x is a multiple of s, 
i.e., 

o(h, x) = js, j G Z. 

Suppose now the answer to the question on divisibility is yes. Then we 
may take z in H°°(X); this gives (1.1). 

2. A lemma on divisibility in H°°(X). Let 6 be meromorphic in X and 
proper at 0. By proper at 0 we mean 0 G d(X), 0^0, and { \6\ < 1} is 
bounded in X. (A set is bounded if it is contained in a compact set.) Let JC 
G X, and let 6(x) = 0. We now come to our lemma on divisibility. 
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LEMMA 1. Let f e H°°(X),f =é 0. Let s and t be any integers such that 

(2.1) so(0,x) = to(fx). 

Then there are functions g and h in H°°(X) such that 

(2.2) g(x)h(x) ± 0 and fg = 6sh. 

(We might point out that the condition (2.1) on s and t is necessary; i.e., 
if (2.2) holds, then (2.1) holds.) 

Proof. We have 

0~\O) = {zx, ...,zp9zp+u... ,zq) 

where 
(a) if g e H°°(X), then g(Zj) = g(x), 1 ^ j ^ p; 
(b) if p 4- 1 S j ^ q, then there is a gj in H°°(X) with gj(zj) ¥= gj{x). 
To see this we need only write 

0~\O) = A U (0_1(O)\A) 

where 

A = {z e « " ' ( O ) ^ ) = g(x) if g e //°°(X) }, 

and then notice that 0_1(O) is bounded in X, hence finite (since 0 =£ 0). 
Put (,- = o(0, zj). Then *,- ^ 1,1 ^ j ^ q. Put 

*y = <>(f, Zj), 1 ^j^p. 

We will prove that 

(2.3) $!//, = s2/t2 = . . . = ^ / ^ . 

Without loss of generality let 

$!/*! ^ V 2 , • • • ,Sp/tp. 

By (b) there is a g in H°°(X) with g(x) ^ 0 and 

%{zp + \) = g ( ^ + 2> = . • • = g ( ^ ) = 0. 

Choose integers a > 0, /? ^ 0 such that o^i = fit\, and let 

(2.4) A = J*gy/0f> 

where y ^ fitp + \, Ptp+2, • .., Ptq. The order of /i at zy is equal to asy — /3tj 
if 1 ^ y = /?; if /> + 1 = j = q, its order at zj is ^ 0. Let 1 ^ j ^ p; 
then 

OS; - fitj ^ 0. 

(Otherwise, 57/*,- < p/a = J]/^.) Thus /z is holomorphic in X 
Continuing, let 
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D = {z e X:\0(z)\ < 1}. 

Then D is bounded in X; hence in D, \h\ = A. In X\D, 

W ^ \f\a\g\\ 

Thus h e //°°(X). We have A ^ ) ^ 0; hence by (a), 

h(Zj) ¥= 0 if l a y ^ / ? . 

This proves that asj — fîtj = 0, i.e., 

Sj/tj = ft/a = S\/t\\ 

this is (2.3). 
By (2.3), in (2.4) we may take a = |/|, /? = \s\. This gives (2.2). 

COROLLARY 1. IfH°°(X) ¥= C, then 0 is of bounded type. In fact, 0 = / / g 
where f g e #°°(X) w/7/z g(x) ± 0. 

/V00/. L e t / i n H°°(X) be such that 1 ^ #(/ , x) < oo (here we use 
H°°(X) ^ C), and put s = o(f x\ t = o(0, x). By the lemma there are 
functions g and h in H°°(X) with h(x) ¥= 0 a n d / ' g = 0sh. Then (dhf e 
/T°(X), hence 0A e 7/°°(X). 

COROLLARY 2. Le/ h be of bounded type. If o(hy x) = 0, then h = f/g 
where f g <E H°°(X) with g(x) ¥= 0. 

Proof Without loss of generality h ¥= 0. Put / = o(0, x) and apply the 
lemma separately to the numerator and denominator of h. This gives 
functions/ and/2 in H°°(X) with/(jc) ¥= 0 and hlf = 6sf2 where s = o(h, 
x). Without loss of generality H°°(X) ¥= C. Then by the first corollary, 6s 

= h'U where / 3 , / 4 e #°°(X) with/4(jc) *= 0. Then (A/1/4)' G 7/°°(X), 
hence A//4 G //°°(*). 

Corollary 2 states that the answer to the question on divisibility is yes (if 
there is a 6 that is meromorphic in X, proper at 0, and vanishes at x). The 
next corollary completes the lemma. 

COROLLARY 3. Let f be of bounded type.f ¥= 0. Let s and t be any integers 
such that 

so(0, x) = to(f x). 

Then there are functions g and h in H°°(X) such that 

g(x)h(x) * 0 and fg = 0sh. 

Proof. Without loss of generality o(f x) ^ 0. Then by Corollary 2 , / = 
f/f2 w h e r e / , f2 e H°°(X) with/2(jc) * 0. We have o(fh x) = o(f x), 
hence (by the lemma) there are functions g and h in H°°{X) such that 

g(x)h(x) * 0 and f\g = 0sh. 
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T h e n / ' / ^ = 0s h. 

COROLLARY 4. Let y be any point in X withf(y) = f(x) whenever f E 
H°°(X). That is to say, any point that H°°(X) identifies with x. 

( i ) / / / G H°°(X),f*0,then 

o(f,x)o{0,y) = o{f,y)o{B,x). 

(ii) IfH°°{X) ¥= C, then 0(y) = 0. 

Proof. Put 5 = o(f, x), t = 0(6, x). Then (2.2) gives (i); if.? > 0, it gives 
(ii). 

To prove the next corollary we need a (known) lemma on valuation 
rings. It is this. 

LEMMA 2. Let F be afield and let (9\ and (92
 oe valuation rings in F with (9\ 

c d)2. If (9X is discrete, then either 02 = ®\ or ®2 = F. 

Proof Put &k = the ideal of nonunits of Ok. If / e ^ 2 , then \lf £ Ou 

hence / G ^ . This proves that 

^ c # , c (D, c 02, 

hence ^ 2
 1S a prime ideal in (9\, ¥= 0\. Since 0\ is discrete, its prime ideals 

are 0, ^ , and itself. If ^ 2 = 0, then (P2 = ^- H ^2 = ^ 1 , then fy = Q\. 

Put 

M, = { / e H°°(X):f(x) = 0}; 

then Mx is a maximal ideal in the ring H°°(X). 

COROLLARY 5. The prime ideal Mx is minimal, i.e., if P is a prime ideal in 
H°°(X) with P c Mx, then either P = 0 or P = Mx. 

Proof Without loss of generality H°°(X) ¥= C. Let 

# r = {f/g-f g e H°°(X), g(x) * 0}, 

H7 = {flg'l g e H°°(X), g £ P), 

and 

F = {flg'f g e H°°(X)9 g^0}; 

then H? c ff^ c F. By Corollary 2, 

j ^ ° = {/* G F:o(A, je) ^ 0}, 

hence H™ is a discrete valuation ring in the field F (here we use H°°(X) ¥= 
C). Then by the lemma, the local ring H^ is either equal to Hx or to F. 
If the first alternative holds, P = Mx, while if the second holds, P = 0. 
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2.1. Let X be any Riemann surface in which H°°(X) ¥= C and in which 
H°°(X) does not separate points. Let x and y be any pair of distinct points 
in X that H°°(X) identifies. Let 0 be meromorphic in X with 0{x) = 0. If 0 
is proper at 0, then by part (ii) of the fourth corollary, 0(y) = 0. Thus we 
see there does not exist a 0 that is meromorphic in X, proper at 0, and 
vanishes only at x. (This may be proved directly.) On the other hand there 
is, for example, a g in 0{X) that vanishes only at x\ if we wish, it vanishes 
there to order 1. If there are infinitely many distinct points y\,y2> • • • that 
H°°(X) identifies with x, then we see there does not exist a 0 that is 
meromorphic in X, proper at 0, and vanishes at x. Let Y = X\y. Then by 
Corollary 1 there does not exist a 0 that is meromorphic in 7, proper at 0, 
and vanishes at x. 

2.2. Let WbQ a compact Riemann surface, X a region in W, and x ^ X. 
Then (e.g. by [1, p. 106] ) there is an/meromorphic in W with a pole at x 
and no other poles. Let / > 0; then 

{\t/f\ S l } c X 

if t is sufficiently large. Thus we see: 

(2.5) there is a 0 that is meromorphic in Xy proper at 0, and vanishes 
only at x. 

We will use (2.5) in part 3. 
Regions in compact surfaces are rich in bounded functions (provided 

H°° ¥= C). The precise statement is this. (We include it for comparison 
with the theorems in part 3.) 

THEOREM 1. Let X be a region in a compact Riemann surface W. 
(i) Let x e X and let h be of bounded type in X. Ifo(h,x) ^ 0, then h = 

f/g where f g e HGO(X) with g(x) ¥= 0. This is to say, in X the answer to the 
question on divisibility is yes (for each x in X). 

(ii) IfH°°(X) # C, then H°°(X) separates the points of X. 
(iii) Let h be meromorphic in W. IfH°°(X) ¥= C, then h is of bounded type 

in X. 
(iv) Let x G X. IfH°°(X) * C, then there is an f in H°°(X) with o(f x) 

= 1. 

Proof (2.5) gives (i) and (ii). 
To prove (iii), let x e X. We have h = f/g where / and g are 

meromorphic in W with poles at x and no other poles. Then (by the first 
corollary) / and g are of bounded type in X. This gives (iii). 

To prove (iv), there is (e.g. by [1, pp. 135-136] ) an h meromorphic in W 
with o(h, x) = 1. By (iii) and (i), h =f/g where/, g G H°°(X) with g(x) ¥= 
0. Then o(f x) = o(h, x). 

We might paraphrase (ii) in this way. Let X be a Riemann surface in 
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which H^(X) does not separate points. If H^(X) ¥= C, then X cannot be 
imbedded in a compact Riemann surface. That is to say there is no 
univalent holomorphic map of X into a compact Riemann surface. (On the 
other hand there may be a proper holomorphic map of X into a compact 
surface.) 

3. A theorem on the separation of points by bounded holomorphic 
functions. Let X be a Riemann surface; then one may ask if H°°(X) 
separates points in X. We will prove the following. 

THEOREM 2. Let X be any Riemann surface in which there is a proper 
holomorphic map y onto a region G in a compact Riemann surface. If H°°(X) 
separates the points of at least one fiber of <p in which there are no branch 
points and if H°°(X) ¥= C, then (i) H°°(X) separates the points of X, and (ii) 
to each x in X there is an f in H°°(X) with o(f x) = 1. 

We might recall that a mapping <p:X —> G of topological spaces X and G 
is said to be proper if inverse images of bounded sets are bounded, i.e., if 
y~x{E) is bounded in X whenever E is bounded in G. 

Our proof is elementary. Its main ingredient is one or the other of the 
corollaries to the lemma on divisibility (Section 2). 

3.1. We now come to the proof of Theorem 2. Accordingly, I is a 
Riemann surface, G a region in a compact Riemann surface, and <p a 
proper holomorphic map of X onto G. 

Let F be the field of fractions of the ring H°°(X), i.e., 

F = {f/g'f g e H°°(X), g * 0). 

In the terminology of Section 1, F is the field of functions in X of bounded 
type. Let x e X, choose z in F \ 0 of least positive order at x (here we use 
H°°(X) ¥= C), and put 

** = {/€= F:o(f x) ^ 0}. 

L e t / G Rx. Put a0 =f(x),f\ = (/— OCQ)/Z; then/j <E RX. Likewise put a\ 
= f\(x)>fi = C/i — «i)/^; then/2 G Rx- Continuing in this way we define 
sequences {ay} in C and {f} in Rx by 

(3.1) CLj =fj{x)Jj+X = (f ~ CLj)/Z. 

The second of these gives 

k 

0.2) / = 2 « / + n + i . 
y-o 

Let s = the order of z at x. Then we may choose a local coordinate £ 
with 
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(3.3) z(£) = f, l£l < €. 

(Here it is understood that x is the center of the disc { |£| < e}.) Iff in i?A 

is holomorphic in the disc { |£| < e}, then it is equal there to a convergent 
power series, say 

oo 

7=0 

We have (by (3.2) and (3.3) ) 

k 

7 = 0 

in the disc { |£| < €}, hence 

7=0 y=0 

(otherwise the difference is a polynomial of degree ^ ks with a zero of 
order ^ ks + I). Thus the formal series 

oo 

2 a/7 

7 = 0 

converges t o / i n the disc { |£| < c}. (What we have done here is standard 
practice; see e.g. [2] or [3].) 

Let y <E X, y ¥= x, and suppose H°°(X) does not separate x and y. By 
(2.5) there is a 0 that is meromorphic in G, proper at 0, and vanishes at 
cp(x); then 0(<p) is meromophic in X, proper at 0, and vanishes at x. Then 
by either the second or fourth corollary to the lemma on divisibility, Rx = 
Ry', hence 

(3.4) Px = Py 

where 

Px ={g e F:o(g, x)>0}. 

Thus if g G Rx, then g — g(x) e i> hence 

(3.5) g(y) = g(x). 

By (3.4), z being of least positive order at x is of least positive order at y. 
Let t = the order of z at 7, and choose a local coordinate f with 

z(o = r, if 1 < 5. 
(Here it is understood that j ; is the center of the disc { |f| < 8}.) Without 
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loss of generality we may assume that the discs { ||| < c} and { |f| < 8} 
are disjoint (in X) and that é = 8*. Let |£| < c; then there is a f, |f| < ô, 
with z (0 = z(f). Thus if/ G H°°(X), then by (3.1) and (3.5) 

CO OO 

The mapping <p, being holomorphic and proper, is of constant valence 
(<oo), say n. Thus if w E G, then 

(3.6) <p~\w) = {xb . . . ,xw} 

counting multiplicities. L e t / G tf^), w G G, and put 

(̂w) = ri(/(xy) - / fe ) ) 
where {**} = the right side of (3.6). (Let D = 1 if « = 1.) Then D G 
0(G). We will call D the discriminant of / 

We have proved that H °°(X) identifies each point in { |£| < e) with a 
point in { |f | < S} (and vice versa), hence by (2.5) and one or the other of 
the corollaries to Lemma 1, H°°(X) U {<p} identifies each point in the 
first disc with a point in the second. This in turn proves that if / e 
H °°(X), then the discriminant of/vanishes in {<?(£): |£| < c}, hence it 
vanishes identically. But then H°°(X) cannot separate points in any fiber 
of <p in which there are no branch points. This proves (i). 

By (i), the order of z at x is equal to 1, while by the second corollary to 
the lemma on divisibility, z = f/g whe re / g G H °°(X) with g(x) ^ 0. 
Then o{f,x) — 1. This is (ii). 

3.2. We do not know if Theorem 2 holds if we replace the compactly 
imbedded surface G by a Riemann surface Y in which H °°(Y) separates 
points. But we do have this. 

THEOREM 3. Let X and Y be Riemann surfaces in which there is a proper 
holomorphic map q> of X onto Y. Suppose: (i) H°°(Y) separates the points of 
Y; (ii) if£ G Y and h is of bounded type in Y with o(h, £) = 0, then h = f/g 
where f g G H°°(Y) with g(£) ¥= 0 (i.e., for each £ in 7, the answer to the 
question on divisibility in H°°(Y) is yes). Then H°°(X) separates the points of 
X, and to each x in X there is an f in H°°(X) with o(f x) = 1, if H°°(X) 
separates the points of at least one fiber of q> in which there are no branch 
points. 

We will give the proof in brief. Three lemmas are needed; we omit the 
proof of the first. 
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LEMMA 3. Let K be afield, Fa vector space over K, (9\, . . . , (9n subspaces of 
F, andf, . . . , / „ vectors in F. Suppose f £ &p\ ë j â n. If n < # (K) (in 
particular if K is infinite), then we may choose scalars t\, . . . ,tu such that 

LEMMA 4. Let X be a Riemann surface, and x\, . . . , xn points in X. Put 

Rj = {ffis of bounded type in X with o(f Xj) = 0} 

and 

s = n Rr 

Then R\ = S\ where 

S\ = {Pg'f g e S, g(xx) * 0}. 

Proof We have S\ c R}; it is to be proved that R\ c Sj. Without loss 
of generality R\ <£ Rj if y ¥= 1. Then by Lemma 3 there is a g in R\ with g 
£ Rp 2 ^ j % n. If g(*i) = 0, replace g by 1 + g; then g(xx) ^ 0. Put <p 
= 1/g; then <p <E S with ^(jq) 7e 0 and 

<K*2) = . . . = ?(*„) = o. 

Now l e t / e £ , ; then / / G 5 if 

M<P, xj) + o(/, jc,-) g 0 , l ^ j ^ n . 

This proves t h a t / e S\. 

LEMMA 5. Let X and Y be Riemann surfaces in which there is a proper 
holomorphic map y of X onto Y. Let x e X, and put £ = <p(x). If (i) the 
answer to the question on divisibility in H°°(Y)for the point £ is yes, then (ii) 
it is yes in H°°(X) for x. 

Proof (We might point out there may not be a 6 that is meromorphic in 
Y, proper at 0, and vanishes at £; then we cannot compose with <p and use 
Corollary 2.) Let F(Y) = the field of functions in Y of bounded type, and 
identify F(Y) with {/(«?):/ e F(Y) } . Put 

** = {/ e F(Y):o(f © ^ 0}, 

and let S = the integral closure of R% in F(X). Then since <p is proper, 

s = n R 

where 

tfv= { / e F(X):o(f,y) ê 0 } ; 

hence by Lemma 4, 
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(3.7) Rx = Sx 

where 

Sx = {//g:/, g e 5, o(g, x) = 0}. 

L e t / e £; then / i s integral over ^ , hence by (i) there is a y in H°°(Y) 
with y(£) ^ 0 and y/integral over i/°°(7). Then y / G i/°°(X). This proves 
that 

S = {g/y:g e / / ~ ( * ) , y e 7 ^ ( 7 ) , Y(£) * 0}, 

hence 

(3.8) Sx = {flg'f g e H°°(X), g(x) * 0}. 

By (3.7) and (3.8), (ii) holds. 

We now come to the proof of Theorem 3. Let x, y G X, x ¥= y, and 
suppose H°°(X) does not separate x and y. Then by Lemma 5, Rx = ,RV. 
We may now repeat (without change) the proof of Theorem 2. 

The question then is may we prove Theorem 3 without (ii)? Or better 
yet, may we prove (ii)? 

Other proofs of Theorem 3, with special 7, are in [4], [5], [6] (in [5] and 
[6], Y = D). These proofs, which are not easy but give more, will not work 
here. 

There is a corollary to Lemma 5. Let X and Y be Riemann surfaces in 
which there is a proper holomorphic map <p of X onto Y. Let x G X, and 
put £ = <p(jt). Suppose the answer to the question on divisibility in H°°(X) 
for the point x is yes. Then it is yes in H°°(Y) for £ (we omit the proof), 
hence (this is the corollary) it is yes in H°°(X) for y in <p-1(£)-

4. Is X/H°°(X) a Riemann surface? If we look over the proof of 
Theorem 2, we find the following. 

THEOREM 4. Let X be a Riemann surface in which to each x in X there is a 
6 that is meromorphic in X, proper at 0, and vanishes at x. Then X/H°°(X) is 
a Riemann surface (provided H°°(X) ¥* C). By this we mean there is a 
Riemann surface Y and a holomorphic map o of X onto Y such that o and 
H°°(X) identify the same pairs of points in X. 

Proof (in brief; see also [2], [3] ). Put Y = X/H°°(X\ and 

o(x) = {y G X:f(y) = f(x) iff e H™(X) }. 

We give Y the largest topology in which o is continuous, i.e., E c Y is 
open if o~ l(E) is open. Then by the proof of Theorem 2, the map o is open 
(hence Y is Hausdorff). 
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L e t / G H°°(X)', t h e n / = / (a) where/ e C(Y). Let A; e X. Then, using 
the proof of Theorem 2, 

oo 

/= 2 «/' 
7=0 

in the disc { |£| < e}. Without loss of generality (by Corollary 2) z e 
T / 0 0 ^) . Put 

Z> = a( { |£| < <} ). 

Then D is open in Y, -and in Z), 

oo 

/ = 2 «/P; 
7=0 

hence z is a homeomorphism of D and the disc { |£| < e^}. 
Now let xj e X,;' = 1, 2. Put D, = a( { |£| < e,-} ). Suppose D, n D2 ^ 

<#>, and define 

<P:ZAI(£>, n D2) -» zA
2(Z)i n D2) 

A A _ . 

by <p(z\) = z2. Then in a (Z>i n .D2X <P(ZI) = z2- This proves that <p is 
holomorphic. Thus we see that Y is a Riemann surface and (since z = 
z(o) ) that o is holomorphic. 

Let £ e Y; then £ = a(x), x E I By the hypothesis, there is a 0 that is 
meromorphic in X, proper at 0, and vanishes at x. By Corollary 1, 0 is of 
bounded type in X\ hence 0 = 8(o) where 0 is of bounded type in Y. Then 
6 is proper at 0 and vanishes at £. This is to say, the hypothesis holds in Y 
(where H°° separates points). Put 

G*= {\0\ < 1}; 

then {G^t- e Y} is an open cover of Y with a_1(G^) bounded in X. This 
proves that a is proper. Hence a (being holomorphic) is of constant 
valence <oo; in other words, there is a positive integer n such that for 
each x in X the fiber 

{y e *:/(>>) = / ( x ) i f / e i*°°(A") } 

consists of precisely « points counting multiplicities. 
Finally, to each \ in Y there is a n / i n /7°°(Y) with o ( / £) = 1. 

COROLLARY (to Theorem 4). Let X be a Riemann surface in which there 
is a proper holomorphic map <p onto a region G in a compact Riemann 
surface. Then X/H°°(X) is a Riemann surface (provided H°°(X) ¥= C). 
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Proof. (2.5) + <p. 

The corollary with G = D is in [6]; the proof there will not work 
here. 
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