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Abstract

Nematodes constitute one of the most speciose metazoan groups on earth, and a significant
proportion of them have parasitic life styles. Zooparasitic nematodes have zoonotic, commer-
cial and ecological significance within natural systems. Due to their generally small size and
hidden nature within their hosts, and the fact that species discrimination using traditional
morphological characteristics is often challenging, their biodiversity is not well known, espe-
cially within marine ecosystems. For instance, the majority of New Zealand’s marine animals
have never been the subject of nematode studies, and many currently known nematodes in
New Zealand await confirmation of their species identity with modern taxonomic techniques.
In this study, we present the results of an extensive biodiversity survey and phylogenetic ana-
lyses of parasitic nematodes infecting New Zealand’s marine animals. We used genetic data to
differentiate nematodes to the lowest taxonomic level possible and present phylogenies of the
dominant clades to illustrate their genetic diversity in New Zealand. Our findings reveal a high
diversity of parasitic nematodes (23 taxa) infecting New Zealand’s marine animals (62 of 94
free-living animal species investigated). The novel data collected here provide a solid baseline
for future assessments of change in diversity and distribution of parasitic nematodes.

Introduction

Nematodes are extraordinarily ubiquitous, abundant and diverse. There are more than 40 000
species currently known, thus they represent one of the most speciose metazoan groups on
earth (Zhang, 2013). The rate of descriptions is slowly increasing with about 400 new species
descriptions per year (Hodda, 2022a). However, estimates suggest there are somewhere
between 500 000 and 5 000 000 nematode species in total, which is 8–100 times more than
that of the current known total (May, 1988; Hugot et al., 2001; Hodda, 2022b). These estimates
and the variability between them make it clear that although considerable effort has been
directed towards understanding nematode biodiversity within natural systems, much is left
to be discovered. Addressing this deficiency is increasingly important now more than ever,
as biodiversity loss is considered an urgent conservation priority across the globe (Butchart
et al., 2010).

Anderson (2000) estimated that approximately 33% of nematodes currently known are
parasitic in vertebrate definitive hosts. Aside from this large contribution to nematode species
richness, parasitic nematodes are well recognized for their zoonotic, economic and ecological
importance within natural systems, especially in the marine environment. Various marine
nematodes are zoonotic; humans who consume undercooked infected flesh can develop
mild-to-severe allergic reactions, or acquire accidental infections, either of which can lead to
death in severe cases (Audicana et al., 2002; Mattiucci et al., 2013). In their non-human
hosts, nematodes can reduce the fecundity, growth and overall health of their host, also some-
times leading to death (e.g. Wiese et al., 1977; Vanstreels et al., 2018). At a larger scale, such
pathological infections may potentially cause secondary extinctions, especially if the host taxa
are threatened. Although nematodes are not typically cited as the primary cause of mortality
events, they can be associated as a contributing factor (e.g. Abollo et al., 2001a). For fish hosts
that are commercially important, nematode infections can make fish undesirable for human
consumption, reducing the marketability of fillets, and consequently posing a potential eco-
nomic risk for some fisheries (Abollo et al., 2001b; EFSA, 2010). Contrary to these negative
impacts, parasitic nematodes also play major roles within food webs and perform ecological
functions within healthy natural systems (Singleton and McCallum, 1990; Timi and Poulin,
2020). They can be used as biological tags for biomonitoring of host species (e.g. Melendy
et al., 2005; Poulin and Kamiya, 2015), as indicators of ecosystem health or environmental
change (Zarlenga et al., 2014) and, due to their high diversity, can be used as models for
resolving evolutionary hypotheses regarding species radiation events (e.g. Mattiucci and
Nascetti, 2008). Clearly, a wealth of knowledge concerning the structure and functioning
of natural systems can be gained from investigating parasitic nematodes within marine
ecosystems. Despite this however, they, along with other parasite taxa are often under-
represented or ignored completely in studies of biodiversity and ecology (Lafferty et al.,
2008).
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There are a few reasons why parasitic nematodes are underre-
presented in studies of biodiversity. First, nematodes are usually
small, making them seemingly insignificant, and live within
their host, thereby going undetected. Second, nematodes are
often more difficult to identify using traditional morphological
features than other metazoan groups, as many exist as cryptic spe-
cies complexes which lack distinguishable morphological charac-
ters between life stages, and between closely related species
(Nadler and Pérez-Ponce de León, 2011). This makes it difficult
to identify nematodes to low taxonomic levels for non-experts
and sometimes even for experts. Lastly, the taxonomy of phylum
Nematoda continues to change and evolve at varying taxonomic
levels with the addition of new data and approaches (Hodda,
2021). Currently, inventories of nematode taxa that comprise ‘dif-
ficult to delineate taxa’ are incomplete (Mattiucci and Nascetti,
2008). However, molecular discrimination methods are increas-
ingly incorporated in studies that aim to identify nematodes at
a genotype, population and species level, especially for those
groups that comprise cryptic species; these have led to significant
advances in our understanding of nematode evolution and ecol-
ogy (Shamsi et al., 2009b; Nadler and Pérez-Ponce de León,
2011; Mattiucci et al., 2014; Li et al., 2018).

In New Zealand, fewer than 10% of animals expected to host
parasitic helminths have any records of infection (Bennett et al.,
2022a). Furthermore, Bennett et al. (2022a) reported that, of
the nematodes recorded infecting New Zealand’s marine animals,
more than half require further study to confirm their species iden-
tity. Limited genetic data are available for most nematode–host
associations that are known, hindering our ability to corroborate
identifications from existing checklists, which include data from
fish species (Hine et al., 2000), seabird species (McKenna, 2010,
2018) and marine mammals (Lehnert et al., 2019). However,
some studies focusing on delineation of nematode groups have
included a few New Zealand animals previously (e.g. Anisakis
as per Mattiucci et al., 1997, 2018). The uncertainty of current
data for New Zealand nematodes reflects a lack of taxonomic
effort, with the sources of current records biased towards pur-
poses such as fisheries management (Bennett et al., 2022a).
Going forward, obtaining genetic data for New Zealand’s marine
parasitic nematodes from a wide range of host taxa should provide
insights into (1) what nematode taxa are present in New Zealand,
including unique genotypes, species complexes or species, (2)
which free-living animals host nematodes, (3) identification of
unknown potentially disease-causing nematodes and (4) the
diversity of zoonotic species, as it is not yet understood which
genotypes or species are infective to humans (Hochberg and
Hamer, 2010). Genetic data would also provide a starting point
for future comparison for monitoring changes in diversity or dis-
tribution of parasites (Mattiucci and Nascetti, 2008; Faltýnková
et al., 2017).

With this in mind, the aim of this study is to characterize gen-
etically the biodiversity of parasitic nematodes that infect a range
of New Zealand’s marine animals. The data presented here result
from an extensive parasite biodiversity survey carried out between
2019 and 2021. We took a broad, collaborative and opportunistic
surveying approach by utilizing deceased marine animals from
around New Zealand from a range of locations and sources. We
primarily used molecular data and phylogenetic analysis to char-
acterize the biodiversity of the main nematode clades infecting
some of New Zealand’s marine animals. It is not our intention
to update the current evolutionary hypotheses or taxonomies
regarding the nematode groups presented, but rather to use phy-
logenies to visually illustrate the diversity present in New Zealand
waters. We update several unresolved nematode records and pro-
vide numerous new geographic and host records. Our findings
also serve as a baseline for future studies aiming to understand

changes in species composition or distribution of parasites in
New Zealand waters.

Materials and methods

Host and parasite collection

Between June 2019 and August 2021, a total of 611 individuals of
94 animal species were dissected with the aim of molecularly
characterizing the parasitic helminth biodiversity within some
of New Zealand’s marine animals. Helminths other than nema-
todes found during this exploration will be reported elsewhere.
Marine animals examined for nematodes were obtained from a
range of sources and locations around New Zealand. All were pro-
vided deceased as by-catch or as a by-product of other research,
except for a few inter- or sub-tidal fish species that were collected
using hand nets and euthanized under a University of Otago ani-
mal use protocol (permit AUP-19-190). All animals were
obtained between June 2019 and August 2021; Supplementary
material 1 details each host species investigated, with locality
data where known. Note that in some cases location data were
not provided when information pertained to confidential fishery
by-catch pelagic seabirds; such records are reported as caught
within New Zealand’s exclusive economic zone (EEZ). The host
taxa investigated include mostly vertebrates, including 39 sea-
birds, 40 teleost fish, 10 chondrichthyan and 1 marine mammal
species. We also include data from 4 cephalopod species as they
are known intermediate/paratenic hosts for some marine nema-
todes in New Zealand (Smith et al., 1981). Other invertebrate spe-
cies were also dissected during this survey, only 1 of which hosted
parasitic nematodes; those results are presented in a checklist of
parasites infecting New Zealand’s marine invertebrates (Bennett
et al., 2022b).

Marine animals were defrosted if frozen or dissected fresh.
Organs within hosts examined for nematodes differed depending
on host taxa. For teleost fish and chondrichthyan hosts, muscle
tissue, gastrointestinal tract and internal organs were removed
and dissected. For seabirds, gastrointestinal tracts, and in some
cases lungs, were removed and dissected. For marine mammals,
gastrointestinal tracts or fecal samples were investigated. Lastly,
for cephalopods, internal cavities were dissected and investigated.

Molecular data

Representatives of each nematode species, when numbers and
condition allowed, were chosen for DNA sequencing. Genomic
DNA was extracted using the DNeasy® Blood and Tissue kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
protocol. First, a partial sequence of the small subunit rDNA
18S gene was amplified, primarily to identify nematodes to the
lowest taxonomic level possible. Next, cytochrome c oxidase sub-
unit 1 (cox1) gene was targeted for representatives from the genus
Anisakis, internal transcribed spacers 1 (ITS1) and 2 (ITS2) genes
were targeted for representatives of the genera Contracaecum and
Hysterothylacium, and the large subunit rDNA 28S gene for spe-
cies belonging to Acuariidae, to allow comparison between closely
related species (choice of markers was based on previous studies:
Cross et al., 2007; Shamsi et al., 2009b; Costa et al., 2018;
Mutafchiev et al., 2020, respectively). Polymerase chain reaction
(PCR) protocols for the 18S gene included primers Nem18SF
and Nem18SR (Wood et al., 2013) and conditions consisting of
94°C for 5 min, 35 cycles of 94°C for 30 s, 54°C for 30 s and
72°C for 1 min, and 72°C for 10 min. PCR protocols for cox1
included a primer mix of LCO1490 and HCO (Folmer et al.,
1994) and conditions followed that of Prosser et al. (2013). PCR
protocols for ITS1 and ITS2 included primers SS1 N13r and
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SS2 NC2 (Shamsi and Suthar, 2016), respectively, under condi-
tions of 94°C for 5 min, 30 cycles of 94°C for 30 s, 55°C for 30
s and 72°C for 30 s, and 72°C for 5 min. PCR protocols for 28S
included primers T16 and T30 (Harper and Saunders, 2001)
under conditions of 94°C for 5 min, 30 cycles of 94°C for 30 s,
45°C for 30 s and 72°C for 2 min, and 72°C for 7 min. PCR pro-
ducts were cleaned using EXOSAP™ Express PCR Product
Cleanup Reagent (USB Corporation, Cleveland, OH, USA) fol-
lowing the manufacturer’s instructions. Sanger sequencing by
capillary electrophoresis was performed by the Genetic Analysis
Service, Department of Anatomy, University of Otago
(Dunedin, New Zealand), Macrogen Incorporated (Seoul,
Republic of Korea) or by Massey Genome Services, School of
Fundamental Science, Massey University (Palmerston North,
New Zealand).

Sequences were imported into Geneious Prime® v1.2, trimmed
using the trim function with default parameters and manually
edited for incorrect and ambiguous bases. An alignment was cre-
ated for each of the main nematode groups recovered, together
with sequences of close relatives downloaded from GenBank fol-
lowing BLASTn searches. The alignments were as follows:
Spirurina (18S), Acuariidae (18S), Hysterothylacium (ITS1 and
ITS2), Anisakis (cox1), Contracaecum (ITS1 and ITS2)
(Chromadorea: Rhabditida) and Capillariidae (18S) (Enoplea:
Trichinellida). For the higher level Spirurina 18S alignment,
NCBI searches were performed and a few representatives per sub-
order were selected manually. Although partial 28S was obtained
for some acuariids, no phylogeny is presented; however, newly
produced 28S acuariid sequences are listed in Supplementary
material 2. One of each unique genotype produced here was
selected for comparison in alignments, although all newly gener-
ated sequences are submitted to GenBank for future comparison
(see Supplementary material 2). When required, the program
Gblocks v0.91.1 (Castresana, 2000; Talavera and Castresana,
2007; Lemoine et al., 2019) was used to refine nuclear gene align-
ments, removing poorly aligned regions. In total, 6 alignments
and corresponding phylogenetic inferences were performed.
Ingroups, outgroups and GenBank accession numbers for down-
loaded sequences are provided in each figure or figure captions.
The program jModelTest v2.1.6 (Guindon and Gascuel, 2003;
Darriba et al., 2012) was used to estimate the model of evolution
for each alignment, restricted to 3 substitution models for com-
patible use with MrBayes. Models selected were as follows:
GTR + I + G for Spirurina 18S alignment, HYK + I + G for
Acuariidae 18S alignment, HYK + I + G for Hysterothylacium
ITS1 and ITS2 concatenated alignment, GTR + I + G for
Anisakis cox1 alignment, GTR + G for Contracaecum ITS1 and
ITS2 concatenated alignment and HYK + I + G for Capillariidae
18S alignment. Bayesian inference was conducted for each align-
ment in MrBayes version 3.2.7a (Huelsenbeck and Ronquist,
2001) using the online interface: Cyberinfrastructure for
Phylogenetic Research (CIPRES) Science Gateway (Miller et al.,
2010). Analyses performed had random starting trees for 2 runs
(each with 1 cold and 3 heated chains), employing a Markov
Chain Monte Carlo approach for sampling the joint posterior
probability distribution across 10 000 000 generations at a heating
chain temperature of 0.02°C. The first 25% of samples were dis-
carded as burnin.

After each analysis, mixing and convergence estimates were
evaluated through CIPRES output files and Tracer v1.6.0
(Rambaut et al., 2018) to ensure appropriateness of each esti-
mated phylogeny. Resulting trees were summarized in a 50%
majority-rule consensus tree with clade credibility support values
(Bayesian posterior probability, BPP) and branch length in-
formation. Trees were visualized in FigTree v1.4.4 (http://tree.
bio.ed.ac.uk/software/figtree/) and edited in Inkscape v1.1

(https://inkscape.org). BPP higher than 0.8 was considered mod-
erately supported, and greater than 0.95 was considered strong
support for nodal positions. Uncorrected pairwise genetic dis-
tances were also estimated in MEGA v10 (Stecher et al., 2020).

Morphological data

Morphological data were gathered from representative nematode
specimens to allow identification to the lowest taxonomic level
possible. Nematodes were cleared with lactophenol as temporary
mounts for light microscopy. Morphological identification was
facilitated with the use of ImageJ software (Wayne Rasband,
NIH, USA) from photographs obtained on an Olympus BX51
compound microscope mounted with DP25 camera attachment.
Parasites were identified to the lowest taxon possible using the
morphological keys of Anderson et al. (2009) and Gibbons
(2010) and original species descriptions.

Results

In total, we found that 66% of host species investigated (62 out of
94) were infected with parasitic nematodes, and identified 23 spe-
cies within 7 families (Acuariidae, Desmidocercidae, Hedruridae,
Ascarididae, Anisakidae, Cucullanidae and Capillariidae) from 2
suborders (21 species of 7 families belonging to suborder
Spirurina and 2 species of 1 family belonging to suborder
Trichinellina) within phylum Nematoda. Nematodes were recov-
ered from a range of infection sites, from lungs, gastrointestinal
tracts, muscle tissues and other internal organs, including within
70% (28/40) of teleost fish species, 77% (30/39) of seabird species,
40% (4/10) of chondrichthyan species, 50% (2/4) cephalopod spe-
cies and within the 1 marine mammal species investigated. The
number of nematode species per infected host species ranged
from 1 to 5 and on average each infected species hosted 1.5 nema-
todes. Of the fish host species investigated, mullet and sprat sp. 1
were infected with the highest number of nematode species, 4 and
5 species, respectively. The nematodes infecting seabirds ranged
from 1 to 4 species per infected host (on average, 1.9 species
per host), and red-billed gulls, spotted shags and white-chinned
petrels all hosted 4 species each. All chondrichthyans, the leopard
seal and all infected cephalopods hosted 1 nematode species each.
Table 1 lists each of the nematode–host associations recovered in
this study, including life stage data, host scientific names and
which associations constitute new host records. Records identified
using morphological data only are also included in this table.
Below we present estimated phylogenies for each main clade of
nematodes infecting New Zealand’s marine animals, including
suborder Spirurina (Fig. 1), family Acuariidae (Fig. 2), genera
Hysterothylacium (Fig. 3), Anisakis (Fig. 4) and Contracaecum
(Fig. 5) and family Capillariidae (Fig. 6) to illustrate the genetic
diversity uncovered.

Suborder Spirurina

Our estimated 18S phylogeny of suborder Spirurina included
17 unique newly generated sequences, 3 outgroups and
71 downloaded sequences representing 6 infraorders within
Spirurina, with some clades collapsed for clarity (Fig. 1). The col-
lapsed clades comprise 16 Acuariid (5 newly generated and 11
downloaded: accessions presented in Fig. 2), 4 Hysterothylacium
(2 newly generated and 2 downloaded: MF072709 and
MF072705), 3 Anisakis (1 newly generated and 2 downloaded:
MT246663 and MF072697) and 3 Contracaecum (1 newly
generated and 2 downloaded: MT233442 and AY702702)
sequences. The Oxyuridomorpha, Gnathostomatomorpha and
Rhigonematomorpha were found to be monophyletic, and the
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Table 1. List of parasitic nematode species recovered from New Zealand’s marine animals in this study including data regarding new geographic records, life stage
(A = adult, L = larval), host and if the host–nematode association is new for New Zealand’s exclusive economic zone (NZ EEZ)

Nematode species

New
geographic

record for NZ
EEZ?

Life
stage Host common name Host species Reference

Diomedenema dinarctos Presswell
and Bennett, 2021a, 2021b

No A Fiordland crested
penguin

Eudyptes
pachyrhynchus

Presswell and Bennett
(2021a)

A Snares crested penguin Eudyptes robustus New record

Desmidocercella australis Mawson,
1953

No A Spotted shag Phalacrocorax
punctatus

Presswell and Bennett
(2021b)

Hedruris spinigera Baylis, 1931 No A Sprat sp. 1 Sprattus antipodum New record

A Mullet Aldrichetta forsteri Luque et al. (2010)

Neoterranova sp. Yes A Sixgill shark Hexanchus griseus New record

A Spiny dogfish Squalus acanthias New record

Porrocaecum sp. Unknown A Black-backed gull Larus dominicanus New record

Porrocaecum reticulatum Linstow,
1899

Yes A Kingfisher Todiramphus sanctus New record

Dichelyne pleuronectidis (Yamaguti,
1935)

Yes A NZ sole Peltorhamphus
novaezeelandiae

New record

Cucullanidae gen. sp. Unknown A Giant stargazer Kathetostoma
giganteum

New record

Cosmocephalus jaenschi Johnston
and Mawson, 1941

No A Spotted shag P. punctatus Presswell and Bennett
(2021b)

A Little pied shag Microcarbo
melanoleucos

Presswell and Bennett
(2021b)

A Red-billed gull Chroicocephalus
scopulinus

New record

A Black-backed gull L. dominicanus New record

L Sprat sp. 1 S. antipodum New record

L Triplefin spp. Tripterygiidae gen.
spp.

New record

Stegophorus macronectes
(Johnston and Mawson, 1942)

No A Northern royal
albatross

Diomedea sanfordi New record

A Little blue penguin Eudyptula
novaehollandiae

Bennett et al. (2021)

A Common diving petrel Pelecanoides urinatrix New record

A Buller’s mollymawk Thalassarche bulleri New record

A Salvin’s mollymawk Thalassarche salvini New record

A White-chinned petrel Procellaria
aequinoctialis

New record

Ingliseria cirrohamata (Linstow,
1888)

No A Spotted shag P. punctatus Presswell and Bennett
(2021b)

A Variable oystercatcher Haematopus unicolor New record

A Red-billed gull C. scopulinus New record

A Otago shag Leucocarbo
chalconotus

Presswell and Bennett
(2021b)

A Little pied shag M. melanoleucos Presswell and Bennett
(2021b)

Seuratia shipleyi (Stossich, 1900) Yes A Salvin’s mollymawk T. salvini New record

A White-chinned petrel P. aequinoctialis New record

A Flesh-footed
shearwater

Ardenna carneipes New record

A Grey-headed
mollymawk

Thalassarche
chrysostoma

New record

A White-headed petrel Pterodroma lessonii New record

(Continued )
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Table 1. (Continued.)

Nematode species

New
geographic

record for NZ
EEZ?

Life
stage Host common name Host species Reference

A Sooty shearwater Ardenna grisea New record

A Black petrel Procellaria parkinsoni New record

A Westland petrel Procellaria
westlandica

New record

A Buller’s mollymawk T. bulleri New record

A Grey petrel Procellaria cinerea New record

Pectinospirura argentata Wehr,
1933

Yes A Royal spoonbill Platalea flavipes New record

Black-backed gull L. dominicanus New record

Viktorocara torea Clark, 1978 No A Variable oystercatcher H. unicolor New record

Hysterothylacium aduncum
(Rudolphi, 1802)

No A Blue warehou Seriolella brama Brunsdon, unpublished
(1956)

A Silver warehou Seriolella punctata Korotaeva (1975)

A Tarahiki Nemadactylus
macropterus

Vooren and Tracey (1976)

A School shark Galeorhinus galeus Brunsdon, unpublished
(1956)

A Red gurnard Chelidonichthys
cuculus

Brunsdon, unpublished
(1956)

A Red cod Pseudophycis bachus Brunsdon, unpublished
(1956)

A Rough skate Zearaja nasuta Brunsdon, unpublished
(1956)

L Lemon sole Pelotretis flavilatus New record

L Witch Arnoglossus sp. Brunsdon, unpublished
(1956)

L Mullet A. forsteri Brunsdon, unpublished
(1956)

L Crested bellowsfish Notopogon lilliei Brunsdon, unpublished
(1956)

L Scaly gurnard Lepidotrigla
brachyoptera

Brunsdon, unpublished
(1956)

L Clingfish Gastroscyphus hectoris New record

L Triplefin spp. Tripterygiidae gen.
spp.

New record

L Pigfish Congiopodus
leucopaecilus

Brunsdon, unpublished
(1956)

L Sprat sp. 1 S. antipodum New record

L Sprat sp. 2 Sprattus muelleri New record

L Anchovy Engraulis australis New record

L Seahorse Hippocampus
abdominalis

New record

L Opalfish Hemerocoetes
monopterygius

Brunsdon, unpublished
(1956)

Hysterothylacium
deardorffoverstreetorum Knoff,
Felizardo, Iñiguez, Maldonado,
Torres, Magalhães Pinto and
Gomes, 2012

Yes A Giant stargazer K. giganteum New record

L Triplefin sp. 2 Forsterygion capito New record

Anisakis sp. 1 (haplotype NZ1) Unknown L Warty squid Moroteuthopsis ingens Bennett et al. (2022b);
Anisakis nascettii recovered
from this host (Mattiucci
et al., 2009; 2018)

(Continued )
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Table 1. (Continued.)

Nematode species

New
geographic

record for NZ
EEZ?

Life
stage Host common name Host species Reference

Anisakis simplex s.l. No L Salvin’s mollymawk T. salvini New record

L White-chinned petrel P. aequinoctialis New record

L Northern giant petrel Macronectes halli New record

L White-capped
mollymawk

Thalassarche cauta New record

L Scarlett wrasse Notolabrus celidotus Brunsdon, unpublished
(1956)

L Mullet A. forsteri Brunsdon, unpublished
(1956)

L Arrow squid Nototodarus sloanii Smith et al. (1981); Wharton
et al. (1999); Bennett et al.
(2022b)

L Barracouta Thyrsites atun Wierzbicka and Gajda (1984);
Hurst (1984) Brunsdon,
unpublished (1956); Mehl
(1970); Anisakis pegreffii
recovered from this host
(Mattiucci et al., 1997, 2018)

L Tarahiki N. macropterus Vooren and Tracey (1976)

L Silver warehou S. punctata Korotaeva 1975)

L Blue cod Parapercis colias Brunsdon, unpublished
(1956); Anisakis pegreffii and
Anisakis berlandi recovered
from this host (Mattiucci
et al., 1997, 2018)

L Pigfish C. leucopaecilus New record

L Olive rockfish Acanthoclinus fuscus New record

L Sprat sp. 2 S. muelleri New record

L Banded wrasse Pseudolabrus fucicola New record

L Thornfish Bovichtus variegatus New record

Anisakis sp. indet. Unknown L Flesh-footed
shearwater

A. carneipes New record

L Sooty shearwater A. grisea New record

L Variable oystercatcher H. unicolor New record

L Westland petrel P. westlandica New record

L King shag Leucocarbo
carunculatus

New record

L Black petrel P. parkinsoni New record

L Grey petrel P. cinerea New record

L Cape petrel Daption capense New record

L Common diving petrel P. urinatrix New record

L Triplefin spp. Tripterygiidae gen.
spp.

New record

L Common roughy Paratrachichthys trailli Brunsdon, unpublished
(1956)

L Red gurnard C. cuculus Brunsdon, unpublished
(1956)

L Blue warehou S. brama Brunsdon, unpublished
(1956)

Anisakis sp. 2 (haplotype NZ23) Unknown L White-chinned petrel P. aequinoctialis New record

Contracaecum rudolphii E Shamsi
et al. 2009a

No A Fiordland crested
penguin

E. pachyrhynchus Presswell and Bennett
(2021a)

(Continued )
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positions of Oxyuridomorpha and Gnathostomatomorpha are
strongly supported in the estimated phylogeny, congruent with
what has previously been found for these groups (e.g. Laetsch
et al., 2012) (Fig. 1).

Infraorder Spiruromorpha is displayed as paraphyletic in this
reconstruction, comprising 3 clades within Spirurina, 2 of
which form polytomies with members of Spirurina incertae
sedis. Within the first Spiruromorpha clade, we recovered
Desmidocercidae and Acuariidae representatives (Acuariidae dis-
played in Fig. 2). Within Desmidocercidae, the Diomedenema
dinarctos 18S sequences produced here are identical to the one
produced in the original species description by Presswell and
Bennett (2021a) from Fiordland crested penguins (GenBank
MW718120). Here, we provide additional gene sequences for the
species, including cox1 and ITS1 (Supplementary material 2). Our
Desmidocercella australis sequence also matched one produced
by Presswell and Bennett (2021b) from spotted shags (GenBank
MW481211).

Within family Hedruridae (infraorder Spirurina), Hedruris
spinigera was found infecting sprat and mullet, and the sequences
produced matched 100% to that of H. spinigera infecting
amphipods in New Zealand from Luque et al. (2010).

Infraorder Ascaridomorpha occupies a polyphyletic position
in our estimated phylogeny forming 2 separate clades, only 1 of
which (clade including superfamily Ascaridoidea) showed
high nodal support for its positioning as a monophyletic group
within Spirurina (Fig. 2). Within superfamily Ascaridoidea, we
recovered species belonging to genus Hysterothylacium (family
Raphidascarididae), depicted in Fig. 3. We also recovered species

from family Anisakidae, genus Neoterranova infecting elasmo-
branchs and genus Porrocaecum infecting seabirds (Fig. 1).
Species recovered that belong to genera Anisakis and
Contracaecum are detailed below and depicted in Figs 4 and 5,
respectively.

The second unresolved Ascaridomorpha clade includes represen-
tatives of families Cosmocercidae (superfamily Cosmocercoidea),
Quimperidae and Cucullanidae (superfamily Seuratoidea), of
which we recovered 2 cucullanid species infecting fish definitive
hosts (Fig. 1). Intraspecific uncorrected pairwise genetic divergence
between our Dichelyne pleuronectidis sequence and that of the
same species isolated from ridged-eye flounder caught in the
South China Sea (GenBank KJ855210; Li et al., 2014) is 2.47%.
The genetic divergence threshold for delineation of species within
Dichelyne is estimated at 2.04–3.39% meaning it is not possible to
confirm whether or not these 2 sequences are indeed the same spe-
cies (Li et al., 2014).

Family Acuariidae

Acuariidae was the most diverse nematode family recovered from
New Zealand’s marine animals; all acuariids infect seabirds as
definitive hosts, and all were found infecting at least 2 seabird spe-
cies each. Overall, we recovered 6 species of acuariids from sea-
birds, all of which are depicted in Fig. 2, except for Viktorocara
torea for which DNA amplification was not successful.

Our resulting 18S acuariid phylogeny includes 7 newly gener-
ated sequences and 13 sequences from the literature (including 2

Table 1. (Continued.)

Nematode species

New
geographic

record for NZ
EEZ?

Life
stage Host common name Host species Reference

A Little blue penguin E. novaehollandiae Bennett et al. (2021)

A Spotted shag P. punctatus Presswell and Bennett
(2021b)

A Otago shag L. chalconotus Presswell and Bennett
(2021b)

A Caspian tern Hydroprogne caspia New record

A Red-billed gull C. scopulinus New record

A Yellow-eyed penguin Megadyptes antipodes Ranum and Wharton (1996)

A King shag L. carunculatus New record

A Northern giant petrel M. halli New record

L Blue cod P. colias New record

L Sprat sp. 1 S. antipodum New record

Contracaecum rudolphii Hartwich,
1964

No A Leopard seal Hydrurga leptonyx New record

A Northern royal
albatross

D. sanfordi New record

A King shag L. carunculatus New record

Eucoleus sp. Yes A Black-backed gull L. dominicanus New record

A Red-billed gull C. scopulinus New record

Capillaria sp. Unknown A South Island pied
oystercatcher

Haematopus finschi New record

Geographic records entered as ‘Unknown’ are those where we cannot be certain that our specimens belong to the same taxon as a similar one mentioned in the literature, or those that
require further study to confirm their identity.
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Fig. 1. Bayesian phylogenetic inference of nematodes from suborder Spirurina inferred from partial 18S sequence data. Black silhouettes represent definitive hosts.
Infraorders or lower taxonomic levels of interest are depicted by shaded boxes to the right of the phylogeny. Coloured sequences represent species recovered in
this study from New Zealand’s marine animals. BPP denoted by black and black-outlined white squares. Scale represents substitution per base. Outgroups include
representatives of suborder Tylenchina, family Aphelenchoididae (MH844706, JQ957895 and JQ975889).
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outgroup sequences). It reflects the monophyletic nature of
Acuariidae with high nodal support (as depicted in previous stud-
ies, e.g. Černotíková et al., 2011; Mutafchiev et al., 2020) (Fig. 2).
Our 18S tree provides high support for the positioning of
Pectinospirura argentata as a sister taxon to most other acuariid
representatives, as well as the positioning of Seuratia shipleyi as
a distinct sister taxon to most other acuariids (Fig. 2). Only 1 spe-
cies recovered (S. shipleyi) appeared to exhibit intraspecific genetic
variation at both 18S (genetic divergence 0.1%) and 28S (genetic
divergence 0.8%; see Supplementary material 2 for GenBank
accession numbers).

Genus Hysterothylacium

Hysterothylacium spp. were found infecting teleost fish as inter-
mediate hosts, and teleosts and chondrichthyans as definitive

hosts. We recovered 2 species, Hysterothylacium aduncum and
Hysterothylacium deardorffoverstreetorum, of which H. deardorf-
foverstreetorum was only recovered from 1 definitive (giant star-
gazer) and 1 intermediate host (triplefin), whereas H. aduncum
was found in 19 teleost and elasmobranch host species. Our
ITS1 and ITS2 phylogeny exhibited high nodal support and reso-
lution for each branch split (Fig. 3). Our sequences of H. adun-
cum were all identical showing no intraspecific variation in
ITS1 and ITS2. Hysterothylacium aduncum sequences produced
here exhibited 2.1% genetic divergence in ITS 1 and ITS2 from
a specimen of H. aduncum from a whitespotted conger eel off
the coast of China (GenBank MF539777). Although only 2
sequences were produced for H. deardorffoverstreetorum (1
from each host), they also showed no intraspecific genetic vari-
ation at ITS1 and ITS2. This species exhibited 1.15% genetic
divergence from the closest representative on GenBank; H.

Fig. 2. Bayesian phylogenetic inference of nematodes from family Acuariidae inferred from partial 18S sequence data. Black silhouettes represent definitive hosts
and grey silhouettes represent intermediate hosts. BPP denoted by black and black-outlined white squares. Scale represents substitution per base. Each colour
represents a species recovered in this survey from New Zealand’s marine animals. Subfamilies are reported in brackets. Outgroups include representatives of family
Desmidocercidae for 18S data (MW481211 and MW718120).

Fig. 3. Bayesian phylogenetic inference of nematodes of the genus Hysterothylacium (family Raphidascarididae) inferred from ITS1 and ITS2 data. Black silhouettes
represent definitive hosts and grey silhouettes represent intermediate hosts. Coloured sequences represent species recovered in this study from New Zealand’s
marine animals. BPP denoted by black and black-outlined white squares. Scale represents substitution per base. Outgroups include representatives of
Contracaecum (AJ250415-6 and MW481320).
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Fig. 4. Bayesian phylogenetic inference of nematodes of the genus Anisakis (family Anisakidae) inferred from cox1 data. Black silhouettes with ‘A’ next to them
represent accidental hosts and grey silhouettes represent intermediate hosts. BPP denoted by black and black-outlined white squares. Shaded areas represent
species clades; coloured sequences represent those recovered in this survey from New Zealand’s marine animals. Scale represents substitution per base.
Outgroup includes a representative of Contracaecum (MW133972).
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deardorffoverstreetorum sequenced from a flounder off the coast
of Brazil (GenBank MF539777; Knoff et al., 2012). The mean gen-
etic divergence between species within Hysterothylacium is 28.7%
for ITS1 and ITS2.

Genus Anisakis

Anisakis spp. were recovered from New Zealand fish and cephalo-
pod intermediate hosts, and seabird accidental hosts. Based on
our estimated phylogeny of cox1 data, we recovered 3 genetic
clades comprising 24 unique haplotypes (Fig. 4). At the cox1
level, our phylogeny showed little support and low resolution
for the interrelationships among species within Anisakis
(Fig. 4). However, high support is provided for some within-
species groupings. Anisakis sp. 1 (haplotype NZ1) was recovered
from warty squid in the Chatham Rise, off the east coast of New
Zealand. Warty squid were examined off the coast of Australia by
Mattiucci et al. (2009), who genetically characterized the infec-
tions as Anisakis nascettii, although no A. nascettii are currently
available for cox1. The sequences with the highest similarity to
Anisakis sp. 1 from warty squid belong to haplotypes NZ2–12

and Anisakis pegreffii from a chub mackerel from the coast of
Japan (GenBank LC222461; Yamada et al., 2017). These
sequences showed 5.47 and 6.16% divergence respectively with
Anisakis sp. 1. The second recovered species complex, Anisakis
simplex sensu lato (s.l.) (haplotypes NZ2–22) was recovered
from the viscera of a range of fish intermediate hosts (Fig. 5),
and within the internal cavity of arrow squid as L3 encysted lar-
vae. A range of seabirds were accidental hosts to A. simplex s.l., in
which immature Anisakis were found in the gastrointestinal tract,
typically the oesophagus or stomach. The intraspecific genetic
divergence between cox1 haplotypes NZ2–22 all belonging to
A. simplex s.l. was 0.98%, and the divergence between all newly
sequenced A. simplex s.l. and closest relatives in the clade was
0.96%. The closest relatives on GenBank included in this clade
are A. pegreffii sequence from a chub mackerel off the coast of
Japan (GenBank LC222461), Anisakis physeteris from the
Taiwan Strait (GenBank GU112207), A. simplex from a conger
eel in South Korea (GenBank AY994157) and Anisakis typica
from cetaceans in the Philippines (GenBank KJ786265 and
KF356669). The third species recovered in this survey is
Anisakis sp. 2 (haplotype NZ23) which was recovered from a

Fig. 5. Bayesian phylogenetic inference of nematodes of the genus Contracaecum (family Anisakidae) inferred from ITS1 and ITS2 data. Black silhouettes represent
definitive hosts and grey silhouettes represent intermediate hosts. BPP denoted by black and black-outlined white squares. Each colour represents a unique geno-
type recovered in this survey from New Zealand’s marine animals. Scale represents substitution per base. Outgroups include representatives of genus
Hysterothylacium (MW370746 and MF680035).
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white-chinned petrel accidental host. Our Anisakis sp. 2 haplo-
type NZ23 is well supported as a sister taxon to sequences of
A. physeteris, with a mean genetic divergence of 4.04% between
the 2 groups. The closest A. physeteris to our recovered Anisakis
sp. 2 were from mahi-mahi and skipjack tuna off the southern
coast of California, USA (GenBank MF663247-9 and
MF752458). The mean genetic divergence between Anisakis
sp. 1 and A. simplex s.l. sequences was 6.27%, between A. simplex
s.l. and Anisakis sp. 2 it was 15.90% and between Anisakis sp. 1
and Anisakis sp. 2 it was 15.52% at the cox1 level. A few speci-
mens that were successfully sequenced for 18S, but not cox1,
could not be placed in the phylogeny nor identified further
than genus level. These specimens, Anisakis sp. indet., were
found infecting multiple accidental and intermediate hosts
(Fig. 4).

Genus Contracaecum

In our ITS1 and ITS2 phylogeny of species within genus
Contracaecum, our newly generated sequences grouped together
with other sequences of Contracaecum in an unresolved polytomy
(Fig. 5). We recovered 4 unique genotypes, of which 1 (genotype
NZ1) was the most commonly recovered from marine animals in
New Zealand. This was identified as Contracaecum rudolphii E (as
defined by Shamsi et al. (2009b) from Australian seabirds) and we
recovered specimens from 7 seabird species. L3 larvae of this
genotype were also recovered from 2 teleost intermediate hosts.
These sequences were identical to those presented in Presswell
and Bennett (2021b) from spotted and little pied shags in

Otago, New Zealand (MW481308/MW481319 and MW481309/
MW481320). Also positioned in this clade is the second genotype
of C. rudolphii E (NZ2) which was recovered from king shag
regurgitates from the Marlborough Sounds, New Zealand. This
genotype exhibited only 0.13% genetic divergence from genotype
NZ1 and other C. rudolphii E sequences. The third genotype of C.
rudolphii (genotype NZ3) was recovered from the gastrointestinal
tract of a leopard seal which was found on the Otago coast. The
closest sequences are 2 Contracaecum sp. sequences from a
California sea lion in California, USA (GenBank AY821753 and
AY821750) which were 0.24 and 0.25% divergent, respectively.
The last genotype of C. rudolphii was recovered from the gastro-
intestinal tract of a northern royal albatross caught as fisheries
trawl by-catch somewhere in New Zealand’s EEZ (genotype
NZ4). This genotype was also closest to Contracaecum sp. from
a California sea lion in the USA (GenBank AY821750) and
Contracaecum ogmorhini from Tiger flathead on the southeast
coast of Australia (GenBank MT635346; Hossen et al., 2021)
which were both 0.22% divergent at the ITS marker level. The
genetic divergence between the C. rudolphii E clade and leopard
seal C. rudolphii is 1.25%. The average genetic divergence between
each species clade was 0.2–17.8%.

Family Capillariidae

Family Capillariidae (order Trichinellida: suborder Trichinellina)
is the only family infecting New Zealand’s marine animals found
in this study that does not belong to suborder Spirurina. We
recovered 2 species infecting 3 seabird definitive host species.

Fig. 6. Bayesian phylogenetic inference of nematodes from family Capillariidae inferred from 18S data. Black silhouettes represent definitive hosts. Each colour
represents a species recovered in this survey from New Zealand’s marine animals. BPP denoted by black and black-outlined white squares. Scale represents sub-
stitution per base. Outgroups include representatives of Trichuridae, Trichinellidae and Habronematidae (AY851261, AY851265, AY702701 and EU004816).
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The interrelationships and nodal support among species and gen-
era within family Capillariidae follow closely those of Borba et al.
(2019) (Fig. 6). Our phylogeny supports the monophyly of the
genera Eucoleus and Capillaria as reported in previous studies
using the 18S gene (Tamaru et al., 2015; Borba et al., 2019;
Garbin et al., 2021). The exception is Capillaria suis which
appeared nested within Aonchotheca species, as in Borba et al.
(2019).

New host and distribution records

We provide data for 70 new nematode–host associations, and pro-
vide new geographic records for 7 of the 23 nematode species
recovered that were previously unknown in New Zealand EEZ
(Table 1).

We update the taxonomy of previously unresolved parasite
species involved in 16 nematode–host associations. Records of lar-
val Hysterothylacium sp. in the literature can be confirmed
here using genetic data as belonging to H. aduncum. This includes
for hosts red cod, red gurnard, school sharks, witch, mullet,
opalfish and crested bellowsfish. Existing records of Anisakis sp.
can also be updated as belonging to A. simplex s.l., including
for scarlet wrasse, mullet, blue cod, tarakihi and silver warehou.
We provide corrected taxonomic records for some species previ-
ously only reported to the genus level. Some literature references
to Contracaecum sp. are updated to C. rudolphii E (genotype
NZ1). This includes data for yellow-eyed penguins, little blue
penguins (correction of the name Contracaecum eudyptulae of
Bennett et al., 2021, possibly synonymous with C. rudolphii E)
and spotted and Otago shags (in Presswell and Bennett, 2021b).

We provide the first records of a parasitic nematode infection
for 24 of the total 94 host species dissected (25% of host species
investigated). For teleosts, we present the first reported nematodes
infecting the following fishes: sprat sp. 1, sprat sp. 2, triplefin
spp., clingfish, seahorse, anchovy, pigfish, olive rockfish, banded
wrasse and thorn fish. For seabirds, we present the first record
of parasitic nematodes infecting Snares crested penguin, king-
fisher, Salvin’s mollymawk, flesh-footed shearwater, common div-
ing, Westland, Cape, Northern giant, white-chinned and
white-headed petrels, spoonbill, variable oystercatcher, Caspian
tern and king shag.

Discussion

This study represents the first large-scale, genetically based bio-
diversity survey of parasitic nematodes from a wide range of
host taxa in New Zealand’s marine environment, and possibly
the first anywhere in the world for a whole marine ecosystem.
Our results shed light on patterns of host use across all parasitic
nematodes within a single ecosystem. We uncovered a high phylo-
genetic diversity of nematodes living within New Zealand’s mar-
ine animals, comprising 23 species belonging to 7 families. Most
vertebrate species dissected hosted at least 1 species of nematode
(those that did not were typically represented by low sample
sizes). We report 70 new host and 7 new geographic records
and update the taxonomic records for 16 host–nematode associa-
tions. These results provide baseline data of host–nematode inter-
actions, nematode genetic diversity and host specificity in New
Zealand’s marine animals. Some species recovered here are poten-
tially zoonotic, pathogenic or otherwise worth noting. We hope
that these data will serve as a starting point for future comparative
studies pertaining to how nematode biodiversity and distributions
change in response to natural and anthropogenic pressures.

The most commonly recovered nematodes in this survey were
those belonging to Anisakis, which infected 35% of fish and 24%

of seabird species. This high occurrence is not surprising consid-
ering that species within family Anisakidae are the most com-
monly reported nematodes infecting marine animals globally,
primarily due to their ubiquitous distribution and sometimes zoo-
notic pathogenicity. The interrelationships between and within
species of Anisakis have been somewhat clarified in recent years
with the application of molecular techniques, which have uncov-
ered a number of cryptic species and species complexes (e.g.
Mattiucci et al., 1997, 2005, 2014, 2018; Abollo et al., 2003;
Shamsi et al., 2012). The difficulty of species discrimination by
morphology, especially when larval stages are recovered, makes
genetic data essential for understanding which genotypes or spe-
cies cause zoonotic infections (Mattiucci et al., 2011) and which
may have pathogenic effects on their non-human hosts (Shamsi
et al., 2012). In this study, within New Zealand, we recovered
over 20 new unique cox1 haplotypes not previously sequenced
which can be accessed by future researchers to better understand
this group of nematodes.

Fewer than a quarter of New Zealand seabird species have
records of parasitic infections (Bennett et al., 2022a).
Furthermore, a higher proportion of non-threatened seabirds
have parasite records compared to threatened species (Bennett
et al., 2022a). This constitutes a large knowledge gap for seabird
conservation as evidence from around the world suggests nema-
todes are often associated with, or contribute to, decreased host
health and survival (e.g. Abollo et al., 2001b; Schramm et al.,
2018; Vanstreels et al., 2018). Many seabirds dissected in this
study are native, endemic, threatened or hold cultural significance
in New Zealand, such as the yellow-eyed penguin and northern
royal albatross. These animals are difficult to obtain for research
purposes; there are few of them and they are often used for other
purposes post-mortem (e.g. cultural burials). Therefore, the speci-
mens opportunistically sampled here have greatly increased our
knowledge regarding nematode infections in New Zealand’s
seabirds. For example, our dataset includes the first record of
any parasitic helminth infecting a New Zealand petrel or shear-
water species, of which there are currently 27 and 7 species,
respectively. Considering that threatened seabird species are
more likely to experience extinction events than non-threatened
species, pre-emptive nematode data as reported here may pro-
vide a first point of call for the conservation of seabirds when
or if disease strikes.

We recovered some potentially disease-causing nematodes.
Diomedenema dinarctos described by Presswell and Bennett
(2021a) infecting Fiordland crested penguin was recovered in
this survey from both Fiordland crested and Snares crested pen-
guins, constituting a new host record for the latter. This nematode
can cause severe haemorrhaging, air sacculitis and sometimes
death (e.g. Vanstreels et al., 2018), therefore this discovery repre-
sents a significant find for the conservation of Snares crested pen-
guins, and warrants investigation for this nematode in other
penguins, such as yellow-eyed penguin, the world’s most threa-
tened penguin species (Robertson et al., 2017).

Of the 45 genera currently recognized in family Acuariidae
(Bain et al., 2014), 6 are reported in New Zealand’s seabirds. Of
those, 4 genera represent new geographic records for New
Zealand. For example, P. argentata was previously known from
South and North America, but never in the Pacific. We extend
its known distribution to New Zealand, where it infects black-
backed gulls and spoonbills. It is not possible to make inferences
regarding whether our newly recovered geographic records signify
a change in distribution over time, or simply if these New Zealand
seabird species were already hosts and P. argentata had thus far
not been reported. Such questions could be posed for each of
the 7 nematode species newly reported for New Zealand herein.
These data can, however, provide a starting point to test
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hypotheses regarding temporal and spatial patterns of nematode
infections in future.

The findings of this study, although resulting from a large
sampling effort, nonetheless likely do not reflect the total bio-
diversity of parasitic nematodes in the study area. New Zealand
is thought to host at least 106 zooparasitic nematode taxa accord-
ing to data gathered for a forthcoming review of its marine biota
(B. Presswell, personal communication), while only 23 taxa were
recovered here. Most records in the literature rely entirely on mor-
phological data and revisiting such records with modern taxo-
nomic techniques would be highly beneficial. In addition, many
potential host species are yet to be investigated (Bennett et al.,
2022a). Future research will be needed for more accurate esti-
mates of overall parasitic nematode biodiversity.

New Zealand currently hosts at least 8 Contracaecum species
from a range of seabirds and marine mammals. Of
Contracaecum obtained from specimens inside New Zealand,
only 1 of the 8 have been genetically characterized, although
much research has been done in Australia for the Austral region
(e.g. Shamsi et al., 2009a, 2009b, 2018). Here, we recovered only 1
species complex, i.e. C. rudolphii, consisting of 2 clades and 4
unique ITS genotypes. Although our results are likely somewhat
spatially biased towards Otago in the South Island of New
Zealand, many seabirds were collected from a nationwide fish-
ery by-catch programme; if there were other Contracaecum pre-
sent in New Zealand, it is likely we would have detected more
species here. For example, in the literature it is expected that
red-billed gulls host Contracaecum microcephalum, little blue
penguins host C. eudyptulae and leopard seals would host C.
ogmorhini although we recovered only C. rudolphii from each
of those, albeit unique genotypes in each. Furthermore, our
results suggest further investigation of Contracaecum in New
Zealand is required for resolution of the group’s diversity.
Shamsi et al. (2009a, 2009b) inventoried Contracaecum species
in some Australian birds using both molecular and morpho-
logical data, and a similar integrative taxonomic investigation
into the genotypes recovered here would prove beneficial, espe-
cially considering the lack of genetic support in the ITS1 and
ITS2 markers for the genotypes NZ3 and NZ4 recovered here
(Fig. 5).

The phylogenetic relationships of nematode clades presented
here represent only a small number of molecular markers, likely
not 100% reflective of their true evolutionary history. Many
groups remain relatively unresolved with low nodal support and
discerning their phylogenetic relationships (especially within
Spirurina) requires significantly greater species representation as
well as additional genetic markers (Černotíková et al., 2011).
Due to the large phylogenetic diversity of nematodes, inevitably
a variety of molecular markers have been employed that are spe-
cific to each clade. As a result, some taxa are simply not compar-
able. For example, we used cox1 for species within Anisakis to be
comparable with data from other researchers (e.g. Cross et al.,
2007), although there are species within New Zealand sequenced
using mtDNA cox2 data (Bello et al., 2021). Obtaining such add-
itional gene sequences would also potentially allow for species
level resolution.

Nematodes constitute a significant proportion of the
world’s biodiversity and deserve a proportionate effort to
document their occurrence; if not for their contribution to bio-
diversity, then they should at least be inventoried for their
impacts on host individuals and populations. This study
uncovered a diverse range of nematode parasites living within
some of New Zealand’s marine animals and provided a
molecular-based dataset which researchers can use for com-
parison in the future. Without baseline inventories such as
this, our ability to understand how nematodes and their

hosts will respond to natural and anthropogenic pressures
would be greatly limited.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003118202200138X.
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