
7

Low-mass hadrons in QCD

In this chapter we address the calculation of the properties of hadrons
composed of the light quarks u, d and s.

7.1 Integrating over the fermion fields

The partition function for a fermion gauge theory

Z =
∫

DU Dψ̄Dψ exp(SU + SF) (7.1)

can be expressed in an alternative form involving only the gauge fields
by first integrating out the fermion fields. We shall use Wilson fermions
as an example. We can write SF in matrix notation,

SF = −
∑
xµ

1
2
(ψ̄xγµUµxψx+µ̂ − ψ̄x+µ̂γµU

†
µxψx)

−
∑
x

ψ̄xMψx +
∑
xµ

r

2
(ψ̄xUµxψx+µ̂ + ψ̄x+µ̂U

†
µxψx) (7.2)

≡ −ψ̄Aψ, (7.3)

A = D/+M −W. (7.4)

The matrix A = A(U) is called the fermion matrix. Its inverse is the
fermion propagator S(U) in a given gauge-field configuration,

Sxy(U) ≡ A−1
xy (U) =

[
1

M −W (U) +D/(U)

]
xy

. (7.5)

Since ψ and ψ̄ occur only bilinearly in the action, we can perform
the integration over these variables and evaluate fermion correlation
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7.2 Hopping expansion for the fermion propagator 171

functions explicitly:

Z =
∫

DU det[A(U)] exp(SU)

〈ψxψ̄y〉 = Z−1
∫

DU det[A(U)] eSU Sxy(U)

≡ 〈Sxy〉U ,
〈ψuψ̄vψxψ̄y〉 = 〈SuvSxy − SuySxv〉U ,

〈ψuψvψwψ̄xψ̄yψ̄z〉 = 〈SuxSvySwz + 5 permutations〉U , (7.6)

etc. For clarity we indicated only the space–time indices x, . . . and
suppressed the color, Dirac, and flavor indices a, α, and f of the fermion
fields ψaαf

x .

7.2 Hopping expansion for the fermion propagator

For Wilson fermions an expansion in the hopping parameter κ = 1/2M
has given useful results. Here we describe it for the propagator, for which
it gives an intuitive representation in terms of a summation over random
paths. We have seen this earlier for the scalar field in section 3.7. Let us
define the hopping matrix H by

Hxaα,ybβ =
∑
µ

[(P−
µ )αβ (Uxy)ab δx+µ̂,y + (P+

µ )αβ (Uyx)ab δy+µ̂,x], (7.7)

in terms of which

Axaαf,ybβg = Mf δfg [1− 2κfHxaα,ybβ ]. (7.8)

For a given flavor we have

Sxy = M−1
(

1
1− 2κH

)
xy

= M−1
∞∑
L=0

(2κ)L (HL)xy, (7.9)

where we suppressed again the non-space–time indices. The successive
terms in this series can be represented as a sum over paths of length L,
as illustrated in figure 7.1. The diagrams for L + 1 are obtained from
those for L by application of H (by attaching the L = 1 diagrams). To
each path C there corresponds a color factor Uxy(C) and a spin factor

Γ(C) =
∏
l∈C

Pl, (7.10)

Pl = P−
µ , l = (x, x+ µ̂) (7.11)

= P+
µ , l = (x+ µ̂, x). (7.12)
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172 Low-mass hadrons in QCD

Fig. 7.1. Illustration of the terms in the hopping expansion of the propagator.

Note that, for r = 1, there are no paths with back-tracking because then
P+
µ P

−
µ = P−

µ P+
µ = 0.

For free fermions we can perform the summation in momentum space,

(HL)xy =
∑
p

eip(x−y)H(p)L, (7.13)

H(p)δ̄pq =
∑
xy

e−ipx+iqy Hxy, (7.14)

H(p) =
∑
µ

(eipµ P−
µ + e−ipµ P+

µ )

=
∑
µ

(r cos pµ − iγµ sin pµ), (7.15)

S(p) =
1

M −
∑

µ(r cos pµ − iγµ sin pµ)
. (7.16)

So the summation over random paths with the particular weight factor
(7.10) leads to the free Wilson fermion propagator. The maximum eigen-
value of H(p) is 4r at p = 0, which means that the radius of convergence
of the hopping expansion for free fermions is given by |κ| < 1/8r.
For fixed κ and complex p the expansion diverges at the position of
the particle pole in the propagator. In the interacting case the unitary
Uµx tend to reduce the maximum eigenvalue of H and the convergence
radius is generically larger than 1/8r, depending on the configuration
of U ’s.
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The hopping expansion for the propagator leads to an expansion of
the fermion determinant in terms of closed paths,

detA→ det(1− 2κH) = exp[Tr ln(1− 2κH)]

= exp

[
−
∑
L

(2κ)L

L
TrHL

]
. (7.17)

With each closed path C there is associated a Wilson loop TrU(C) and
a spin loop Tr Γ(C).

7.3 Meson and baryon propagators

The expressions (7.6) are well defined without gauge fixing. Since∫
DU contains an implicit integration over all gauge transformations,

it projects on the gauge-invariant content of the integrand. Under a
gauge transformation

UΩ
µx = ΩxUµxΩ

†
x+µ̂, (7.18)

A(UΩ)xy = ΩxA(U)xyΩ†
y, (7.19)

A−1(UΩ)xy = ΩxA
−1(U)xyΩ†

y, (7.20)

or

S(UΩ)xy = ΩxS(U)xyΩ†
y. (7.21)

Since
∫
dΩx Ωx = 0, the gauge-invariant content of Ωx is zero and it

follows that the expectation value of the gauge-field-dependent fermion
propagator is zero, unless x = y,

〈Sxaαf,ybβg〉U ∝ δxy δab δfg. (7.22)

The fermions cannot propagate ‘on their own’ without gauge fixing. Of
course, this does not mean that fermion propagation is a non-gauge-
invariant phenomenon and it is also not an expression of confinement.
It forces us to consider carefully what the gauge-invariant description of
propagation means.

A simple gauge-invariant correlation function is of the type
〈ψ̄xψxψ̄yψy〉. In QCD we call these mesonic, since ψ̄γψ combinations
carry mesonic quantum numbers. More explicitly, we can define gauge-
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invariant meson and baryon fields

Mαf
xβg = δba ψ

aαf
x ψ̄xbβg, (7.23)

Bα1f1α2f2α3f3
x = εa1a2a3ψ

a1α1f1
x ψa2α2f2

x ψa3α3f3
x , (7.24)

B̄xα1f1α2f2α3f3 = εa1a2a3 ψ̄xa1α1f1 ψ̄xa2α2f2 ψ̄xa3α3f3 . (7.25)

The gauge invariance of the meson fields is obvious. For the baryon fields
the effect of a gauge transformation is given by (suppressing non-color
indices)

εabcψ
aψbψc → εabc Ωa

a′Ωb
b′Ω

c
c′ ψ

a′
ψb′ψc′

= (det Ω) εa′b′c′ ψ
a′
ψb′ψc′ , (7.26)

and invariance follows from det Ω = 1.
By taking special linear combinations, we can construct from M, B,

and B̄ fields with the required quantum numbers. For example, for π+

(which has spin zero) we can use the scalar field combination

d̄xiγ5ux, d̄xiγµγ5ux, (7.27)

where we made flavor explicit according to

uaαx = ψaαu
x , daαx = ψaαd

x , (7.28)

etc. For the ρ+ particle (which has spin one) we can use the vector and
tensor fields (both containing spin 1)

d̄xiγµux, d̄xi[γµ, γν ]ux. (7.29)

An example for the proton (spin 1
2 ) is given by

εabc (C†γ5)βγ uaαx (ubβx dcγx − dbβx ucγx ), (7.30)

and for the ∆++ (spin 3
2 ),

εabc (C†γµ)βγ uaαx ubβx ucγx . (7.31)

Here C is the charge-conjugation matrix; ψ̄(c) = −(C†ψ)T is the charge
conjugate of ψ̄ (cf. (D.27) in appendix D). For example, for the ∆++

the last two u fields combine to give a vector (containing spin 1) of
the form ψ̄(c)γµψ, which, together with the first u field, contains spin
3
2 . More examples are in [10]; [82] gives group-theoretical details of the
spin–flavor content of the baryon fields.
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7.3 Meson and baryon propagators 175

Fig. 7.2. Meson (a) and (b), and baryon (c) propagators.

Putting these hadron fields in the form (A = {aαf})

Mx(Φ) = ΦA
BMB

xA, (7.32)

Bx(Φ) = Φ̄ABC BABC
x , (7.33)

B̄x(Φ) = B̄xABC ΦABC , (7.34)

where Φ specifies the spin–flavor structure, we can write gauge-invariant
meson correlation functions as

〈Mx(Φ)Mx′(Φ′)〉 = −〈Tr (ΦSxx′Φ′Sx′x〉U ) + 〈Tr (ΦSxx) Tr (Φ′Sx′x′)〉U ,
(7.35)

and the baryon correlation function

〈Bx(Φ)B̄x′(Φ′)〉 = Φ̄ABC〈SA
A′xx′SB

B′xx′SC
C′xx′〉UΦ′A′B′C′

, (7.36)

as illustrated in figure 7.2. The contribution (b) to the meson correlation
function is non-zero only for flavor-neutral fields, i.e. fields of the form
f̄γf , f = u, d, c, s, t, b.

These composite field correlation functions describe bound states,
the mesons and baryons; for this reason we also call them meson and
baryon propagators. Consider first the meson propagator in figure 7.2(a).
It is a sum over Wilson loops going through x and x′. This follows
from the hopping expansion of the quark propagator which expresses
Sxx′ as a sum over random paths C weighted by the Wilson line
Uxx′(C) and the spinor factor associated with the path. We can now
intuitively understand the implication of confinement as expressed by
the area law for Wilson loops. The exponential fall-off in the area law
greatly suppresses the contribution of widely separated paths of the two
propagators in figure 7.2(a). Contributions in which the two paths stay
together dominate and, when they are together, they make a random
walk, which implies the formation of a bound state. A similar story can
be told for the baryon propagator in figure 7.2(c); the combined random
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Fig. 7.3. Diagrams for flavor-neutral mesons with sea-quark loops and gluon
lines also indicated.

Fig. 7.4. Meson-loop corrections to the baryon propagator. The closeness of
lines is to suggest binding by ‘glue’.

walk of the three-quark propagators leads to a pole in momentum space
corresponding to a bound baryon state.

So far we have concentrated on the fermion lines related to the hadron
fields (the ‘valence-quark’ lines) and ignored the effect of the fermion
determinant. Its hopping expansion leads to a sum of closed fermion lines
called ‘sea-quark’ loops or ‘vacuum loops’, and we have to imagine such
sea-quark loops everywhere in figure 7.2. This is particularly relevant
for the case of flavor-neutral mesons for which diagram (b) contributes.
Figure 7.3 shows diagrams (a) and (b) as the first two terms in an infinite
series with the sea-quark loops included one by one. As a reminder of the
presence of ‘glue’ implied by the average 〈· · ·〉U we have also shown some
gluon lines in this figure. Figure 7.4 illustrates a meson-loop contribution
to a baryon propagator: (a) uses a sea-quark loop but not (b), which is
already included in diagram (c) of figure 7.2.

We were led by confinement to the intuitive picture of random walks
for the composite hadron propagators. In a theory without confinement,
such as QED, there is no area law and there will be relatively large con-
tributions in the fermion–antifermion correlation function also for widely
separated fermion paths. These will correspond to fermions propagating
almost freely at large distances from each other. Of course, they will feel
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7.4 Hadron masses at strong coupling 177

Fig. 7.5. Hopping matrix for the mesons and baryons at strong coupling.

the long range electromagnetic interactions, which may but need not
lead to bound states. This is the gauge-invariant description of fermion
propagation in QED.

7.4 Hadron masses at strong coupling

At bare gauge coupling g = ∞ the string tension diverges and there
are only contributions to the Wilson paths with zero area. Neglecting
vacuum fermion loops, it is an interesting approximation to take into
account only simultaneous quark–antiquark hopping for mesons and
three-quark hopping for baryons, as illustrated in figure 7.5. The inverse
propagators can be written down explicitly and solved for the position
of the pole in p4 = im at p = 0, which determines the mass of the bound
state, m. We can even derive effective actions describing the coupling
constants [83, 84, 85, 109, 82] in terms of the meson and baryon fields
(7.23)–(7.25). For example, the meson effective action has the form

Seff = nc
∑
x

Tr

[
− lnMx +MMx −

∑
µ

MxP
−
µ Mx+µ̂P

+
µ +O(M4)

]
.

(7.37)
where nc is the number of colors and now M is an effective field. For
r = 1 it turns out that the low-lying states are the pions, rho mesons,
nucleons, and deltas (mπ ≈ 140, mρ ≈ 770, mN ≈ 940 and m∆ ≈ 1232
MeV). In the flavor-degenerate case Mu = Md = M the masses are given
by

coshmπ = 1 +
(M2 − 4)(M2 − 1)

2M2 − 3
, (7.38)

coshmρ = 1 +
(M2 − 3)(M2 − 2)

2M2 − 3
, (7.39)
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178 Low-mass hadrons in QCD

expm∆ =
(M3 − 3/2)(M3 − 1/2)

M3 − 5/4
, (7.40)

expmN =
M3(M3 − 2)
M3 − 5/4

. (7.41)

On decreasing M from infinity toward zero or equivalently increasing
the hopping parameter κ from zero upward we see that the pion mass
vanishes at M = Mc = 2, whereas the other masses stay non-zero. At
strong coupling the critical hopping parameter is κc = 1/2Mc = 1

4 . For
weak coupling one can calculate Mc(g) = 4 + O(g2), and κc as defined
by the vanishing of mπ will decrease toward 1

8 as g2 → 0.
Although we know that the scaling region of QCD is at weak cou-

pling, it is still interesting to compare these strong-coupling results with
experiment. For small M −Mc,

m2
π = 4.8mq, mq ≡M −Mc, (7.42)

mρ = 0.894 + 1.97mq. (7.43)

We can choose M such that mπ/mρ takes the experimental value 140
MeV/770 MeV, which gives mq = 0.0055. This may be compared with
mρ = 0.894 at M = Mc. Introducing the lattice distance, amρ = 0.994,
means that the lattice cutoff is 1/a = 770/0.894 = 860 MeV and the
quark mass mq = 0.0055/a = 4.7 MeV, which is remarkably close to the
up–down quark mass found in numerical simulations (mud ≈ 4.5 MeV
(quenched), see section 7.5). Mass ratios not involving the pion can be
approximated by taking M = Mc. Then we have the strong-coupling
predictions

mN

mρ
= 1.7 (1.21),

m∆

mN
= 1.01 (1.31), M = Mc, (7.44)

where the experimental values are given in parentheses. For M →∞ the
baryon/meson mass ratio would be 3

2 . The results are not improved much
by including O(1/g2) corrections, which are already hard to calculate
[82]. The idea of using the strong-coupling expansion as a method for
calculating the properties of hadrons has failed up to now because of its
great complexity.

Other quantities such as the decay constants fπ and fρ, the π–π
scattering amplitudes, and the splitting m′2

η − (m2
η + m2

π0)/2 in the
neutral pseudoscalar meson sector, which is related to the notorious U(1)
problem, have also been calculated at strong coupling. Quantitatively
these predictions are wrong of course, but they present an interesting
caricature of hadron physics.
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Table 7.1. Low-mass hadrons: the baryon octet (N , Σ, Λ, Ξ), the
baryon decuplet (∆, Σ∗, Ξ∗, Ω) and the mesons

State Spin Mass (MeV) Valence-quark content

N 1/2 940 uud, udd
Σ 1/2 1193 uus, (ud + du)s, dds
Λ 1/2 1116 (ud− du)s
Ξ 1/2 1315 uss, dss

∆ 3/2 1232 uuu, uud, udd, ddd
Σ∗ 3/2 1384 uus, uds, dds
Ξ∗ 3/2 1532 uss, dss
Ω 3/2 1673 sss

π 0 135 ud̄, dū
K 0 498 us̄, ds̄, sū, sd̄

ρ 1 768 ud̄, dū
K∗ 1 896 us̄, ds̄, sū, sd̄

π0 0 135 uū− dū (& ss̄)
η 0 547 uū + dū− 2ss̄
η′ 0 958 uū + dū + ss̄

ρ0 1 768 uū− dū (& ss̄)
ω 1 783 uū + dd̄ (& ss̄)
φ 1 1019 ss̄ (& uū & dd̄)

7.5 Numerical results

In table 7.1 the low-mass hadrons found experimentally are listed, with
their valence-quark contents indicated. The electric charge of a state
is just the sum of the charges of the quarks, which is +2

3 for u, − 1
3

for d and s, and the opposite for the antiquarks indicated by a ‘bar’.
The flavor-neutral mesons (π0, . . ., φ) have mixed quark content, ap-
proximately as indicated (with small ‘contaminations’ in parentheses).
The decuplet baryons are symmetric in their flavor content, whereas
the octet has mixed symmetry. The neutral octet members Σ and
Λ differ in the symmetry properties of their u, d flavor content. The
primary aim of the numerical simulations is to recover this spectrum of
hadron masses with essentially only three parameters: the Λ scale which
corresponds to the gauge coupling and which sets the overall mass scale,
the non-strange-quark mass in the approximation mu = md and the
strange-quark mass ms.
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In numerical simulations the fermion determinant detA poses the
greatest problem. The quenched approximation consists of the replace-
ment detA → 1, while taking its effect on the effective gauge coupling
into account by a change in the bare coupling. This means that only
the valence-quark propagators are taken into account and the sea-quark
loops are neglected. For this reason the approximation is also called the
valence approximation.

The reliability of this approximation (which destroys the Hilbert-space
interpretation of the fermion path integral) is hard to establish a priori.
It helps to consider the generalization of the SU(3) gauge group to
SU(nc), with nc → ∞ [67]. Then the contribution of each sea-quark
loop to a mesonic correlation function is down by a factor 1/nc. For
mesons the large-nc limit corresponds to the quenched approximation.
Baryons, however, have nc valence quarks and the baryon mass becomes
proportional to nc as nc → ∞ [96]. Yet, as we have seen in section 5.6
for the glueballs, ordering various non-baryonic quantities according to
powers of 1/nc is quite illuminating even for values of nc as low as 2
and 3.

Simulations with dynamical fermions (‘unquenched’) are very time
consuming and for illustration we shall now describe the results of a
computation with only two dynamical fermion species [97]. An improved
action is used, for which larger lattice spacings can be used without
discretization errors blowing up. The dynamical fermions are assumed
to be the lightest sea quarks, u and d, and their masses are taken to be
equal. This is not the actual situation, md is roughly twice mu, both
being of the order of 5 MeV.† However, the hadron masses are generally
much larger and, neglecting such small O(5 MeV) effects, one may as well
take m(u)

sea = m
(d)
sea = msea (recall that m ≡ M −Mc). The pseudoscalar

mesons require special attention in this respect, as will be discussed
in the next chapter, but even these depend primarily on the average
quark mass (mu + md)/2. The other sea quarks in the simulation have
effectively infinite mass. The masses in the valence-quark propagators
can still be chosen at will; they do not have to be equal to the masses of
the sea quarks, so we have m(ud)

val , and m
(s)
val as valence mass parameters

for the hadrons composed of u, d and s. Such computations in which
the sea-quark masses differ from the valence-quark masses are called
‘partially quenched’.

In the simulations one first produces gauge-field configurations and

† This is the reason, for example, why the neutron is 1.3 MeV heavier than the
proton, despite the Coulomb self-energy of the proton.

https://doi.org/10.1017/9781009402705.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.008


7.5 Numerical results 181

Fig. 7.6. m2
PS as a function of 1/κval for β = 2.1 and four values of κsea. From

[97].

then computes the average of the hadron-field correlators built from
valence-quark propagators. Only valence diagrams of the type (a) in
figure 7.2 are computed in this numerical study, since quark propagators
corresponding to type (b) are much harder to evaluate. This means an
approximation for the masses of mesons with quark–antiquarks of the
same flavor (those below the second double line in table 7.1), which
makes sense only if one sets mu = md (this follows from the discussion to
be given in section 8.2). Diagrams of type (b) cause mixing of the flavor
content of the mesons, which is expected to affect the vector mesons less
than it does the pseudoscalars. For the η′ mass diagrams of type (b) are
essential.

Each choice of sea-quark mass implies a separate costly generation
of gauge-field configurations, whereas the computation of valence-quark
propagators is less expensive, so typically one has many more valence-
quark masses than sea-quark masses available for analysis. However, by
fitting suitable functions of all the masses involved, it is possible to ob-
tain the desired mass combinations by interpolation and extrapolation.
The latter is needed because the simulations need more time as the
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Fig. 7.7. mV versus m2
PS for β = 1.8. From [97].

sea-quark masses are reduced and their small physical values cannot be
simulated yet. So this introduces some uncertainty.

It turns out that the dependence of the squared pseudoscalar masses
on the quark masses is almost linear, which can be understood as the
result of chiral-symmetry breaking (see chapter 8), and the data can be
fitted well by a quadratic polynomial in the quark masses. This is done
in [97] as follows. For mesons composed of valence quarks 1 and 2 the
average valence-quark mass is given by

mval = 1
2

(
m
(1)
val +m

(2)
val

)
, m = M −Mc =

1
2κ
− 1

2κc
, (7.45)

where κ is Wilson’s hopping parameter (r = 1). In terms of these the
pseudoscalar masses are parameterized as

m2
PS

(
κsea;κ

(1)
val, κ

(2)
val

)
= bsmsea + bvmval + csm

2
sea + cvm

2
val

+ csvmseamval + cvvm
(1)
valm

(2)
val. (7.46)

In figure 7.6 results for the squared pseudoscalar masses are shown as
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Fig. 7.8. Baryon decuplet masses versus m2
PS for β = 1.8. From [97].

a function of the average valence-quark mass, for one of the four values
{1.8, 1.95, 2.1, 2.2} of the gauge coupling β used in the simulation.
Results at the other β values look similar except for a change of vertical
scale (the mass in lattice units being smaller at larger β). The labels
‘SS’, ‘SV’ and ‘VV’ mean the following.

VV: m(1)
val = m

(2)
val = mval;

SV: m(2)
val = msea; then m

(1)
val can be written as m(1)

val = 2mval −msea;

SS: m(1)
val = m

(2)
val = msea.

The lines VV and SV almost coincide and they are almost parallel for
different κsea, so the line SS crosses all the others.

Note that Mc = 1/2κc is also a free parameter in the fitting formula
(7.46). If we read the right-hand side of (7.46) as a function of the
inverse κ’s, changing κc merely shifts all curves in figure 7.6 horizontally;
1/κc is then the value at which m2

PS(κcrit;κcrit, κcrit) = 0. Knowing the
parameters bs, . . ., csv and κc from the fit determines m2

PS for every
combination of the κ’s and quark masses.

A similar procedure could be followed for the other hadron masses.
Alternatively one can plot them as a function of m2

PS, the procedure
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followed in [97]. The vector meson masses can be fitted to a quadratic
polynomial in m2

PS,

mV

(
κsea;κ

(1)
val, κ

(2)
val

)
= AV +BV

s µsea +BV
v µval

+ CV
s µ

2
sea + CV

v µ
2
val + CV

svµseaµval, (7.47)

with

µi = m2
PS

(
κsea;κ

(i)
val, κ

(i)
val

)
, µval = 1

2 (µ1 + µ2), (7.48)

µsea = m2
PS (κsea;κsea, κsea) (7.49)

(the data show no need for a term CV
vvµ1µ2). A corresponding plot is

shown in figure 7.7. Note the shift in vertical scale relative to figure 7.6.
Next the baryon masses are analyzed. The simplest are the decuplet

states which are symmetric in the flavor indices. Writing µval = (µ1+µ2+
µ3)/3, the decuplet masses can be fitted by a formula similar to (7.47),
see figure 7.8. The octet baryons have a more complicated quark-mass
dependence because they have a mixed flavor symmetry; we shall not go
into details here (see [97]), but the corresponding figures look roughly
similar to figure 7.8.

The gross features of the mass spectrum are that, for the pseu-
doscalars, the squared mass is approximately linear in the quark masses
(and vanishing at mval = msea = 0), whereas for the other hadrons the
mass itself is approximately linear.

Having obtained the coefficients from the fits, the physical value of
the sea-quark mass can be determined for each β. Ideally this could be
done by fixing the computed pion–nucleon mass ratio at the physical
value, but in this case there are good reasons to believe that the nucleon
mass suffers from finite-volume effects (based on experience in previous
computations). A good alternative is to use the pion–rho mass ratio.
Setting µval = µsea = m2

π in (7.47) the equation

mπ

AV + (BV
s +BV

v )m2
π + (CV

s + CV
v + CV

sv)m4
π

=
[
mπ

mρ

]
phys

= 0.176

(7.50)
can be solved for mπ.

Using mρ = 768 MeV, one can then introduce the lattice spacing a by
putting amρ = denominator in (7.50), and find the value of 1/a in MeV
units at each β. Knowing the physical values of mud and the value of
1/a, the masses of the nucleon and delta can be evaluated from the fits
and expressed in MeV units. Linear extrapolation to zero lattice spacing
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Fig. 7.9. Meson masses as a function of lattice spacing. The linear fit to a = 0
uses only the data at the three largest lattice spacings. Experimental values
are indicated with diamonds. From [97].

(cf. figures 7.10 and 7.11) gives the results mN = 1034(36) MeV and
m∆ = 1392(58) MeV. These ‘predictions’ are to be compared with the
experimental values of 940 and 1232 MeV (recall that in this simulation
the physical volume is assumed to be somewhat small for these baryons).

Next the mass of the strange quark can be determined by fitting the
kaon–rho mass ratio to the experimental value, m2

PS(κud;κud, κs)/m
2
ρ =

m2
K/m

2
ρ = (498/768)2 (note that mK is of the type SV). The masses of

other hadrons containing strange valence quarks are then ‘predictions’.
Alternatively, the φ–ρ mass ratio was used in [97], the φ being of type
VV, mV(κud;κs, κs)/mρ = 1019/768. The two ways of determining the
valence mass of the strange quark are denoted by ‘K input’ and ‘φ
input’. Figure 7.9 shows such a ‘prediction’ for mesons as a function of
the lattice spacing together with the continuum extrapolation. Examples
for the baryon masses are shown in figures 7.10 and 7.11. The improved
action allows rather large lattice spacings to be used. It can be seen that
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Fig. 7.10. Baryon decuplet masses as functions of a. From [97].

the a-dependence is consistent with ‘linear’, for the three larger lattice
spacings, despite the fact that the baryon masses in lattice units are
above 1 for the largest lattice spacing (cf. figure 7.8), which reduces by
a factor of about two for the smallest lattice spacing.

The meson masses in the continuum limit are close to experiment
at the level of 1%. The masses of baryons with three or two strange
valence quarks are also close to experiment, but the discrepancy increases
with only one or zero strange valence quarks. This is interpreted as
finite-size effects being smaller for the hadrons involving the heavier
strange valence quark (the lattice size in physical units is about 2.5 fm).

It is also of considerable phenomenological interest to determine the
quark masses in physical units. In QCD the renormalized mass parame-
ters are ‘running’ with the renormalization scale, similarly to the gauge
coupling. An analysis of the quark masses in this simulation leads to the
result mMS

ud ≈ 3.4 MeV and mMS
s ≈ 90 MeV, at the scale 2 GeV.
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Fig. 7.11. Baryon octet masses as functions of a. From [97].

Comparing with the results of simulations in the quenched approxi-
mation, [97] finds that the inclusion of dynamical u and d quarks has
improved agreement with experiment. Figure 7.12 shows a comparison;
Nf = 2 indicates the simulation discussed above while ‘Nf = 0 Improved’
denotes a quenched simulation using the same gauge-field action; ‘Nf = 0
Standard’ shows the results of an earlier simulation [98] using the
standard Wilson action. It is surprising how good the quenched approx-
imation actually is for the hadron spectrum. The effect of dynamical
fermions on various physical quantities is not easily established, see e.g.
[99]. One may expect that results will further improve with simulations
including also a dynamical strange quark, as well as including larger
volumes.
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Fig. 7.12. A comparison with the quenched approximation. From [97].

7.6 The parameters of QCD

The parameters in the Wilson action (r = 1) are g2 and mf = Mf −
Mc, the critical value Mc = 1/2κc being determined completely by the
gauge coupling. We have seen in the previous sections how these may
be determined by the hadron spectrum. In particular, g2 determines the
overall scale, say the proton mass mp at mu = md = ms = 0, while
the quark masses determine the ratios m2

PS/m
2
p. Roughly speaking, mp,

mπ+ , mK+ , and m0
K are the free parameters of three-flavor QCD.

The renormalized masses and coupling depend in general on the
renormalization scheme. In a mass-independent scheme such as minimal
subtraction (cf. problem (iii) for a perturbative lattice definition), we
get renormalized running coupling and masses at momentum scale µ,
ḡ(µ) and m̄f (µ). They satisfy the renormalization-group equations

µ
dḡ

dµ
= β(ḡ), µ

dm̄f

dµ
= γ(ḡ) m̄, (7.51)
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with†

β(ḡ) = −β1ḡ3 − β2ḡ
5 − · · ·, (7.52)

γ(ḡ) = −γ1ḡ2 − γ2ḡ
4 − · · · . (7.53)

Here β1, β2 and γ1 are universal and given by

β1 =
1

16π2

(
11
3
nc −

2
3
nf

)
, (7.54)

β2 =
1

(16π)2

[
34
3
n2c −

10
3
ncnf −

(n2c − 1)nf
nc

]
, (7.55)

γ1 =
1

16π2
3(n2c − 1)

nc
, (7.56)

where nc is the number of colors and nf the number of dynamical flavors.
We have already seen in section 5.2 how an overall scale Λ may be

defined in terms of the gauge coupling,

Λ = µ(β1ḡ2)−β2/2β
2
1e−1/2β1ḡ

2

× exp
{
−
∫ ḡ

0

dg

[
1

β(g)
+

1
β1g3

− β2
β21g

]}
. (7.57)

This scale is renormalization-group invariant, i.e. dΛ(µ, ḡ(µ))/d lnµ = 0.
Similarly one defines renormalization-group-invariant quark masses

mrgi
f = m̄f (µ)(2β1ḡ2)−γ1/2β1

× exp
{
−
∫ ḡ

0

dg

[
γ(g)
β(g)

− γ1
β1g

]}
, (7.58)

which satisfy dmrgi
f (µ, ḡ(µ))/d lnµ = 0. As we have seen in section 5.2,

the scale Λ depends on the renormalization scheme; however, using
similar arguments it follows that the mrgi

f are scheme-independent. In
[63] special techniques are used to compute the renormalization-group
functions β(g) and γ(g) non-perturbatively.

Asymptotic freedom (β1 > 0) is guaranteed for nf < 11nc/2, or
nf ≤ 16 for QCD. We also see from the µ-independence of m̄rgi

f that
the running mass m̄f (µ) goes to zero ∝ (ḡ2)γ1/2β1 as µ → ∞. The
same is true for the bare quark mass mf as the lattice spacing a → 0
(in minimal subtraction the bare parameters run in the same way the
renormalized ones, cf. problem (iv)).

† The subscript k of βk and γk indicates that the coefficient corresponds to diagrams
with k loops. Another notation, often used, is βk → βk−1, γk → γk−1, and [63]
βk → bk−1, k = 1, 2, . . ., γ(ḡ)→ τ(ḡ) = −d0ḡ2 − d1ḡ4 − · · ·.
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7.7 Computing the gauge coupling from the masses

At long distances the non-perturbative methods of lattice gauge theory
allow us to compute the properties of hadrons. At short distances
we know that weak-coupling perturbation theory works well. Many
physical properties have been successfully related with the methods
of perturbative QCD. The essential parameter in these calculations is
the renormalized coupling constant gR. A useful characterization of the
coupling strength is the value of the running coupling gMS(µ) in the
MS scheme, which is customarily taken at the scale set by the mass of
the Z-boson, µ = mZ , or rather the value of the ‘strong fine-structure
constant’ αs(mZ) = g2

MS
(mZ)/4π. It is not a free parameter; its value

can be predicted just like other physical quantities such as mass ratios.
Let us see in more detail how this can be done.

Suppose that we compute the static quark–antiquark potential V at
short distances. From the force

F (r) =
∂V

∂r
= C2

g2V(1/r)
4πr2

, (7.59)

we know g2V(1/r) at some distance r/a in lattice units, for some bare g
and quark-mass parameters aM , chosen such that mπ/mp, mK/mp, . . .
have the experimental values to reasonable accuracy. From the value of
the proton mass in lattice units, amp, we then also know the distance
r in units of mp, rmp. Provided that rmp is small enough, we can then
use the perturbative renormalization group

µdgV
dµ

= β(gV), β(gV) = −β1g3V − β2g
5
V + · · ·, µ = 1/r, (7.60)

to relate the computed g2V(1/r) to g2V at higher µ. At sufficiently large
µ we can use the perturbative connection between g2V and g2

MS
parame-

terized by the ratio of the scales ΛMS/ΛV.
This program is difficult to implement because the lattices for sim-

ulations with dynamical fermions in spectrum computations tend to
be small. Other renormalized coupling constants have been proposed
in place of gV, which are useful for numerical computations, e.g. the
‘Schrödinger functional method’ [94].

7.8 Problems

(i) Effective action
The exponent in (7.17) can be interpreted as an effective action
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for the gauge field. Calculate the contribution of the smallest
closed loop (around a plaquette). Show that it corresponds to an
decrease (i.e. increase of the effective β = 6/g2) of the effective
gauge coupling.

(ii) Three flavors
Devise a method for analyzing numerical hadron-mass data with
dynamical up, down and strange quarks, with mu = md �= ms.

(iii) Minimal subtraction revisited
In the following g0 and m0 denote the bare gauge coupling and
quark masses, and g and m the renormalized ones (we suppress
the flavor label f). For Wilson fermions m0 ≡ M − Mc(g0, r).
For staggered fermions we may think of m0 simply being the
parameter appearing in the action (see [73] for more details).
The critical mass Mc is linearly divergent and the bare m0 has
to absorb the remaining logarithmic divergences as the lattice
spacing a → 0. The coupling g0 is logarithmically divergent. We
shall now follow similar steps to those in problem 3(iv) for the
QCD case.

Both g0 and m0 are multiplicatively renormalized,

g0 = gZg(g, ln aµ), (7.61)

m0 = mZm(g, ln aµ), (7.62)

Zg(g, ln aµ) = 1 +
∞∑
n=1

n∑
k=0

Zg
nkg

2n(ln aµ)k

=
∞∑
k=0

Zg
k(g)(ln aµ)k, (7.63)

and similarly for Zm,

Zm(g, ln aµ) =
∞∑
k=0

Zm
k (g)(ln aµ)k. (7.64)

Terms vanishing as a→ 0 have been neglected, order by order in
perturbation theory. In principle we can allow any choice of the
coefficients Zg,m

nk which lead to a series in g2 for the renormalized
vertex functions in which the dependence on a cancels out. In
minimal subtraction one chooses

Zg
0 (g) ≡ 1, Zm

0 (g) ≡ 1. (7.65)

The renormalized g and m depend on the physical scale µ but
not on a whereas g0 and m0 are supposed to depend on a but not
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on µ. Then

0 =
[
µ

∂

∂µ
+ β(g)

∂

∂g

]
gZg(g, ln aµ), (7.66)

0 =
[
µ

∂

∂µ
+ β(g)

∂

∂g
+ γ(g)

]
Zm(g, ln aµ), (7.67)

where

β(g) = µ
dg

dµ
, γ(g) =

µ

m

dm

dµ
. (7.68)

By going through similar arguments to those in problem 3(iv),
show that in minimal subtraction

β(g) = −Zg
1 (g), γ(g) = −Zm

1 (g). (7.69)

Verify that, in minimal subtraction, the renormalization-group
functions for the bare parameters are identical to those for the
rernormalized ones, β0(g0) = β(g0) and γ0(g0) = γ(g0). Verify
the RG-independence of Λ and mrgi in (7.57) and (7.58).
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