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RIGIDITIES OF ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

SEONG-HUN PAENG

Let M be an n-dimensional compact Riemannian manifold. We study the funda-
mental group of M when the universal covering space of M, M is close to some
Euclidean space M" asymptotically.

1. INTRODUCTION

Let (M, g) be an n -dimensional compact Riemannian manifold with metric g. For

fixed p e M, let B(p,R) and B(0,R) be fl-balls in (M,g~) and (RS,5), respectively.

We define M to be an asymptotically Euclidean manifold if

dH(B(p,R),B(0,R))
fi^o R

where dn is the Gromov-Hausdorff distance.

It is easy to show (M,efp) —> (R8,S) for any positive sequence e; —> 0 with

respect to the pointed Gromov-Hausdorff distance [3], where S is the Euclidean metric,

that is, the .R-balls centred at p in (M, e?g) converge to the Euclidean R-ball with

respect to the Gromov-Hausdorff distance for any R > 0. The notion of the asymptotic

cone of M in [5] is similar to lim [M,eig). We prove the following theorem.
»-+oo \ /

THEOREM 1 . 1 . Let (M,g) be an n -dimensional compact Riemannian manifold
with metric g. If M is an asymptotically Euclidean manifold, then ni (M) is an almost
Abelian group.

REMARK 1.2. For an asymptotically Euclidean space M, if we can observe M at
infinite distance from M, M looks like a Euclidean space. If there exists a positi
sequence {Ri} such that lim dH(B(p!Ri),B(0,Ri))/Ri = 0, then M looks like a

Euclidean space if we observe at infinite distance from M. We call such a space a
weakly asymptotically Euclidean space.

Then we obtain the following corollary immediately:
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COROLLARY 1 . 3 . Let M be a weakly asymptotically Euclidean manifold. If
ni(M) is an almost solvable group, then TTI(M) is an almost Abelian group.

If M is an n-dimensional compact Riemannian manifold with no conjugate points
and TTI(M) is almost solvable, then ni(M) is a Bieberbach group [2]. With the Hopf
conjecture proved in [1], we obtain the following rigidity theorem:

THEOREM 1.4 . Let M be an n-dimensional compact Riemannian manifold
without conjugate points. If TT\{M) is an almost solvable group, then M is isometric
to a Rat torus up to finite cover.

We apply a method similar to that for Corollary 1.3 to manifolds with no conjugate
points and so give a geometric proof for this theorem.

2. PRELIMINARIES

For the proof of Theorem 1.1, we use the following generalised Bieberbach theorem
and corollary as in [3].

THEOREM 2 . 1 . [3] Let G be a closed subgroup of the group ofisometries of Kn.
Then TTO(G) contains a finite index, free Abelian subgroup whose rank is not greater
than dim(R"/G).

COROLLARY 2 . 2 . [3] Suppose, in addition, that the quotient space Rn/G is
compact. Then there exists a normai subgroup G' of G such that

(1) [G : G'] < wn, where wn is a number depending only on n,
(2) M.n/G' is isometric to a Bat torus.

We denote by (X, F, p) a pointed length space (X, p) on which a group F acts
isometrically. Put

and let Bq(R,X) be the i?-ball centred at q in X. The notation

means that (Xi,Fi,pi) converges to (Y,G,q) with respect to the equivariant pointed
Hausdorff distance. (See [3] for the precise definition of the equivariant Hausdorff
distance.)

THEOREM 2 . 3 . [3] Let (X^F^pi) and (Y,G,q) be such that

Urn
t—• oo

let G' be a normal subgroup of G. Assume that

(1) G/G' is discrete and finitely presented,
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(2) Y/G is compact,

(3) I\ is properly discontinuous and free, Xt is simply connected,

(4) there exists Ro such that G' is generated by G'(Ro) and such that
ni(Bq(Ro,Y)) surjects to ni(Y).

Then there exists a sequence of normal subgroups T'{ of Fj such that

(5) lim(Xi,T'i,pi) = (Y,G',q),

(6) Ti/T'i is isomorphic to G/G' for each sufficiently large i,
(7) there exists R, independent of i such that FJ is generated by T'^Ri).

We observe an asymptotically centralising property for a nilpotent group. We
assume that n\(M) is not an Abelian group but a nilpotent group. We denote by Z
the centre of ni(M). Let TT : n\(M) —* ITI(M)/Z be the natural quotient map and Z'
be the centre of TTI(M)/Z. For h[ € Z', we denote ir"1 ((/»!)) by Z\. Although Zx is
not the centre, it is an Abelian subgroup of TTI(M) . By the following easy example, we
see an asymptotically centralising property of the nilpotent group.

EXAMPLE 2.4. Let G — (ei,e2,e3) with the relation [e2,e3] = e\ and [ei,ej] = 0 for
j = 1,2,3. Then G is a nilpotent group and (ei) is the centre of G. Every element g
in G can be represented by e'^e^e^3. If we write e'^e^ejf as (li,h, h), then we have
the following product in Z3;

(mi,m2,m3) • (̂ 1,̂ 2,̂ 3) = ('1 + mi + rm3l2,Tn2 + I2,m3 + l3).

So we have (0,0,1) • (0,/,0) = (1,1,1). Then lim (0,0,1) • (0,l,0)/l = (1,1,0) and we
/->oo

obtain a non trivial central component by G-action asymptotically.
For non central element h\ in Z\, there exists a g such that [<7,/ii] / 0. Let

[9, ^1] = z, where z is contained in the centre. By the same reason as in the above
example, we have gh[ — h[-zl g. So it has also an asymptotically centralising property.
We shall prove Theorem 1.1 by a contradiction from this asymptotically centralising
property.

3. PROOF OF THEOREM 1.1

We only need to consider the case that TTI(M) is an almost nilpotent group since
an asymptotically Euclidean manifold has a polynomial volume growth. Then we can
find a nilpotent subgroup Af with [71-1 (M) : AT] < 00. Let £; > 0 be a sequence such
that Ei -> 0. We rescale the metric of M by multiplying by e\. Let Xi be the rescaled
manifold. Then
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for some isometry group G of Ks from our assumption. Since ni(M) is almost solv-
able, if we apply Corollary 2.2 and Theorem 2.3 to some finite covering space of M
inductively, we obtain that there exists a subgroup Ui 6 TTI (M) such that

(3.i) (*i, no->(»', n),

where II is a translational isometry group and [TTI(M) : Ili] < oo. We may assume

that Ili = n L for i ^ L. Then

[TT^M) : IlL n N] < [ni{M) : IIL] [TTI(M) : N] < oo.

For brevity, we write N instead of N nUi, which is also a nilpotent group. From the
choice of IIj, we know that N is a torsion free nilpotent group. Let Z be the centre
of N. By considering the orbit of a given point p € M under the isometric action of
TV, we regard TV as a subset of M. Then N = Ni C Xi converges to Rs since II is a
translational isometry group of Ms. Also Z converges to S for some Euclidean space
E = Rfc, k ^ s. If we show that k = s, this will complete the proof for the nilpotent
case. Since Z is the centre, the subgroup (\Z,g\) generated by Z and g is also an
Abelian group for any g 6 N. So ({Z, g}) also converges to the Euclidean space Rfc+1.

Now we study the isometric action of iri(M). Since TTI(M) act isometrically on
M, also it acts on Rs isometrically [4]. Consider Ek+l := lim ({Z,hA) = lim Z\

and the isometric action by g as in section 2. Let v be a vector orthogonal to E in
Ek+1. By (3.1), we may assume that v = lim {v\, v\, • • •) for some v\ € Z\. From the
above computation, we have

g(v) = lim g • v[ — lim zl • v[ • g = z' + v,
I—»oo (-too

where z' = lim (z, z2, • • •) € Z.

We shall show that g does not act isometrically on X, which is a contradiction.
We consider the Euclidean space Sfc+1. For z = lim (zi, zf, • • •) € H,

d(gz,z) = lim - ||zr'ffz'i|| = ,1™ y IMI = 0.

where \\g\\ = d(p,g(p)). So S is invariant under the action of g.

Since g is an isometric action, g(v) is orthogonal to H. Then

(3.2) 0 = (g(v),5(S)> - (g(v), E> = (z', E) ? 0,

which is a contradiction. ( ( , ) is the inner product on Rs.) This completes the proof
of Theorem 1.1.
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Now we prove Corollary 1.3. We may assume that it\{M) is a strongly polycyclic
group which is not a nilpotent group. It is not known that a weakly asymptotically
Euclidean manifold has a polynomial growth. We can only obtain that it has a non-
exponential growth. So we need some further arguments.

As above, there exists a subgroup l i t of TTI(M) satisfying (3.1). Let F o be fl"i(M)
and [Ti,Ti] = Ti+1. Then TN =£ {0} and TJV+I = 0 for some N. If TN is the centre
of TTI(M) , then we can apply the same proof as above. Assume that I V — Z* is not
the centre of wi(M). We also denote the limit of I V as Xi -* W by S = Rk. Also we
have that g £ FJV_I can be considered as an isometry from E to E. Let v\ 6 TN • We
may assume that there exists g € I V _ i such that v^1gv\g~1 — [uf1,*/] = w ^ 0 for
w € Fjv. In fact, if [FJV_I,FJV] = 0, we may consider ({FJV,<?}) for g € FJV- I instead
of F;v. Then ({F^r, g}) is an Abelian normal subgroup of FJV- I • In this way, we may
assume [Fjv-ijFjv] ^ 0. Then gv\ — viwg and gv\ = viwgvi = v\wv\wg = v\w2g
since TN is an Abelian group. So we have that

Let v — lim(wi,Di, • • • ) , where we consider v[ and v as elements of X, and E, re-
spectively. We know that g(v) = lim gv{ = v + w', where w' = lim (w, w2, • • •). If we

i-+oo '
take a basis { lim 7"} of E for generators {7*} of F//, then g € GL(fc,Z). Using the

n—^00

packing arguments, we easily show that gm = Id for sufficiently large m, since g is an
isometry of Rfc. So we obtain that [gm, FJV] = 0. This is a contradiction to [g, Fjv] ^ 0
since we may assume that TN-I/^N is a torsion free Abelian group. This completes
the proof of Corollary 1.3.

4. A N ASYMPTOTIC APPROACH T O T H E O R E M 1.4

Let Zo be an Abelian subgroup of TTI(M) . With the same notation as in the
previous sections, we only need to prove the following Lemma:

LEMMA 4 . 1 . We denote Zo as a subset of X, by Zi. KM has no conjugate
points, Zi converges to the k -dimensional vector space with the standard Euclidean
norm, where k is the rank of the centre of TTI(M) .

We use the same notations as the previous section, that is, F ^ — Zfc and
[FAT-IJTAT-I] — FAT- If we apply the proof in Corollary 1.3 to the FAT-I and F ^
with Lemma 4.1, we obtain Theorem 1.4.

P R O O F O F LEMMA 4.1: We denote the limit of Zi by Z. We can easily verify
that Z is a vector space with a norm. Basically we shall follow the proof of [1]. We
shall prove this lemma by the following step. It is a slight modification of the proof ir?
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S T E P 1. Assume that Si = l/i. Since Z is a k-dimensional vector space, we take

k-linearly independent vectors Ai, • • • , A .̂ Let Z = Z/(Ai, • • • , A^). Then Z is diffeo-

morphic to a k -dimensional torus.

For p £ Z, there exists a geodesic 7p c M such that 7p(i) —> p. In fact, such a

geodesic 7P is not necessarily unique. The following arguments are about the choice of

such a geodesic. We know that ~tp{it) converges to a geodesic tp in X. Let F and

Fo be unit balls in X and Z, respectively. For n-independent vectors pj € F, we

construct global coordinates for M with the Busemann functions

where pi , • • • ,Pk S F o . Then we obtain a vector field vp. on M as lim Vd(jp.(t), •)

for the above 7Pj.. For any p € F o , we obtain vp by the same manner. This limit exists

if we take some subsequence by C1<a (or L2'9)-boundedness of the distance function r

under the Ricci curvature and the injectivity radius bounded below. (Every compact

manifold has a lower bound of Ricci curvature. In our case, we take the limit for a fixed

manifold Xi. Since p € Z, we know that the vp are TTI(M)-invariant vector fields.)

By taking a subset V = {(yi, • • • , 2/fc, 0, • • • , 0)}, we easily show that V converges to

Z as Xi —t X. Now we can define an injective map t : Fo —> UVX C UMX such

that 7p(i) —> p and 7p(0) = t(p), where UVX and UMX are the unit tangent spaces

of V and M at x, respectively. Note that for general manifolds, there are no natural

injective maps from F to UMX. Conversely, we can define F : Sk~l = UVX —> Fo by

F(v) — lim expiv, that is, 7 F ( V ) W = exptu. Then we have F o t = id.

Define the Busemann function of the geodesic tp by Bp(q) — lim d(tp,q) — t for
t—+00

p € Z. As in [1], every horosphere of a ray pt is a translation of the tangent cone to

Fo at -p so Bp is a linear function and Fo has a unique supporting hyperplane at p.

(See [1].)

We use similar notation to that in [1]. Denote by UZ and UZ the unit tangent

bundles of Z and Z, respectively. Let (v,p) be a unit tangent vector at p € Z ~ Rfc,

where v is a vector in Rk and p is a base point. We define D : UZ —» Fo by

D(v,p) = v. Then for q G F o ,

Bp(q) = - lim i"1 /" <•/,(*), «P)d*
.

So we have

-Bp(g)2 ^ lim inf
at
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Using normal coordinates, we easily show that i " 1 -j-jq(it) converges to the geodesic
Ultr

flow on UZ.
We fix some lifting map L : UZ -4 UZ. Let mes be the normalised Liouville

measure on UZ invariant under the geodesic flows. In fact, we have not proved that Z
is a Riemannian manifold yet but we know that there exists an invariant measure by
the Krylov-Bogolubov theorem. Let m = DoL(mes). We denote i~lry{it) by 7*(t).
We define a map C : UZ -> K by

/ d
C{w) := (l'DoL{w)(0),vp)

2 = ^(ftj'DoL

for a fixed p € Fo. Note that l'ooLiw)(0) = L(L(W)) . Since i~1—yq(it) converges to

the geodesic flow on UZ, we have

/ Bp{q)2dm(q)= lim f _Bp(D o L{w))2dmes
JFQ

 l^°° Juz

< / lim / (i"1—7DoL(t«)(i*),«p > dtdmes

f fT I d \ 2

- \ lim T~l I lim(i~1—-yDoLrw){it),vp) dtdmes

— I _ C(w)dmes,
IUZ

by the Birkhoff ergodic theorem.

Define g : Sk 1 -* K by g(w) = (w,v)2. Since JUx^ (-rlD°L(w){Q),vpJ dmes

does not depend on x and vp, we have

/ C dmes= Idvol(z) / ( -}-'yDoL(w){0)^p) dmesx(w)
Juz Jz Juxz\dt I

— I _(L(W),VP) dmesx(w) = / _L*g dmesx.
JUxZ JUXZ

Since F o i = id, we have t o F(L(P)) = i(j>) so LO F is the identity on t,(UxZ).
Thus we obtain that

I (w,v)2dti= f F*fgdn
c(uxz) JL(UXJ)

= / i*gF(dfi)= / _i*g dmesx,
JFoi(Ux'z) JUXZ
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where fi is the standard measure with /z(t([/xZ)) = 1 and v € Sk~1. Hence we obtain
that

[ Bp(qfdm{q)< f (w,vfd^
JF0 7S*-I

This value does not depend on v € Sk~1 and as in [1], we obtain that

Bp(q)2dm(q) ^ i
IFO

The following step is the same as in [1].

STEP 2. Let Fo* be the set of all linear functions supporting Fo, let AFQ = {kL2 |
L € FQ } and AF0 be the convex hull of Ap0. Applying Section 4 in [1] to the vector
space Z ~ Kfc , we obtain that the maximal nonnegative quadratic form Q on Efc ~ Z

satisfies Q = k^aiB2, where Ylai = 1> °i ^ 0 and p{ € Z. Then
Mi

/" v ^ 2 f
k I y^aiBpi(q) dm(q) = / Q(q) dm(q)

JF
 l

 JF

From Q(F) ^ 1, with the above inequality, we obtain that m{q € F | Q(q) > l} = 0.

Since Q is continuous and m is dense, F = {a; G Z | Q(x) = l} . So Q is the Euclidean

norm if we restrict to Z. This completes the proof of Lemma 4.1. G
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