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HOMOTOPY PULL-BACKS AND APPLICATIONS 
TO DUALITY 

MARSHALL WALKER 

Introduction. The topic of homotopy pull-backs and push-outs has 
recently been discussed by a number of authors; Boardman and Vogt [5], 
Bousfield and Kan [6], Fantham [7], Mather [11], and Vogt [16]. Mather 
develops the theory with an eye to applications and of particular interest is 
his cube theorem which appears in this paper as Theorem (1.10); the signifi
cance of this theorem to applications is shown in [11]. As often occurs in 
homotopy theory the dual is not true. The purpose of this paper is to examine 
approximations to the dual in order to obtain new information concerning 
classical problems of duality. 

Given an arbitrary number of fibrations with the same base, Svarc ([15, 
Chapter II, Section 1]) describes a fibration whose fibre is the join of the fibres. 
In the case of two fibrations Svarc's result was rediscovered by Hall [9] and 
called the Whitney Sum. Nomura ([12; 13]) extended the result to the situa
tion of arbitrary maps and calls his construction the Whitney Join. Independent 
of Svarc and Hall, Ganea [8] described the Whitney Sum of two fibrations 
F —» E —» B and Q.B —> * —» B. It is also recognized (Ganea [8] and Nomura 
[12]) that the results on the Whitney Join are in a certain sense dual to the 
results of Blakers and Massey ([2; 3; 4]) on the homotopy groups of a triad. 
In the language of homotopy pull-backs and push-outs this duality has a 
succinct formulation; see Theorems (1.12) and (1.13). The problem of deter
mining to what extent the dual of (1.13) is valid has been the subject of much 
research; see [1] and [12]. In Section 4, Theorem (4.2) gives new information 
concerning this problem. 

Also, in Section 3, Theorem (3.2) provides an approximation to a dual of a 
theorem of Sugawara [14] on a necessary condition when a space is an i7-space. 

Section 1 overlaps somewhat with [5] and [16] and especially with [11]. 
It was decided for the purposes of exposition to avoid the more compli
cated formulation of theory as in [5] and [16]. Also as the topic is unfamiliar 
to many, reformulation of certain aspects of [11] was deemed appropriate. 

1. Preliminaries. All spaces will be furnished with a base point*, and all 
maps and homotopies will be considered as base-point preserving. 

U G, H: X X I -> Y are two homotopies such that G(., 0) = H(., 0) and 
iJ(., 1) = G(., 1), G and H are said to be equivalent if there is a map $: 
X X / X / -> Y such that 
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46 MARSHALL WALKER 

(i) $ ( X , s, 0) = G(x,s) 
(ii) $ (x , s, 1) = i f (x, s) 

(hi) $ (* , 1, 0 = $(x , 1, / ') and $ (* , 0, /) = $ (* , 0, / ') for /, /' Ç f. 
Given a homotopy G : X X f —> F, the homotopy — G : X X f — > F is de

fined by — G(x, t) = G(x, 1 — / ) ; given a homotopy i f : X X f —» F such 
t ha t G(., 1) = i f (., 0 ) , the homotopy H+G:XXl->Y is defined by: 

fG(a, 20, i j + G(x,/) = 

of spaces and maps together with a homotopy H : C X f —> X such t ha t 
f i ( . , 0) = af and i f ( . , 1) = pg is called a homotopy commutative square. 

A diagram of spaces, maps and homotopies of the form 

A, H2: Y X I -B% 

( i ) i f ( . , 0 ) =af 
( i i ) i f 1 ( . , 0 ) = / ' 

( i i i ) i f 2 ( . , 0 ) = gf 

( i v ) G ( . , 0 ) = « / ' 

where the homotopies H : C X I —> X, i f i : F X / -
and G : F X f - ^ -̂ 4, are defined so t ha t : 

and HC, 1) = ^ 
and H^., 1) = / A 
and i f 2 ( . , 1) = gh 
and G(., 1) = Pg' 

is called homotopy commutative iî the homotopies G and ft ( —H2) + H(h X 1) + 
« i f 1 are equivalent. 

(1.1) For each subset J of {1, 2, 3}, let Xj be a topological space and for 
i G f, l e t / ^ J - M ) : I ; —> Xj-{i] be a map . 

For simplicity subsets of {1, 2, 3} are shown without set brackets or commas. 
T h e resulting diagram is said to be a homotopy commutative cube if it is fitted 
with homotopies as follows: 

(1) for each s u b s e t / o f {1, 2, 3} and each subset {i,j} off , there is a homotopy 
Hj 

fjJ 

J-liJ) (Xj, *) X I -> (Xj 
a n d / , , , J-{iJ) of. J-{j] 

-a,j}, *) connecting the maps f j J {iJ] o 
which is directed as shown below. 
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(2) the homotopies H1Z*(W3 X 1) + /,*#»,» + #23 (/m23 X 1) and 
fi*(-Hlu

l) + tfi2*(/m12 X 1) + M H W are equivalent. 

X, 

^123L_i- u 
- ^ ^ 3 

in 
X, •+••*• 1 3 

s» 

X, 

y 
- • * , 

•>ATé 

Definition (1.2). A homotopy pull-back of a diagram 4̂ —» X <— £ is a homo-

topy commutative square 

TTB 

V 
- * , 4 

H 

B- +X 

which satisfies the conditions: 
( i ) i f 

is a homotopy commutative square, then there is an induced map h : C —* P 
and appropriate homotopies making the diagram 

homotopy commutative. 
(2) If there is another homotopy commutative diagram 

*X , 
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then 
(i) there is a homotopy F: C X / -> P such that F(.y 0) = h and F(.,) = A' 

(ii) Hi is equivalent to TTAF + Hi and i?2 ' is equivalent to TTBF + H2. 

g f 
The notion of the homotopy push-out of a diagram J3 <— C —> 4̂ is defined 

dually. 
The proofs that homotopy push-outs exist and are unique appear in [5 ; 7 ; 11 ; 

16] ; accordingly we summarize as follows. 
a 8 

THEOREM (1.3). The homotopy pull-back of a diagram A —» X <— B exists and 
is unique in the sense that if 

and 7T B 

are two homotopy pull-backs then: 
(i) the two diagrams 

F 

are homotopy commutative; the homotopies Hu H2', and H2' and the maps h and 
h' are induced according to Definition (1.2). 

(ii) P is homotopy equivalent to P'. 

Remarks (1.5). 1) From now on we shall use the expression standard homo
topy pull-back to denote the homotopy pull-back 

with P = {(a, b, y) £ A X B-+X1 : 7 (0) = a and 7(1) = b}, wA and wB 

projections, and H : P X / —> X defined by H (a, b, 7), t) = y(t). Also if 
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is homotopy commutative the words standard induced map shall refer to the 
induced map h : C —> P defined by h(c) = (f(c), g(c), G(c, .))• 

2) Dually, standard homotopy push-out refers to the homotopy push-out 

with Q being the space obtained from C X / / * X / by attaching A and B 
according to the maps (c, 0) —»/(c) and (c, 1) —> g(c). Points of Q may be 
represented as [c, t], [a, 0], and [b, 1] with the understanding that [c, 0] = 
U(c), 0], [c, 1] = [g(c), 1], and [*, *J = [*, /2] for 0 g *i, /2 ^ 1. The maps 
4̂ —* Q and B —> Q are the inclusions a —» [a, 0] and b —> [6, 1] and the homo

topy H : C X I-
Also if 

(3 is defined by H(c, t) = [c, i\. 

C- f 
-+A 

B-

is homotopy commutative then the standard induced map h : Q —» X is defined 
by 

h : [c, *] *-> H(c, t) 

: [a, 0] ^—>a(a) 

: [6,0]i-*i8(6). 

Consider 

>AV 

as a portion of the diagram of (1.1). 

LEMMA (1.6). If in the above diagram the bottom square is a homotopy pull-
back there is an induced map X123 —> Xu and homotopies on the front and left 
faces so that the resulting cube is homotopy commutative. 
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Proof. Form the diagram 

/ 23/123 

fhfi 

where K = Hu*{fin
u X 1) + fz*H12z* + HmHfm2* X 1). Then apply Defi

nition (1.2). 
Dually, consider 

X aS. 
X^z" +x> 

•+X-

x2 
xl2 

•+X* 

- • D I 

LEMMA (1.7). If the top face is a homotopy push-out, there is an induced map 
Xs —» X<p and homotopies on the right and back faces so that the resulting cube is 
homotopy commutative. 

Given homotopy commuta t ive squares 

« and 

and homotopies G\ : C X / —> A and G2 : B X / —> X so t h a t Gi(., 0) = 
f, Gi(., 1) = / , G2(., 0) = j8 and G2(., 1) = £', according to Lemma 6 of [11]. 

L E M M A (1.8). If H' is equivalent to G2(g X 1) + H + aGi, 

f 
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is a homotopy pull-back (push-out) if and only if 

C • >A 

B~y-+x 
is a homotopy pull-back (push-out). 

Consider next the diagram 

consisting of two adjacent homotopy commutat ive squares. Let t ing K = H + 
G(f X 1) we have the third homotopy commutat ive square 

which is called the composition. According to [11] we s ta te the following result. 

T H E O R E M (1.9). In the first diagram 
(i) if two of the three squares are homotopy pull-backs, then so is the third; 

(ii) if the left and right squares are homotopy push-outs, so is the large square; 
(iii) if the left and large squares are homotopy push-outs, so is the right square. 

The following theorem due to Mather [11] is fundamental to applications. 

T H E O R E M (1.10). If in the homotopy commutative diagram 

the front and left faces are homotopy pull-backs, the top and bottom homotopy 
push-outs, then the right and back faces are homotopy pull-backs. 

COROLLARY (1.11). In the homotopy commutative cube of Theorem (1.10) sup-
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pose all vertical faces are homotopy pull-backs; if one of the top or bottom faces is 

a homotopy push-out, then so is the other. 

Remark. As shown in a preliminary version of [11] neither the dual of 
Theorem (1.10) of Corollary (1.11) hold in general. 

From now on when speaking of homotopy pull-backs or push-outs , maps 
and spaces will often be omit ted ; in these cases it is understood t h a t the reader 
should consider the s tandard construction of (1.5). Similarly explicit reference 
is omit ted in the case of maps from spaces obtained by taking homotopy pull-
backs or maps to spaces obtained by taking homotopy push-outs ; again it is 
assumed t h a t we refer to the s tandard maps as described in (1.5). 

In the list of examples below, examples (ii), (iii), (v) and (vi) may be con

sidered as definitions of the spaces X\>Y, X*Y} X*Y} and X # F , and as such 

correspond to the usual definitions. 

Examples. (1) T h e homotopy pull-back of the diagram * —> X <— * is of 
the form 

ax •* 

* >x 

(2) If i : X V Y—>X X F is the inclusion map, the homotopy pull-back 

o f * - > ! X Y <- X V F is of the form 

X b F • X V F 

* >X X F 

where X \? Y is the flat product of X and F. 

(3) If ix : X —» X V F and iY : F —> X V F are the inclusion maps, the 

homotopy pull-back of the diagram X —> X V Y <— F is of the form 

X* Y yX 

ix 

Y T 

Y >X V F 
A 

where X* Y is the co-join of X and F. 

(4) Homotopy push-outs of the diagram X ^~ * —> F and * <— X —> * are of 
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the form 

* yx x • * 

and 

Y *XVY * • S X 

(5) If prx : X X Y —> X and pr2 : X X F—> F are the projections, the 
pri pr2 

homotopy push-out of the diagram X <— X X F — > Y is of the form 
pr2 

X X F — • F . 

pn 

Y T 
X -+ X* Y 

i 
(6) The homotopy push-out of the diagram XX F <— XV F —•> * is of 

the form 

X V F • * 

T T 
X X F ^ Z # F 

where X# F is the smash product of X and F. 

By using the ideas developed so far it is possible to improve exposition and 
simplify proofs in a number of areas. In particular the Blakers-Massey Theorem 
([3, Theorem I] and [4, Theorem I]) has the following s ta tement . 

T H E O R E M (1.12). (Blakers-Massey). If in a homotopy commutative diagram 

\ \ ^ 
\ P VA 

B • Q 

the outside square is a homotopy push-out and the inside a homotopy pull-back, 
and if the maps C —> A and C —> B are respectively p and q connected with 
min (p, q) > 1, then the induced map C —> P of Definition (1.2) is p + q — 1 
connected and irp+q(C —» P) tt wp(C —> A) 0 wQ(C —* B). 

The Svarc-Ganea-Nomura Theorem ([15, Chapter I I , Section 1] ; [8,Theorem 
(1,1)]; 12; 13]) as expressed below may be considered dual to the Blakers-
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Massey Theorem above. I ts proof is an application of previous techniques; 

see [11, Theorem 47]. 

T H E O R E M (1.13) (Svarc-Ganea-Nomura) . / / in a homotopy commutative 
diagram 

the outside square is a homotopy pull-back and the inside square is a homotopy 
push-out and if F and G are the fibres of A —> X and B —» X respectively, then 
the fibre of the induced map Q —> X of Definition (1.2) is F*G. Consequently if 
A —» X and B —* X are respectively p and q connected, then Q—*Xisp-\-q-\-l 
connected. 

2. D u a l c u b e t h e o r e m s . In this section we establish approximations to 
the duals of Theorem (1.10) and Corollary (1.11) 

In the homotopy commuta t ive cube of (1.1), suppose the top and bot tom 
faces are homotopy pull-backs and the right and back faces homotopy push-
outs . 

Let 
A 123 ' ^ Xu A^i23 ^ ^ 2 3 

AY A 
and 

Qi 

be homotopy push-outs and let Qi —» X\ and Q2 —> X2 be induced according 
to Definition (1.2). In this context we have the following theorem which we 
consider as an approximation to the dual of Theorem (1.10). 

T H E O R E M (2.1). / / the maps X i 2 3 —> X12j X12'6—^XU and X12^—^X2^ are 
respectively p, q and r connected with min (p, q, r) > 1, then the induced maps 
Qi —> X\ and Q2 —+ X2 are p + q + r connected. 

Proof. I t suffices to prove the result for Q1 —> X\. With no loss of generali ty 
let X\2 -*-Xu 

X\2 - > • < ? . 
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be the homotopy push-out and Qi 
Construct homotopy pull-backs 

Pi >X2 

X\ the induced map constructed in (1.5). 

and induced maps X123 —•» P\ and Xu —> Pi as in (1.5). Write 

P i = {(au, X23, 7) G X12 X I 2 3 X V : T ( 0 ) = / i2
2(x1 2) and 

7(1) =/232(*23)} 
and 

P 2 = {*i, x8, T ) ^ I X I 3 X I / : T ( 0 ) = / I * ( X I ) and 

7(1) = / 8 *(*a)} . 

By Lemma (1.6) there is an induced map P\ —> P 2 defined by 

(*12, *23, 7 ) ^ (/l21(^12),/233(^23),^230(X23, .) + / 2 * ( Y ) ~ #12* (*12, •))• 

In the diagram below this map makes: (a) the inner cube homotopy commuta
tive, (2) the front square of the top face homotopy commutat ive , and (3) 
the back square of the top face and the front face of the inner cube strictly 
commuta t ive v . v 

+ A 3 

Applying Lemma (1.8) and Theorem (1.9) to the inner cube, it follows tha t 
the back square of the top face is a homotopy pull-back. By Corollary (1.11) 
the square 

P- +P 2 

7Ti 

X\2 •+xx 
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is a homotopy push-out. Also writing the homotopy, H : Xm X I —» P2, on 
the front square of the top face as: 

H(Xm,t) = (-Hu^iXm, Oi #1233(*123, Ot 0)» 

where 0 is a pa th in (-X^) 7 derived from the equivalence making the outside 
cube homotopy commuta t ive , it follows t ha t w^H = H12^. By Theorem (1.9) 

^ 1 2 3 —- +PI 

is a homotopy pull-back. 
Le t 

A^ 13 

X\2 

^ 1 3 

7T3 
• > P 2 

" • P i 

Go, 7i 

J2 
" •Co 

be a homotopy push-out and Ç0 —» P2 the induced map. Let t ing £ : Ç0 —•» (?i 
be the induced map in the diagram 

it follows tha t £72 = i^ £ji = inr\, and £G0 = Gi. 
Consider the diagram 

X122, • A T 13 

- * P 2 

T l 

A 12 +<2i •A'i 

in which each of the three bo t tom squares is str ict ly commuta t ive . Since 
£Go = G\ it follows from Theorem (1.9), t h a t the b o t t o m left square is a 
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homotopy push-out. Again by Theorem (1.9) 

*P 2 

*A\ 

is a homotopy push-out. Since by Theorem (1.13) Ço 
nected, so also is Qi —» -XV This completes the proof. 

P 2 is p + g + r con-

Again in the homotopy commutative cube (1.1) suppose the top face is 
a homotopy pull-back and the vertical faces are homotopy push-outs. If P is 
the homotopy pull-back of the diagram X\ —» X^ <— X2, according to Lemma 
(1.6) and Definition (1.2) there are induced maps Xm —> P and h : Xu —> P 
so that there is a diagram 

* * , 

In this context the following theorem is an approximation to the dual of 
Corollary (1.11) 

THEOREM (2.2). If the maps Xm —> Xu, XUz —> Xu, and Xm —> X23 are 
respectively p, q, and r connected, then the induced map h : Xï2 —> P is p + g + 
r — 1 connected. 

Proof. Without loss of generality, let P be the homotopy pull-back and 
h : X12 —> P the induced map constructed in (1.5). Write P = {(#2, #1, 7) G 
I 2 X l i X l / : T ( 0 ) =*2 , 7(1) =* i} .ThemapXi23 ->P is then defined by 

X 1 2 3 ^> (/232/l2323(^123),/l31/l2313(^123),^130(/l2313 X 1) + f*+Hin* 

+ #23*(/l2323 X 1)) 

Suppose the front face is the standard homotopy push-out described in (1.5); 
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construct the s tandard homotopy push-out 

Xin >XX 

G 

We have the diagram 

XV23— + xl3 

h\ 

X, 
f. 

•+xt 

The maps j i : Q —> Xi and j 2 : Xi —> Q are the s tandard induced maps of 

(1.5) in the diagrams 

-Xl23 • - ^ 1 3 

I t follows t ha t : 

¥t
K\ = i.lh and 

727131 = ^2 7T = Jill. 

Therefore J1J2/121 = j i i i * = *h = /121 and 71J2/131 = 7V2 = /131. Consequently 
the diagram 

A 123 ^ A 13 

is homotopy commuta t ive so tha t JJ2 ^ lxi-
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Let Fi = fibre (71) and F2 = fibre (j2). Using Theorem (1.9) each square of 

QFi • * >XY 

* h\ Q 

i i 

* KYi 

is a homotopy pull-back so tha t F2 is homotopy equivalent to QFi. By Theorem 
(1.13) j \ : Q —> Xi is p + q + r connected; it follows tha t j 2 : Xi —> Q is 
p + q + r — 1 connected. 

In the diagram 

A 123 —r • - Y 1 3 

\iSH\n I 

x12 >x1 

h\ \J2 

P îi >Q 

it may be shown tha t the homotopy J2Hm1 is equivalent to G, so by Theorem 
(1.9) the bot tom square is a homotopy push-out. Therefore the connectivity 
of h equals the connectivity of j 2 . 

3. Appl i ca t ions . Theorems (1.12) and (1.13) are not precise duals of one 
another ; although (1.13) gives precise information concerning the fibre of 
Q—+X1, (1.12) provides little information concerning C —» P. The task of 
approximating C —• P has been the subject of much research ; see [1] and [12]. 

If the exact dual of Theorem (1.13) were true, then in the diagram of 
Theorem (1.12) the cofibre of C —» P would be the cojoin of the cofibres of 
the maps C —» A and C —> B. In general this is not true as shown below. 

Example (3.1). Given spaces A and B, if A V B —> A, A X B —> A and 
A V B —̂  B, A X B —> B are projections onto the first and second factors, 
there is the commutat ive diagram 

A V B >B 

\ \ / \ 
AXB 

T ^ T 
A • * 
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in which the inner square is a homotopy pull-back and the outer a homotopy 
push-out. The induced map A V B —» A X B of (1.5) becomes the inclusion 
map. Observe that 2^4 is the cofibre of A V B —> 5 , 2 5 is the cofibre of 
A V 5 -* i4, and A # £ is the cofibre of 4 V 5 -> A X B. 

Let 
2 , 4 * 2 5 ; y^A 

x // 
2 5 - -*2,4 V 2 5 

be a homotopy pull-back. If the dual of Theorem (1.13) were true there would 
be a homotopy equivalence <£ : A # B —> 2^4 * 2 5 so that 

^ # £ 

0* 
^ 

->2^ 

H{4> X 1) 

2 5 - - • 2 4 V 2 5 

is also a homotopy pull-back. This however is not necessarily true as seen by 
a spectral sequence argument with A = S2 and B = S7. 

The result below represents an approximation to the dual of Theorem (1.13). 

THEOREM (3.2). In the diagram of Theorem (1.12), if C is r connected and the 
maps f : C —> A and g : C —̂  B are respectively p and q connected with min 
(p, q, r + 1) > 1, there is a map from the cofibre of the map £ : C —^ P to the 
cojoin of the cofibres of C —» A and C —> B that is p + q + r connected. 

Proof. Let 

and 

be cofibre squares. Let C$ —> Cf and C$ —» Cg be the maps induced according to 
Definition (1.2) in the diagrams 

¥P C 

where the maps P —» Cf and P —» Cg are the compositions P —•> A with A —> Cr 

https://doi.org/10.4153/CJM-1977-004-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-004-3


PULL-BACKS AND DUALITY 61 

and P —> B with B —> Cg respectively. We have the following diagram 

* YCa 

+ cf v cg 

wrhere the map Q —> Cf V Cg is induced according to Lemma (1.7) making 
the outer cube homotopy commutative. Applying Lemma (1.8) and Theorem 
(1.9), each face of the outer cube is a homotopy push-out. The inner cube may 
be shown to be homotopy commutative and using Theorem (1.9) the squares 

and 

may be shown to be homotopy push-outs. Since 

Cf Cg 

Cc 

-+C, 

- • * 

is a homotopy pull-back, the result follows as an application of Theorem (2.2). 

If X is an H-space with multiplication m : X X X —> X the Sugawara 
Theorem [14] says there is a homotopy pull-back 

• XX 

where the map X —» X * X is inessential. As shown by Hilton ([10, p. 215]) 
the dual of this result is not necessarily true, i.e. if X is a co-H space it does not 

https://doi.org/10.4153/CJM-1977-004-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-004-3


62 MARSHALL WALKER 

necessarily follow t h a t there is a homotopy push-out 

QX • * 

X*X >X 

A 

with the map X * X —> X inessential. I t is reasonable to ask if the dual is t rue 
in some approximate sense. 

LEMMA (3.3). Given a simply connected space X, a map \x : X •—» X V X makes 
X a co-H space if and only if the commutative diagrams 

* • x * • X 

\i\ and \i2 

X — * X V X X — K Y V Z 

are homotopy push-outs. 

Proof. Consider the commuta t ive diagrams 

* + X ^ * * y. X • * 

ii 

x—^—yx yx-^-^x iJUxvAx 

in which pri and pr2 are the projections onto the first and second factors 
respectively. Observe t h a t the right hand squares are homotopy push-outs . 
Since the large squares are homotopy push-outs if and only if pr2jtx and prXju 
are nomotopic to lx the result follows according to the remarks following 
Theorem (1.9). 

Using this result we have the following approximation to a dual Sugawara 
Theorem. 

T H E O R E M (3.4). If X is an n connected co-H space with n > 1, there is a 
diagram, 

VX • * 

/ 

X*X- • Z 
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with X * X X inessential, which is a homotopy push-out to dimension 3n (i.e., if 

SIX • * 

X*X 

is a homotopy push-out the induced map Q —> X of Definition (1.2) is 3n con
nected). 

Proof. Consider the diagram 

*X 

XVX 

X*X 
in which i\ and i<i are inclusions in, respectively, the first and second factors, 
the top and bottom faces are homotopy pull-backs, the back and right faces are 
homotopy push-outs, and the map SIX —> X * X is induced according to Lemma 
(1.6) making the cube homotopy commutative. Putting in the homotopy 
push-out of the front face we have the diagram 

in which by Theorem (2.1) the induced map Q —» X is 3n connected. According 
to [12, Lemma (2.1)], X * X —> X is inessential. 
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