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INJECTIVITY IN EQUATIONAL CLASSES OF ALGEBRAS 

ALAN DAY 

1. Introduction. The concept of injectivity in classes of algebras can be 
traced back to Baer's initial results for Abelian groups and modules in [1]. The 
first results in non-module types of algebras appeared when Halmos [14] de­
scribed the injective Boolean algebras using Sikorski's lemma on extensions of 
Boolean homomorphisms [19]. In recent years, there have been several results 
(see references) describing the injective algebras in other particular equational 
classes of algebras. 

In [10], Eckmann and Schopf introduced the fundamental notion of essential 
extension and gave the basic relations that this concept had with injectivity in 
the equational class of all modules over a given ring. They developed the notion 
of an injective hull (or envelope) which provided every module with a minimal 
injective extension or equivalently, a maximal essential extension. In [6] and [9], 
it was noted that these relationships hold in any equational class with enough 
injectives. 

In this paper, the problem of enough injectives in an equational class is reduced 
to properties of the subdirectly irreducible algebras in the class. Using this 
approach, a general existence theorem is proven which gives as corollaries many 
of the known results. In particular, it shows that non-pathological, equationally 
complete equational classes in which every algebra has a congruence lattice 
which is distributive (such a class will be called congruence distributive) has 
enough injectives. Modulo the results for Boolean algebras in [8], the injective 
algebras and the passage to injective hulls are described. 

2. Preliminaries. All universal algebraic concepts may be found in [12], 
and all categorical results in [18]. As usual, an equational class will be considered 
as a category with all homomorphisms between algebras in the class. We will use 
upper case letters, A, to denote algebras, and \A\ to denote their underlying 
sets. 

Let $ be an equational class. An algebra Q G $ is called injective if for every 
B G $, every subalgebra A of B (written A ^ B) and every/: A —» Q, there 
exists (a homomorphism) g: B —» <2 extending/(i.e., g | ̂ 4 = f). A monomorphism 
/ : A >-> B is called essential if for any C £ $ and any g: B —> C, gf is injective if 
and only if g is. Since $ is assumed to be an equational class, this is equivalent to 
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210 ALAN DAY 

the fact: the only congruence relation, 9, on B which separates (i.e., does not 
identify any pair of distinct points in) A is AB, the identity relation on B. If 
A ^ B, and the natural embedding is essential, we write A ^E B and say that A 
is a large subalgebra of B. An algebra A G JÏ is said to have no proper essential 
extensions (in $!) if every essential monomorphism (in S) with domain A is an 
isomorphism. A G $t is called an absolute sub-retract (in $!) if every mono­
morphism in $, with domain A, splits (i.e.,/: A >-> B G $ implies there exists 
g: B -» A with g/ = 1A). In an equational class these two properties are equi­
valent since by a standard Zorn's Lemma argument on the set of all congruence 
relations, 6, on B with ( / X /) - 1(#) = AAl every monomorphism can be con­
tinued to an essential monomorphism (i.e., if/: A >-> 5 , there exists g: B -» C 
such that g/: 4̂ >-> C is essential). An infective hull of A in $ is an infective 
essential extension (i.e.,/: A >-» 5 is essential and 5 G $ is injective). Finally, 
$ is said to have enough injectives if every algebra in St has an injective extension 
(in $ ) . 

The following results can be found in [6]. 

THEOREM 2.1. Let $ have enough injectives. Then for A G Jï, t.f.a.e.: 
(1) yl is injective. 
(2) 4̂ is aw absolute subretract. 
(3) 4̂ /zas wo proper essential extensions. 

THEOREM 2.2. For an equational class $ , t.f.a.e.: 
(1) $ /zas enough injectives. 
(2) Every A G $ /zas aw injective hull. 
(3) Every A G $ /&as a representative set of essential extensions and in M, qua 

category, pushouts preserve monomorphisms. 

Since every homomorphism can be factored into the composition of a mono­
morphism and a surjective homomorphism, the pushout criterion in condition (3) 
of 2.2 is equivalent (in an equational class) to the conjunction of the following 
two properties. 

Definition. A class, $ , of algebra is said to satisfy: 
(1) the (weak) amalgamation property if (AP): A, Bt G S (i = 1, 2), 

ft: A >-> Bt (i = 1, 2) imply there exists C G S and g*: J3* >-» C (i = 1, 2) with 
g i / i = £2/2 ; 

(2) the congruence extension property if (CEP): A, B £ $ and 4̂ rg J3 imply 
that every congruence on A is the restriction of some congruence on B. 

THEOREM 2.3. Let $ be an equational class with enough injectives, and let 
/ : A >-> B be a monomorphism in $ . Then t.f.a.e.: 

(1) B is an injective hull of A (with respect to / ) . 
(2) B is a maximal essential extension of A (with respect tof) (i.e., f is essential 

and if g: B >-> C is such that gf is essential, then g is an isomorphism). 
(3) B is a minimal injective extension (with respect to f) (i.e., B is injective 

and no proper subalgebra of B that contains Im(/ ) is also injective). 
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EQUATIONAL CLASSES 211 

3. Injectivity and subdirectly irreducible algebras. Since every equa-
tional class, $ , is uniquely determined by $si, its class of subdirectly irreduc­
ible algebras, it would be of interest to relate injectivity to the subdirectly 
irreducibles. 

LEMMA 3.1. Every essential extension of a subdirectly irreducible algebra is 
again subdirectly irreducible. Conversely, if an equational class, $ , satisfies (CEP) , 
then every large subalgebra of a subdirectly irreducible in $ is also in $si-

Proof. T h e first s ta tement was shown in [9]. Conversely, if $ satisfies ( C E P ) , 
B G &si, and A ^E B, let (di)i€I be a family of congruences on A whose meet 
( = intersection) is A^. There exists a family (i/^) i€I of congruences on B such t ha t 
\pt\A = Si (i G / ) . Now 

(ne-) 
\iGI / we/ 

Since A ^E B, we must have 

A = O (ti\A) = nOt = 

n ti 

and since B £ ®si,&i = àB for some i £ / . Therefore for this i £ I, 

0t = AB\A = AA. 
(See also [13].) 

Therefore, if $ has enough injectives, the injective hull of every i G t s / will 
also be in $Si, and in this sense $ will have "enough injective subdirectly 
irreducibles". Conversely, if every S £ $si has an extension T £ $si which is 
injective in S , then by BirkhofFs Subdirect Representation Theorem, $ will have 
enough injectives. This gives the following and a t t imes more applicable result: 

T H E O R E M 3.2. An equational class has enough injectives if and only if it has 
enough injective subdirectly irreducibles. 

In particular cases where we have an explicit description of $ si, this is a more 
viable procedure for determined when S has enough injectives. This is essentially 
the method used in [3 ; 8 ; 9]. 

Before proceeding with the main existence theorem, we must first examine an 
interesting pathology tha t occurs when the equational class under consideration 
has no nullary operations defined in its type. 

If $ is such an equational class, then the empty algebra, 0, is in $ and clearly 
the empty monomorphism/ : 0 >-» {x} is essential. In fact, any singleton algebra 
in $ is an injective hull of 0 with respect to the empty map. Moreover, if Q £ $ 
is injective, the empty map g: 0 —* Q must extend to g: {x} >-> Q (i.e., g of = g) 
and therefore every injective in $ has a one element subalgebra. 

If we then define "Boolean Algebras" as algebras of type (2, 2, 1) with the 
usual operations of join, meet, and complementation (to the usual distr ibutive 
latt ice and DeMorgan laws add xvx' = yvyr), this equational class has only 
trivial injectives even though it differs only slightly from Boolean algebras 
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(defined with 0 and/or 1 as miliary operations). In order to avoid this pathology, 
we will need the following condition. 

Definition. An algebra A is called 0-regular if 0 ^ A (i.e., no miliary opera­
tions) implies A has at least one one-element subalgebra. 

4. The main theorem. General existence theorems for enough injectives 
of an algebraic nature (as opposed to Banaschewski's condition in 2.2) may not 
be possible. However, the power of Jonsson's Lemma and its consequences 
(see [15]) allow some hope if one considers only congruence distributive equa-
tional classes. 

Definition. An algebra A is called self-injective if it is 0-regular and any 
homomorphism of a subalgebra of A into A, extends to an endomorphism of A. 

Clearly, if A is infective in any equational class (of its type), then A will be 
self injective but in general, self-injectivity is independent of equational class 
considerations. 

THEOREM 4.1. Let $ be a congruence distributive equational subclass of an 
equational class 2. Furthermore, assume $ = SP(5), where S is a finite sub-
directly irreducible algebra whose non-empty subalgebras are either injective in £ 
or in ®si' Then t.f.a.e.: 

(1) $ has enough injectives. 
(2) $ satisfies (AP) and (CEP) (i.e., pushouts preserve monomorphisms). 
(3) S is self-injective. 

Proof. Since 5 is finite and $ = SP(5), $lsi ^ S(S) and S has no proper 
essential extensions in $ by 3.1. Therefore, even without congruence distribu-
tivity, (1) is equivalent to (2) by 2.1, 3.2, and the fact that in any category where 
pushouts preserve monomorphisms, the injective objects are exactly the absolute 
subretracts (see, for example, [5]). Clearly then, (1) implies (3) and we need only 
show that (3) implies (1). 

It will suffice to show that 5 is injective as JÎ = SP(5) and any product of 
injectives is again injective. Since S is 0-regular and again since $ = SP(5), we 
need only complete commutatively diagrams of the form in Figure (i) where A 
is non-empty. 

A < Sl 

f\ 

s 
Figure (i) 

Let B = Im(/) S S. If B is injective in 8, we are finished. If B Ç ®si, then by 
Jônssons's Lemma, there exists an ultrafilter U on I such that dv\A C Ker( / ) , 

https://doi.org/10.4153/CJM-1972-017-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-017-8
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the congruence on A induced b y / . Since 5 is finite, every ultraproduct of 5 is 
isomorphic to 5 and therefore there exists g: S1 -» S such that Ker(g) = dv. 

Consider now Figure (ii) where A' = g[A], g' = g\A, a n d / ' : A -^S is the 
canonical homomorphism defined by the fact that: 

Ker(g') = (Ker(g))\A = dv\A Ç Ker(/) . 

A < S1 

{ \ 
A' < S 

•S ~ 
S 

Figure (ii) 

Since5 is self-injective, there exists h: S —> 5 such that h\A' = /''. Clearly, then, 
hg is our required extension and 5 is injective. 

Let $i{pn) be the equational class of rings generated by GF{pn), the Galois 
field of order pn (p prime, n ^ 1). 

COROLLARY 4.2. For every prime p and n ^ 1, dt(pn) has enough injectives. 

di(pn) is congruence distributive by [17]. Moreover, the subrings of GF(pn) are 
either {0} or of the form GF(pk) ; for, k\n and for each of these there is a unique 
homomorphism into GF(pn) which extends to the identity on GF(pn). 

(This result was first proved by Banaschewski using more ring-theoretical 
methods.) 

Let 
S3o C 33! C . . • C 33, C 33w+1 C . . . C 33œ 

be the system of all equational subclasses of distributive lattices with pseudo-
complementation (see [16] for terminology). Then the injectives in 33œ are 
exactly the complete Boolean algebras. (That these are injective follows from a 
Glinenko-Stone Theorem argument as used in [4] for Heyting algebras. That no 
non-Boolean algebra in 33 is injective follows from the fact that every such 
algebra has Bi, the three element chain, as a subalgebra and B\ has arbitrarily 
large essential extensions, namely B for each Boolean algebra B.) 

COROLLARY 4.3. The only non-trivial equational subclasses of 33 that have 
enough injectives are 33o {Boolean algebras) 33i {Stone Lattices [3]) and 332-

By [13] and the second condition in 4.1, these are the only proper equational 
subclasses that satisfy (AP). (33œ satisfies (CEP).) 

/ 
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Note. The original proof of this result was based on a lemma that Bn is self-
injective if and only if n ^ 2 . T h e appearance of [13] allows this simpler argument. 

Let 

Sïo C » i C . . . C Kn C Sl.+i C . C C A ! 

be the system of all (non-trivial) equational subclasses of cylindrical algebras of 
dimension 1. S. Comer has shown t h a t CAi has only trivial injectives. Let An be 
the w-atom Boolean algebra with the trivial cylindrification: ci(0) = 0 and 
d(x) = 1 if x ^ 0. Then l\n = SP(An) and: 

COROLLARY 4.4. The only non-trivial equational subclasses of CA± that have 
enough injectives are 21 o, 211, and §I2. 

For, if n ^ 3, and A 2 = {0,a,af, 1} ^ ^4n with a an a tom of An, t h e n / : A2-^ An 

by f (p) = CL' a n d / ( a ' ) = a cannot be extended to an endomorphism. Therefore, 
An is self-injective if and only if n ^ 2 . 

T h e next result is also an immediate corollary bu t because of its (almost) 
purely algebraic na ture it seems to deserve a more prestigous title. 

T H E O R E M 4.5. Every equationally complete, congruence distributive equational 
class that contains a non-trivial 0-regular finite algebra has enough injectives. 

Proof. If JÎ is such a class and 5 £ $si is a homomorphic image of the non-
trivial finite 0-regular algebra, then 6* is finite and 0-regular. By [15], 3.5, and 
equational completeness, it follows t h a t 5 is the only (up to isomorphism) 
subdirectly irreducible algebra in $ . Therefore, $ = SP(5) . Since S is finite and 
every non-trivial subalgebra of S must have 5 as a homomorphic image, S has a t 
most trivial subalgebras. Therefore, 5 is self-injective and $ has enough injec­
tives. 

Note. I t also follows from the finiteness of S t h a t S is simple. 

COROLLARY 4.6. (Bounded) distributive lattices have enough injectives [2; 8]. 

COROLLARY 4.7. Every equational class generated by a primal algebra has 
enough injectives. 

5. E q u a t i o n a l l y c o m p l e t e e q u a t i o n a l c lasses . In [8], Banaschewski and 
Bruns showed t h a t the injective hull of a Boolean algebra is its MacNeil le (or 
Normal) completion. Modulo these results, an explicit description of the injec­
tive algebras and the passage to injective hulls can be given for those equationally 
complete, congruence distr ibutive equational classes considered in 4.5. 

Let $ = SP(5) be an equationally complete, congruence dis tr ibut ive equa­
tional class with S a finite 0-regular subdirectly irreducible. Then as in the proof 
of 4.5, 51 is simple, has a t most trivial subalgebras, and is up to isomorphism the 
only subdirectly irreducible in $. 
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If a t least two distinct elements of S are images of miliary operations of r, the 
type of S, then 5 has no proper subalgebras and only the identi ty endomorphism. 
Otherwise, let T be the set of all elements of S t ha t are not images of miliary 
operations in r and define a new type f = r \J (\t) teT where A, = 0 for all t G T 
(without loss of generality the domain of r and T are disjoint). Let S be the 
algebra of type r obtained from 5 by the adjunction of the nullary operations 
/xf(0) = t (t £ T) and let § be the equational class of type f generated by 5 . 

Now clearly $t = SP(5) is equationally complete and congruence distr ibutive. 
By 4.5, M has enough injectives. We want a relation between the injectives in S 
and those in $ . 

T H E O R E M 5.1. The injective algebras in $ are exactly the injective algebras in $ 
with the extra nullary operations suitably defined. 

Proof. Every non-trivial injective in $ is a r-retract of some power of S. By 
forgetting the added nullary operations, this algebra becomes a r-retract of the 
same power of 5 and so is injective in $ . 

Conversely, if Q is a non-trivial injective in S , Q is a r -retract of some power of 
S. Therefore, there exists / : S1 -» Q. Since 5 is simple and $ is congruence 
distr ibutive, it follows from Jonsson's Lemma tha t Kerf is induced by a filter 
Ff on I. T h a t is 

f(a) = f(p) if and only if Eq(a , 0) = {i G / : a(i) = ff(i)} G Ff. 

If A: 5 —> S1 is the embedding of 5 into the constant functions of S1, it follows 
t h a t / o A is a monomorphism. Therefore, for each t G T define 

/x,«(0) = / A ( 0 = / ( / x , s ( 0 ) ) . 

Let Q be the algebra obtained from Q by the adjunction of these extra nullary 
operations (f\t

Q)teT- I t follows easily tha t Q is injective in §. 

Withou t loss of generality, we will assume throughout the remainder of this 
section t ha t S has no proper subalgebras. This will imply t ha t S has only the 
identi ty endomorphism and tha t for each set 7, Hom(5 7 , S) is natural ly iso­
morphic to 12(7), the set of ultrafilters on I. 

Let 33 be the equational class of Boolean algebras (defined with 0). 

Definition. Z7: 33 —> ^î is the functor given by: 
(a) For B G 33, U(B) = S[B], the Boolean extension of S by B. (See [11], or 

[12, pp. 147-149].) 
(b) F o r / : A -> B, Uf: UA - » UB is defined by the function a >->/ o a. 

T h a t U is a functor is implicit in [12, pp. 146-151]. Moreover, U preserves 
products , equalizers ( = monomorphisms in 33), and coequalizers (since every 
finite Boolean algebra is projective). Since 33, qua category, is locally small and 
has a cogenerator 2, by general category theory there exists an adjoint functor 
F: $ —* 33. We wish to give an explicit description of an adjoint. 
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Definition. F: $ —> 93 is the functor defined by: 
(a) For A G $ , F(-4) is the field of subsets of Hom$(4, 5) generated by the 

sets 

XA(a, M) = {f e Homst(A,S):f(a) G M} (a G M|, M Ç |5|). 

(b) Forf: A -^B, Ff: FA -> F£ is determined by the restriction to F(A) of 
the map/#: P(Homst(A,S)) -> P ( H O I M ( £ , 5)) that takes 

X^{ge Hom®(B,S):gofe X). 

It follows easily that Fg(XA(a, M)) = XB(g(a), M) and since S is injective, 
T7 preserves monomorphisms. 

Definition. For each 4̂ G J?,T?^4: 4 —> ^ F ^ is the homomorphism defined by: 

VA(a)(s) = XA(a, {s}) (a G M U € |5|). 

Clearly, 97̂4 is a well-defined homomorphism. Moreover, since Homst(A,S) 
separates the points of A, r)A is a monomorphism for each i É fi. 

Definition. YorB G S3, eZ3: F t / 5 —•> 5 is the (Boolean) homomorphism defined 
by: 

e 5 ( X ^ ( a f M)) = V { a ( s ) : 5 G M} (a G |C/5 | , M Ç |5 | ) . 

This function on the generators of F( UB) extends to a homomorphism since 
if 

c = AW{at(s):se Mt} > 0 for at G | C/S |, AT4 C \S\,i = 1,2,..., n, 
i 

then there exists f:B^»2 such that f(c) = 1. Therefore, for each 
i = 1, 2, . . . , n,f(V{<Xi(s): s G Mt)) = 1 and there exists (anecessarily unique) 
St G Mt such that/(«*($<) ) = 1. Consider then 

a o Z7/: E/(5)-> C/(2) -> 5 

where cr is the natural isomorphism between Z7(2) and 6*. We must have 
o-(aj) = s* G -M"* for each i = 1, 2, . . . , n and therefore 

i,n 

aou/e nxUB(altMty, 
i 

i.e., this set is not 0FUB. 

Since S contains at least two distinct elements, say s 9^ t, for each b G B we 
can define ah G UB by: 

Î
b, x = s 

b', x = t 
0, otherwise. 

Therefore, eB(XUB(ab, {s})) = b and ei? is surjective. 
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THEOREM 5.2. The junctors 

U 

are adjoint covariant junctors with jront {respectively, back) adjunction 

V:I®~* UF(e: FU-+I*). 

The proof is completely computational and is obtained by proving that each 
of the diagrams in Figure (iii) commute. 

/ . D VTTU ™g FUB-
y 

• 
Y 

B— 

+FUC 
Y 

Le 
T 

—>C 

(b) 

ïUFUB 

FA-

Fr)A\ 

FUFA-

-+B 

FUg 
\eB 

•+FUB 

(«) (d) 
Figure (iii) 

LEMMA 5.3. e: FU —» 7s is a natural equivalence. 

Prooj. Since every Boolean algebra is a subalgebra of a power set algebra P(I) 
for some set 7, and since £7 and F preserve monomorphisms, it is sufficient in lieu 
of Figure (iii) (b) to show that eP(7) is a monomorphism (hence isomorphism) 
for each set 7. 

Now by [12, p. 147], there exists a canonical isomorphism: 

f:S'~U(P(I)) 
given by:/(a)(s) = Eq(a, A(s)) = {i € / : a(i) = s}. 

Therefore, we need only show that: 

eP(I) o Ff: F(S') - FU{P{I)) - P{I) 

is a monomorphism, where 

(eP(I)oFf)(XF{s')(a,M)) = U / W W = U Eq(a, A(s)). 

Now every homomorphism g: S1 —> S is determined uniquely by an ultrafilter 
U0 6 &(7). This is given by: 

g(a) = s if and only if Eq(a, A(s)) £ L^. 

Therefore, for aj £ |57 | , M, C \S\J = 1, 2, . . . , w, PlJ'w -XV(a„ AQ ^ 0 if and 
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only if there exists g G Hom$(S7, S) such that g(aj) G Mj(J = 1, 2, . . . , n), if 
and only if there exists U G 12(7) such that 

1 , 7 1 

n u Egfo, A(5)) G [/, 
if and only if 

l .n 

H U Eq(aj9 A(s)) * 0. 
3 s€Mj 

COROLLARY 5.4. U is a full and faithful functor (i.e., the correspondence 
HOITO(^4, B) —> Hom$(£L4, UB) is bijective). 

COROLLARY 5.5. rjS1 is an isomorphism for each set I. 

Let A = S1, B = P(I), and / : S1 >-> U(P(I)) be the canonical isomorphism 
in Figure (iii) (c). 

COROLLARY 5.6. For every C G HP(5), ^C is an isomorphism. 

For, A = ST,B = C, and/ : S1 -> Cm Figure (iii) (a). VC of = UF{f) o yS1, 
which is surjective. Therefore, 7]C is surjective. 

COROLLARY 5.7. A homomorphic image of any U(B) £ $ is again (up to 
isomorphism) the U-image of a Boolean homomorphic image of B. 

THEOREM 5.8. The infective algebras in $ are up to isomorphism the Boolean 
extensions of S by complete ( = infective) Boolean algebras. 

Proof. Since F preserves monomorphisms, by [6] £7 preserves injectives. Con­
versely, if Q G $ is a non-trivial injective in $, then for some set 7 we have: 

/ g 
Q>->ST -»Q 

with gf = lQ. 
By applying F, we have FQ is a retract of F(SJ) which is isomorphic to P(I), a 

complete Boolean algebra. From 5.6 it follows that Q >-» UFQ and FQ is a com­
plete Boolean algebra. 

COROLLARY 5.9. The finite injectives in JÎ are exactly the finite powers of S. 

For, U(B) = S[B] is finite if and only if B is finite. 

COROLLARY 5.10. rjA is essential for each A G JÎ. 

If/: A >-> U(B) is an injective hull of A, t h e n / = U(eB) o UF(f) o VA is 
essential. Since all are monomorphisms and $ satisfies (CEP), it follows that rjA 
is essential. 

THEOREM 5.11. For each A G $ and B G 33, / : 4̂ >-> £/7> w an injective hull 
in $ if and only if eB o Ff: FA >-> 5 is an injective hull in 33. 

Proof. Since B is injective in 33 if and only if UB is injective in ^î, we need only 
show tha t / i s essential in $ if and only if Ff (or equivalently, eB o Ff) is essential 
in 33. 
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Take g: B —> Csuch that g o tB o Ff is a monomorphism. By applying Uwe 
obtain 

U(g) of = UgoU(eB) o UF(f) o rjA 

is a monomorphism, since Upreserves monomorphisms. I f / i s essential, then Z7g 

is a monomorphism. Hence, g is also, as U is faithful. 

Now take g: UB —* C such tha t gf is a monomorphism. By applying 

F, F(gf) = Fg o Ff is a monomorphism. If F / is essential, then 7<g is a mono­

morphism. Hence, g is also, as 77C o g = UFg o r]UB is a monomorphism. 

COROLLARY 5.12. The infective hull of each A £ $ is given by Ug o rjA: A >-> 

ZTTvl >-> T7^ w/zere g: T7^ >-> B is the McNeille completion of FA. 

COROLLARY 5.13. The infective hulls of an algebra i G fi are unique up to 

unique isomorphism over A. 

For, this proper ty holds in 53 by [8]. 
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