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INJECTIVITY IN EQUATIONAL CLASSES OF ALGEBRAS
ALAN DAY

1. Introduction. The concept of injectivity in classes of algebras can be
traced back to Baer’s initial results for Abelian groups and modules in [1]. The
first results in non-module types of algebras appeared when Halmos [14] de-
scribed the injective Boolean algebras using Sikorski’s lemma on extensions of
Boolean homomorphisms [19]. In recent years, there have been several results
(see references) describing the injective algebras in other particular equational
classes of algebras.

In [10], Eckmann and Schopf introduced the fundamental notion of essential
extension and gave the basic relations that this concept had with injectivity in
the equational class of all modules over a given ring. They developed the notion
of an injective hull (or envelope) which provided every module with a minimal
injective extension or equivalently, a maximal essential extension. In [6] and [9],
it was noted that these relationships hold in any equational class with enough
injectives.

In this paper, the problem of enough injectivesin an equational class is reduced
to properties of the subdirectly irreducible algebras in the class. Using this
approach, a general existence theorem is proven which gives as corollaries many
of the known results. In particular, it shows that non-pathological, equationally
complete equational classes in which every algebra has a congruence lattice
which is distributive (such a class will be called congruence distributive) has
enough injectives. Modulo the results for Boolean algebras in [8], the injective
algebras and the passage to injective hulls are described.

2. Preliminaries. All universal algebraic concepts may be found in [12],
and all categorical results in [18]. Asusual, an equational class will be considered
as a category with all homomorphisms between algebras in the class. We will use
upper case letters, 4, to denote algebras, and |4]| to denote their underlying
sets.

Let & be an equational class. An algebra Q € R is called injective if for every
B € R, every subalgebra 4 of B (written A < B) and every f: A — (Q, there
exists (ahomomorphism) g: B — Qextendingf (i.e.,g|4 = f). A monomorphism
f: A > Biscalled essential if for any C € & and any g: B — C, gf is injective if
and only if g is. Since & is assumed to be an equational class, thisis equivalent to
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the fact: the only congruence relation, 8, on B which separates (i.e., does not
identify any pair of distinct points in) A4 is Ag, the identity relation on B. If
A = B,and the natural embedding is essential, we write A < B andsay that 4
is a large subalgebra of B. An algebra 4 € § is said to have no proper essential
extensions (in &) if every essential monomorphism (in §) with domain 4 is an
isomorphism. 4 € & is called an absolute sub-retract (in £!) if every mono-
morphism in &, with domain 4, splits (i.e., f: 4 > B € & implies there exists
g: B> A with gf = 1,). In an equational class these two properties are equi-
valent since by a standard Zorn’s Lemma argument on the set of all congruence
relations, 6, on B with (f X f)7'(8) = A4, every monomorphism can be con-
tinued to an essential monomorphism (i.e., if f: 4 >» B, there exists g: B —» C
such that gf: A > C is essential). An injective hull of 4 in & is an injective
essential extension (i.e., f: 4 »» B is essential and B € & is injective). Finally,
R issaid to have enough injectives if every algebra in § has an injective extension
(in ®).

The following results can be found in [6].

THEOREM 2.1. Let ® have enough injectives. Then for A € &, t.f.a.e.:
(1) A s injective.

(2) A is an absolute subretract.

(38) A has no proper essential extensions.

THEOREM 2.2. For an equational class R, t.f.a.e.:

(1) & has enough injectives.

(2) Every A € R has an injective hull.

(3) Every A € & has a representative set of esseniial exlensions and in R, qua
category, pushouts preserve monomorphisms.

Since every homomorphism can be factored into the composition of a mono-
morphism and a surjective homomorphism, the pushout criterion in condition (3)
of 2.2 is equivalent (in an equational class) to the conjunction of the following
two properties.

Definition. A class, &, of algebra is said to satisfy:

(1) the (weak) amalgamation property if (AP): 4, B, € & (z = 1, 2),
fii A>> B; (z = 1,2) imply there exists C € { and g;: B;>> C (z = 1, 2) with
g1f1 = g2f2;

(2) the congruence extension property if (CEP): 4, B € R and 4 < Bimply
that every congruence on 4 is the restriction of some congruence on B.

THEOREM 2.3. Let & be an equational class with enough injecltives, and let
f: A > B be a monomorphism in 8. Then t.f.a.e.:

(1) B is an injective hull of A (with respect to f).

(2) B is a maximal essential extenston of A (with respect to f) (i.e., f is essential
and if g: B>> Cis such that gf is essential, then g is an isomorphism).

(3) B is a minimal injective extension (with respect to f) (i.e., B 1s injective
and no proper subalgebra of B that contains Im(f) is also injective).
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3. Injectivity and subdirectly irreducible algebras. Since every equa-
tional class, &, is uniquely determined by & s;, its class of subdirectly irreduc-
ible algebras, it would be of interest to relate injectivity to the subdirectly
irreducibles.

Lemma 3.1. Every essential extension of a subdirectly irreducible algebra 1s
again subdirectly irreducible. Conversely, if an equational class, &, satisfies (CEP),
then every large subalgebra of a subdirectly irreducible in & is also in R s;.

Proof. The first statement was shown in [9]. Conversely, if & satisfies (CEP),
B € Rsp,and 4 <z B, let (8,):c; be a family of congruences on 4 whose meet

(= intersection) is A 4. There exists a family () sc; of congruences on B such that

<goi>“4 = QI (‘Pz'A) = MN0; = A,

i€l
Since 4 =<y B, we must have

mipi:AB

i€r1
and since B € R, ¥; = Ap for some 2 € I. Therefore for thisz € I,

01' = ABIA = AA.
(See also [13].)

Therefore, if { has enough injectives, the injective hull of every 4 € & s, will
also be in 57, and in this sense § will have “enough injective subdirectly
irreducibles”. Conversely, if every S € f; has an extension T € R, which is
injectivein §, then by Birkhoff’s Subdirect Representation Theorem, & will have
enough injectives. This gives the following and at times more applicable result:

THEOREM 3.2. An equational class has enough injectives if and only if it has
enough injective subdirectly trreducibles.

In particular cases where we have an explicit description of 8 s, this is a more
viable procedure for determined when § has enough injectives. Thisis essentially
the method used in [3; 8; 9].

Before proceeding with the main existence theorem, we must first examine an
interesting pathology that occurs when the equational class under consideration
has no nullary operations defined in its type.

If  is such an equational class, then the empty algebra, @, is in & and clearly
the empty monomorphism f: # > {x} is essential. In fact, any singleton algebra
in & is an injective hull of @ with respect to the empty map. Moreover, if Q € &
is injective, the empty map g: # — Q must extend to g: {x} — Q (i.e.,g of = g)
and therefore every injective in § has a one element subalgebra.

If we then define ‘“‘Boolean Algebras’ as algebras of type (2, 2, 1) with the
usual operations of join, meet, and complementation (to the usual distributive
lattice and DeMorgan laws add xvx’ = yvy’), this equational class has only
trivial injectives even though it differs only slightly from Boolean algebras
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(defined with 0 and /or 1 as nullary operations). In order to avoid this pathology,
we will need the following condition.

Definition. An algebra A is called @-regular if @ < A (i.e., no nullary opera-
tions) implies 4 has at least one one-element subalgebra.

4. The main theorem. General existence theorems for enough injectives
of an algebraic nature (as opposed to Banaschewski’s condition in 2.2) may not
be possible. However, the power of Jénsson’s Lemma and its consequences
(see [15]) allow some hope if one considers only congruence distributive equa-
tional classes.

Definition. An algebra A is called self-injective if it is @-regular and any
homomorphism of a subalgebra of 4 into A4, extends to an endomorphism of 4.

Clearly, if 4 is injective in any equational class (of its type), then 4 will be
self injective but in general, self-injectivity is independent of equational class
considerations.

THEOREM 4.1. Let & be a congruence distributive equational subclass of an
equational class L. Furthermore, assume & = SP(S), where S 1s a finite sub-
directly irreducible algebra whose non-empty subalgebras are either injective in &
or in Rgr. Then t.f.a.e.:

(1) & has enough injectives.

(2) R satisfies (AP) and (CEP) (i.e., pushouts preserve monomorphisms).

(3) S us self-injective.

Proof. Since S is finite and & = SP(S), &s; € S(S) and S has no proper
essential extensions in & by 3.1. Therefore, even without congruence distribu-
tivity, (1) is equivalent to (2) by 2.1, 3.2, and the fact that in any category where
pushouts preserve monomorphisms, the injective objects are exactly the absolute
subretracts (see, for example, [5]). Clearly then, (1) implies (3) and we need only
show that (3) implies (1).

It will suffice to show that .S is injective as = SP(S) and any product of
injectives is again injective. Since .S is #-regular and again since & = SP(S), we
need only complete commutatively diagrams of the form in Figure (i) where 4
is non-empty.

4 < S

f

S
Figure (i)

Let B = Im(f) < S. If Bisinjective in €, we are finished. If B € &, then by
J6nssons’s Lemma, there exists an ultrafilter U on I such that 85]4 C Ker(f),
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the congruence on 4 induced by f. Since S is finite, every ultraproduct of S is
isomorphic to .S and therefore there exists g: S* - .S such that Ker(g) = 6,.
Consider now Figure (ii) where A" = g[4], ¢’ = g|4, and f’: 4 — S is the
canonical homomorphism defined by the fact that:
Ker(¢") = (Ker(g))[4 = 04/4 < Ker(f).
I

A < S
! g
g
f
A < S
A
S
Figure (ii)

Since S is self-injective, there exists k: S — S such that s| A’ = f’. Clearly, then,
hg is our required extension and S is injective.

Let R(p™) be the equational class of rings generated by GF(p"), the Galois
field of order p” (p prime, n = 1).

COROLLARY 4.2. For every prime p and n = 1, R(p") has enough injectives.

R(p") is congruence distributive by [17]. Moreover, the subrings of GF(p") are
either {0} or of the form GF(p); for, k|n and for each of these there is a unique
homomorphism into GF (p") which extends to the identity on GF(p").

(This result was first proved by Banaschewski using more ring-theoretical
methods.)

Let

BoCBC...CBCBnC...C B,

be the system of all equational subclasses of distributive lattices with pseudo-
complementation (see [16] for terminology). Then the injectives in 8B, are
exactly the complete Boolean algebras. (That these are injective follows from a
Glinenko-Stone Theorem argument as used in [4] for Heyting algebras. That no
non-Boolean algebra in B is injective follows from the fact that every such
algebra has Bj, the three element chain, as a subalgebra and B, has arbitrarily
large essential extensions, namely B for each Boolean algebra B.)

COROLLARY 4.3. The only non-trivial equational subclasses of B that have
enough injectives are By (Boolean algebras) By (Stone Lattices [3]) and Bs.

By [13] and the second condition in 4.1, these are the only proper equational
subclasses that satisfy (AP). (B, satisfies (CEP).)
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Note. The original proof of this result was based on a lemma that B, is self-
injectiveif and only if # < 2. The appearance of [13] allows this simpler argument.

Let
QIOCEJIIC---CE)/[nCQ[n-}-IC---CCAI

be the system of all (non-trivial) equational subclasses of cylindrical algebras of
dimension 1. S. Comer has shown that CA, has only trivial injectives. Let 4, be
the n-atom Boolean algebra with the trivial cylindrification: ¢;(0) = 0 and
c1(x) = 1if x £ 0. Then A, = SP(4,) and:

CoroLLARY 4.4. The only non-trivial equational subclasses of CAi that have
enough injectives are o, Ay, and Ws.

For,ifn = 3,and 4. = {0,a,a’,1} = A,withaanatomof 4,,thenf: 4,— 4,
by f(a) = &’ and f(a’) = acannotbeextended to an endomorphism. Therefore,
A, is self-injective if and only if n =< 2.

The next result is also an immediate corollary but because of its (almost)
purely algebraic nature it seems to deserve a more prestigous title.

THEOREM 4.5. Every equationally complete, congruence distributive equational
class that contains a non-trivial @-regular finite algebra has emough injectives.

Proof. If § is such a class and S € R5; is a homomorphic image of the non-
trivial finite @-regular algebra, then S is finite and @-regular. By [15], 3.5, and
equational completeness, it follows that S is the only (up to isomorphism)
subdirectly irreducible algebra in &. Therefore, & = SP(S). Since S is finite and
every non-trivial subalgebra of S must have S as a homomorphic image, S has at
most trivial subalgebras. Therefore, S is self-injective and & has enough injec-
tives.

Note. 1t also follows from the finiteness of S that S is simple.
CoROLLARY 4.6. (Bounded) distributive lattices have enough injectives [2; 8].

CoRrOLLARY 4.7. Every equational class generated by a primal algebra has
enough injectives.

5. Equationally complete equational classes. In [8], Banaschewski and
Bruns showed that the injective hull of a Boolean algebra is its MacNeille (or
Normal) completion. Modulo these results, an explicit description of the injec-
tive algebras and the passage to injective hulls can be given for those equationally
complete, congruence distributive equational classes considered in 4.5.

Let & = SP(S) be an equationally complete, congruence distributive equa-
tional class with .S a finite @-regular subdirectly irreducible. Then as in the proof
of 4.5, S is simple, has at most trivial subalgebras, and is up to isomorphism the
only subdirectly irreducible in &.
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If at least two distinct elements of S are images of nullary operations of 7, the
type of S, then S has no proper subalgebras and only the identity endomorphism.
Otherwise, let 7" be the set of all elements of S that are not images of nullary
operations in 7 and define a new type 7 = 7\J (\,),er where\, = Ofor allt € T
(without loss of generality the domain of 7 and T are disjoint). Let S be the
algebra of type 7 obtained from .S by the adjunction of the nullary operations
f.(@) =t (t € T) and let & be the equational class of type 7 generated by S.

Now clearly & = SP(S) is equationally complete and congruence distributive.
By 4.5, & has enough injectives. We want a relation between the injectives in &
and those in &.

THEOREM 5.1. The injective algebras in § are exactly the injective algebras in
with the extra nullary operations suitably defined.

Proof. Every non-trivial injective in & is a 7-retract of some power of S. By
forgetting the added nullary operations, this algebra becomes a 7-retract of the
same power of S and so is injective in &.

Conversely, if Q is a non-trivial injective in , Q is a 7-retract of some power of
S. Therefore, there exists f: ST - Q. Since S is simple and & is congruence
distributive, it follows from Jénsson’s Lemma that Ker f is induced by a filter
Fy;on I. That is

f(a) = f(8) if and only if Eq(a, ) = {i € I: a(i) = ()} € F,.

If A: S — STis the embedding of S into the constant functions of S7, it follows
that f o A is a monomorphism. Therefore, for each ¢ € 7" define

M@ =A@ = fF(HS9).

Let O be the algebra obtained from Q by the adjunction of these extra nullary
operations (fr;9) 7. It follows easily that Q is injective in f.

Without loss of generality, we will assume throughout the remainder of this
section that S has no proper subalgebras. This will imply that S has only the
identity endomorphism and that for each set I, Hom(S%, S) is naturally iso-
morphic to Q(I), the set of ultrafilters on 1.

Let B be the equational class of Boolean algebras (defined with 0).

Definition. U: B — & is the functor given by:

(a) For B € 8B, U(B) = S[B], the Boolean extension of S by B. (See [11], or
[12, pp. 147-149].)

(b) For f: A — B, Uf: UA — UB is defined by the function a — f 0 a.

That U is a functor is implicit in [12, pp. 146-151]. Moreover, U preserves
products, equalizers (= monomorphisms in B), and coequalizers (since every
finite Boolean algebra is projective). Since B, qua category, is locally small and
has a cogenerator 2, by general category theory there exists an adjoint functor
F: § — 8. We wish to give an explicit description of an adjoint.
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Definttion. F:  — B is the functor defined by:
(a) For 4 € &, F(A) is the field of subsets of Homg(4, S) generated by the
sets

Xa(a, M) = {f € Homg(4,S): f(a) € M} (a € |A], M < |S]).

(b) Forf: A — B, Ff: FA — FB is determined by the restriction to F(4) of
the map f#: P(Homge(4, S)) — P(Home(B, S)) that takes

X+ {g € Home(B, S): g of € X}.

It follows easily that Fg(X 4(a, M)) = X z(g(a), M) and since S is injective,
F preserves monomorphisms.

Definition. Foreach 4 € ®,94: A — UFA is the homomorphism defined by:
14(a)(s) = X4(a, {s}) (a € |4],s € [S]).

Clearly, 74 is a well-defined homomorphism. Moreover, since Homg(4, .S)
separates the points of 4, n4 is a monomorphism for each 4 € .

Definition. For B € B, eB: FUB — Bisthe (Boolean) homomorphism defined
by:

B(X yp(a, M) = V{a(s): s € M} (a € |UB|, M < |S]).
This function on the generators of F(UB) extends to a homomorphism since
if
Ln
c=/NAVia(s):s€ M} >0fora, € |UB|,M,C|S,i=1,2,...,n,
i
then there exists f: B » 2 such that f(¢) = 1. Therefore, for each

i=1,2,...,nf(Magfs): s € M;}) = 1and there exists (a necessarily unique)
s; € M, such that f(a;(s;)) = 1. Consider then

co Uf: UB)— UQ2)—S

where ¢ is the natural isomorphism between U(2) and S. We must have
ola;) = s; € M;foreachz = 1,2,...,n and therefore

imn
coUf€ QXuB(aiy M,);

i.e., this set is not Oz y 5.

Since S contains at least two distinct elements, say s < ¢, for each b € B we

can define @, € UB by:
b, x =s
ay(x) =<0, x =1t

0, otherwise.

Therefore, eB(X yp(as, {s})) = b and €B is surjective.
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THEOREM 5.2. The functors
U
D=
F

are adjoint covariant functors with front (respectively, back) adjunction
n: Ie — UF(e: FU — Is).

The proof is completely computational and is obtained by proving that each
of the diagrams in Figure (iii) commute.

4 f N;; FUB U, ruc
74 1B eBl leC
via—YY s urs B £ »C
(@) (0)
f »UB FA g »B
n4 U(eB) FnAl IeB
vki—Y5 uFuB FUFA FUe  rim
© (@

Figure (iii)
LEMMA 5.3. e FU — I3 is a natural equivalence.

Proof. Since every Boolean algebra is a subalgebra of a power set algebra P(I)
for some set I, and since U and F preserve monomorphisms, it is sufficient in lieu
of Figure (iii) (b) to show that eP(I) is a monomorphism (hence isomorphism)
for each set I.

Now by [12, p. 147], there exists a canonical isomorphism:

f: 87— U(P())

given by: f(a)(s) = Eq(a, A(s)) = {2 € I: a(t) = s}.
Therefore, we need only show that:

eP(I) o Ff: F(S") — FU(P(I)) — P()
is a monomorphism, where
(eP(I) o Ff) Xresh (e, M)) =X§1Jnf(a) (s) = SKGJMEq(a, A(s))-
Now every homomorphism g: S7 — S is determined uniquely by an ultrafilter
U, € Q). This is given by:
g(a) = s if and only if Eq(e, A(s)) € U,.
Therefore, for a; € |ST|, M; S|S],7 =1,2,...,n, N;" X st(a;, M,;) # @ if and
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only if there exists g¢ € Homg(57, S) such that g(a;) € M;(7 =1,2,...,n),if
and only if there exists U € Q(I) such that

1,n
N U Eq(a;, A(s)) € U,
j sEM;

if and only if
1.n
N U Eq(a; A(s)) #= 0.
Jj seM;j
COROLLARY b5.4. U s a full and faithful functor (i.e., the correspondence
Homs (A4, B) — Home(UA, UB) is bijective).
COROLLARY 5.5. 057 is an isomorphism for each set I.
Let A = 8%, B = P(I), and f: S > U(P(I)) be the canonical isomorphism
in Figure (iii) (c).
COROLLARY 5.6. For every C € HP(S), nC s an isomorphism.
For, A = S, B = C,and f: ST — Cin Figure (iii) (a). nC o f = UF(f) o»S7,
which is surjective. Therefore, 7C is surjective.
COROLLARY 5.7. A homomorphic image of any U(B) € & s again (up to
isomorphism) the U-itmage of a Boolean homomorphic image of B.
THEOREM 5.8. The injective algebras in & are up to isomorphism the Boolean
extensions of S by complete (= injective) Boolean algebras.

Proof. Since F preserves monomorphisms, by [6] U preserves injectives. Con-
versely, if Q € & is a non-trivial injective in &, then for some set I we have:

U 4
Q- S'>»Q
with gf = 1,.

By applying F, we have I'Q is a retract of F(S”) which isisomorphic to P(I), a
complete Boolean algebra. From 5.6 it follows that Q >»» UFQ and I'Qis a com-
plete Boolean algebra.

COROLLARY 5.9. The finite injectives in & are exactly the finite powers of S.

For, U(B) = S[B] is finite if and only if B is finite.

CoROLLARY 5.10. 94 s essential for each A € .

If f: A > U(B) is an injective hull of 4, then f = U(eB) o UF(f) on4 is
essential. Since all are monomorphisms and & satisfies (CEP), it follows that n4
is essential.

THEOREM 5.11. For each A € & and B € B, f: A > UB is an injective hull
n & if and only if eB o Ff: FA »> B is an wnjective hull in B.

Proof. Since B isinjective in 8 if and only if UB isinjective in &, we need only
show thatfisessentialin & if and only if Ff (or equivalently, eB o Ff) isessential
in B. :
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Take g: B — Csuch that g o eB o Ffisa monomorphism. By applying U we
obtain

Ulg) of = Ug o U(eB) o UF(f) o154

is a monomorphism, since U preserves monomorphisms. If f is essential, then Ug
is a monomorphism. Hence, g is also, as U is faithful.

Now take g: UB — C such that gf is a monomorphism. By applying
F, F(gf) = Fg o Ff is a monomorphism. If Ff is essential, then Fg is a mono-
morphism. Hence, g is also, as 7C o g = UFg o nUB is a monomorphism.

COROLLARY 5.12. The injective hull of each A € & s given by Ug o nA: A »>
UFA »> FB where g: FA »> B 1s the McNetlle completion of FA.

COROLLARY 5.13. T'he injective hulls of an algebra A € & are unique up to
unique isomorphism over A.

For, this property holds in B by [8].
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