
5
Quantum electrodynamics

The single most important field theory is electromagnetism. It is respon-
sible for atomic structure and for the great diversity of materials around
us: solids, liquids, and gases. The development of nonrelativistic many-
body theory was stimulated primarily by solid state and condensed matter
physics, where the potentials used all derive from electromagnetism. This
compels us to study quantum electrodynamics at high temperatures and
densities where the motion of the electrons becomes relativistic. In met-
als, the density of plasma electrons rarely exceeds a few electrons per
cubic angstrom. This means that the Fermi momentum, kF = (3π2ne)1/3,
is of order 10 keV at most. Unfortunately, it is difficult to test relativistic
many-body theory in the basement of the physics building in table-top
experiments! Our attention must then be directed toward astrophysical
and cosmological applications. Dense astrophysical objects, such as white
dwarf stars, will be considered in Chapter 16.

There is another reason for developing the theory of QED at high tem-
perature and density, and that is the extension to a nonabelian gauge the-
ory, quantum chromodynamics (QCD). We may be able to study QCD at
high energy density in terrestrial experiments by colliding energetic heavy
nuclei (see Chapter 14).

5.1 Quantizing the electromagnetic field

First, let us consider the electromagnetic field in the absence of charged
particles. From classical physics we can write down a field strength tensor
as

Fμν = ∂μAν − ∂νAμ (5.1)
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5.1 Quantizing the electromagnetic field 65

where Aμ is the vector potential. The electric and magnetic fields are

Ei = −F0i = Fi0

Bi = 1
2εijkFjk or B = ∇× A

(5.2)

The Lagrangian density is

L = −1
4FμνF

μν (5.3)

Notice that Fμν is invariant under the local (or x-dependent) transforma-
tion

Aμ(x, t) → Aμ(x, t) − ∂μα(x, t) (5.4)

where α(x, t) is some smooth function of xμ. Since the field strength tensor
is invariant under this transformation, so are the electric and magnetic
fields, and so is the Lagrangian. This is called a U(1) gauge symmetry.

To quantize the theory and to compute a partition function, we need a
Hamiltonian formulation. In order to do this, we must agree on a gauge
to work in. A convenient gauge for this purpose is the axial gauge

A3(x, t) = 0 (5.5)

Actually (5.5) does not entirely fix the gauge, as any gauge function
α(x, y, t) that is independent of z leaves (5.5) unchanged. We shall fix
this residual gauge freedom later.

The conjugate momenta are defined by

πμ =
∂L

∂(∂0Aμ)
= F0μ (5.6)

(This should not viewed be as a tensor equation but as true component by
component.) Since Fμν is antisymmetric in its Lorentz indices, it follows
that π0 = 0. Thus A0 is not a dynamical field, it is a dependent field. The
independent fields are A1 and A2 with conjugate momenta

π1 = F01 = −E1 = ∂0A1 − ∂1A0

π2 = F02 = −E2 = ∂0A2 − ∂2A0 (5.7)

These two independent fields actually correspond to the two polarization
degrees of freedom of free radiation.

The z component of the electric field is

E3 = F30 = ∂3A0 (5.8)

Since A3 = 0 there is no momentum conjugate to A3; hence E3, like A0,
must be a dependent field. We can determine E3 by an application of
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66 Quantum electrodynamics

Gauss’s law, which, in the absence of charged particles, is

∇ · E = 0 (5.9)

Thus,

E3(x, y, z, t) =
∫ z

z0

dz′[∂1π1(x, y, z′, t) + ∂2π2(x, y, z′, t)] + P (x, y, t)

(5.10)

and

A0(x, y, z, t) =
∫ z

z0

dz′′E3(x, y, z′′, t) + Q(x, y, t) (5.11)

Here, P and Q are smooth functions of x, y, and t. The gauge is not
completely fixed until these two functions are specified. They may be
determined by specifying the values of A0 and E3 at z = z0 for all x, y,
and t.

The Hamiltonian may now be found from the Lagrangian in the canoni-
cal way (see (2.23)). Dropping surface terms we find the well-known result

H = 1
2E

2 + 1
2B

2 = 1
2π

2
1 + 1

2π
2
2 + 1

2E
2
3(π1, π2) + 1

2B
2 (5.12)

The partition function is

Z =
∫

[dπ1][dπ2]
∫

periodic
[dA1][dA2]

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
−H

)]
(5.13)

Since we have a free-field theory, we should be able to calculate Z exactly.
However, in the present form this is not easy since it is a rather compli-
cated function of π1 and π2.

To put (5.12) and (5.13) in a more manageable form we insert the
identity

1 =
∫

[dπ3]δ(π3 + E3(π1, π2)) (5.14)

and replace E3 with −π3 in the integrand. Note that, despite the sugges-
tive notation, π3 is not the conjugate momentum of any field; (5.14) is
simply the condition on E3 that ensures Gauss’s law. Now

δ(π3 + E3(π1, π2)) = δ(∇ · π) det
(
∂(∇ · π)

∂π3

)
(5.15)

Furthermore,

det
(
∂(∇ · π)

∂π3

)
= det(∂3) (5.16)
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5.1 Quantizing the electromagnetic field 67

Thus far we have

Z =
∫

[dπ1][dπ2][dπ3]
∫

periodic
[dA1][dA2]δ(∇ · π) det(∂3)

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
− 1

2π
2 − 1

2B
2

)]
(5.17)

The constraint of Gauss’s law can be implemented alternatively by
using the integral representation of the delta function. In vacuum field
theory we would write

δ(∇ · π) =
∫

[dA0] exp
(
i

∫
d4xA0 ∇ · π

)
(5.18)

where A0 is some auxiliary field, or a Lagrange multiplier field. At finite
temperature we make the replacement t → −iτ and now also A0 → iA0.
Thus

δ(∇ · π) =
∫

[dA0] exp
(
i

∫ β

0
dτ

∫
d3xA0 ∇ · π

)
(5.19)

Using this representation to implement Gauss’s law, we may integrate
over π directly:

Z =
∫

[dπ1][dπ2][dπ3]
∫

[dA0][dA1][dA2] det(∂3)

× exp
[∫ β

0
dτ

∫
d3x

(
iπ1

∂A1

∂τ
+ iπ2

∂A2

∂τ
− i∇A0 · π − 1

2π
2 − 1

2B
2

)]
=
∫

[dA0][dA1][dA2] det(∂3)

× exp

{∫ β

0
dτ

∫
d3x

[
1
2

(
i
∂A
∂τ

− i∇A0

)2

− 1
2B

2

]}
(5.20)

where A = (A1, A2, 0) and we have ignored an irrelevant overall normal-
ization constant. Notice that the argument of the exponential is

1
2E

2 − 1
2B

2 = L (5.21)

Making this identification and inserting the factor

1 =
∫

[dA3]δ(A3) (5.22)

we arrive at

Z =
∫

periodic
[dAμ]δ(A3) det(∂3) exp

(∫ β

0
dτ

∫
d3xL

)
(5.23)
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68 Quantum electrodynamics

The axial gauge is not necessarily a convenient gauge to use for practical
computations. Furthermore, it is not immediately apparent that (5.23) is
a gauge-invariant expression for Z. Take an arbitrary gauge specified by
F = 0, where F is some function of Aμ and its derivatives. For the axial
gauge above, F = A3. For this gauge, (5.23) becomes

Z =
∫

periodic
[dAμ]δ(F ) det

(
∂F

∂α

)
exp

(∫ β

0
dτ

∫
d3xL

)
(5.24)

Equation (5.24) is manifestly gauge invariant: L is invariant, the gauge-
fixing factor times the Jacobian of the transformation δ(F ) det(∂F/∂α)
is invariant, and the integration is over all four components of the vector
potential. Equation (5.24) reduces to (5.23) in the case of the axial gauge
A3 = 0. We know this is correct since it was derived from first principles
in the Hamiltonian formulation of the gauge theory, Z = Tr e−βH .

5.2 Blackbody radiation

It is important to verify that (5.24) describes blackbody radiation with
two polarization degrees of freedom. We shall do this in two different
gauges, the axial gauge A3 = 0 and the covariant Feynman gauge.

In the axial gauge, we rewrite (5.20) as

Z =
∫

[dA0][dA1][dA2] det(∂3) eS0 (5.25)

where

S0 = 1
2

∫
dτ

∫
d3x (A0, A1, A2)

×
⎛⎝ ∇2 −∂1∂τ −∂2∂τ

−∂1∂τ ∂2
2 + ∂2

3 + ∂2
τ −∂1∂2

−∂2∂τ −∂1∂2 ∂2
1 + ∂2

3 + ∂2
τ

⎞⎠⎛⎝A0

A1

A2

⎞⎠
We may express the determinant of ∂3 as a functional integral over a
complex ghost field C, which is a Grassmann field with spin 0:

det(∂3) =
∫

[dC̄][dC] exp
(∫ β

0
dτ

∫
d3x C̄∂3C

)
(5.26)

(This is (2.82) generalized to an infinite number of degrees of freedom.)
These ghost fields C and C̄ are not physical fields since they do not
appear in the Hamiltonian. Furthermore, since they are anticommuting
scalar fields they violate the spin-statistics theorem. They are simply a
convenient functional integral representation of the determinant of an
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5.2 Blackbody radiation 69

operator. The great usefulness of these fictitious ghost fields will be in
nonabelian gauge theories.

In frequency–momentum space the partition function is expressed as

lnZ = ln det(βp3) − 1
2 ln detD (5.27)

where

D = β2

⎛⎝ p2 −ωnp1 −ωnp2

−ωnp1 ω2
n + p2

2 + p2
3 −p1p2

−ωnp2 −p1p2 ω2
n + p2

1 + p2
3

⎞⎠
Carrying out the determinantal operation,

lnZ = 1
2Tr ln

(
β2p2

3

)− 1
2 Tr ln

[
β6p2

3

(
ω2
n + p2

)2]
= ln

{∏
n

∏
p

[
β2(ω2

n + p2)
]−1

}

= 2V
∫

d3p

(2π)3
[
−1

2βω − ln(1 − e−βω)
]

(5.28)

Here, ω = |p|. Comparison with (2.40) shows that (5.28) describes mass-
less bosons with two spin degrees of freedom in thermal equilibrium; in
other words, blackbody radiation.

A family of covariant gauges is given by the condition

F = ∂μAμ − f(x, τ) = 0 (5.29)

where f is an arbitrary function. Under a gauge transformation,

F = ∂μ(Aμ − ∂μα) − f = ∂μAμ − f − ∂2α (5.30)

and ∂F/∂α = −∂2. Inserting into (5.24) yields

Z =
∫

[dAμ] det(−∂2) δ(∂μAμ − f) exp
(∫ β

0
dτ

∫
d3xL

)
(5.31)

The physics contained in Z is unchanged if we first multiply by

exp
(
− 1

2ρ

∫
dτ

∫
d3x f2

)
and then do a functional integration over f ,

Z =
∫

[dAμ] det(−∂2) exp
(∫

dτ

∫
d3xLeff

)
(5.32)
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70 Quantum electrodynamics

where

Leff = L − 1
2ρ

(∂μAμ)2

is the effective Lagrangian, including the gauge-fixing term, and ρ is any
real number. The Feynman gauge corresponds to the choice ρ = 1 and
the Landau gauge to ρ = 0.

The partition function should be independent of α and should be the
same as in the axial gauge. For simplicity, we examine Z in the Feynman
gauge. Then,∫

dτ

∫
d3xLeff = 1

2

∫
dτ

∫
d3xAμ

(
∂2
τ + ∇2

)
Aμ (5.33)

where the summation over μ is Euclidean because in (5.19) we let A0 →
iA0. We again employ a ghost field to write

det(−∂2) =
∫

[dC̄][dC] exp
(∫

dτ

∫
d3x (∂μC̄)(∂μC)

)
(5.34)

Combining (5.32) with (5.34), we get

lnZ = 2
(

1
2

)
Tr ln

[
β2
(
ω2
n + p2

)]
+ 4
(−1

2

)
Tr ln

[
β2
(
ω2
n + p2

)]
(5.35)

The four degrees of freedom of the Aμ field combine with the two degrees
of freedom of the C (ghost) field, which contribute with the opposite
sign, to produce just the correct number of physical degrees of freedom.
The complex ghost field cancels the unphysical degrees of freedom of the
longitudinal and timelike photons. Equation (5.35) is the same as (5.28).

5.3 Diagrammatic expansion

Photons interact with fermions (to be specific, we shall consider electrons)
with the interaction Lagrangian

LI = −eψ̄Aψ (5.36)

where e is the electronic charge. By far the most frequently used gauges
are the covariant gauges. The partition function is

Z =
∫

[dC̄][dC][dAμ][dψ̄][dψ] exp
(∫

dτ

∫
d3xL

)
(5.37)

where

L = L0 + LI
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5.4 Photon self-energy 71

and

L0 = ψ̄(i ∂ −m + μγ0)ψ − 1
4F

μνFμν

− 1
2ρ

(∂μAμ)2 + (∂μC̄)(∂μC)

The ghost field does not interact with any other field but serves only to
cancel two of the four gauge-field degrees of freedom in the ideal gas term.

The partition function and other physical quantities of interest may be
formally expanded in a power series in LI or e. The diagrammatic rules
closely parallel those discussed in Chapter 3. The bare propagators and
vertex are:

fermion G0 =
1

p−m
=

p

p0 = (2n + 1)πT i + μ (5.38)

photon Dμν
0 =

1
p2

[gμν − (1 − ρ)pμpν/p2] =
μ ν

p0 = 2nπTi

vertex

−eγμ =

μ

As an example, the lowest-order correction to the ideal gas of photons,
electrons, and positrons is

lnZ2 = −1
2 (5.39)

The photon self-energy at one loop is

Πμν = D−1
μν −D0

−1
μν = (5.40)

5.4 Photon self-energy

The photon self-energy is related to the inverse of the full and bare prop-
agators by

Πμν = D−1
μν −D0

−1
μν (5.41)

The inverse propagator is related to the propagator by

DμαD−1
αν = gμν (5.42)

The propagator and the self-energy satisfy certain fundamental con-
straints. To discover them, it is convenient to work with k0 = 2nπTi ana-
lytically continued to arbitrary complex values. (Recall our analysis of
Section 3.4. This continuation will be taken up again in Chapter 6.) Let
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72 Quantum electrodynamics

kμ be the four-momentum of the photon. Current conservation requires
that Πμν be transverse,

kμΠμν = 0 (5.43)

and gauge invariance requires that

kμkνDμν = ρ (5.44)

in a covariant gauge specified by ρ. Both these constraints hold at T >
0, μ = 0, as well as in the vacuum. The interested reader is referred to
Fradkin [1] for a proof of (5.43). The proof of (5.44) will now be outlined.

Consider making the gauge transformation Aμ → Aμ − ∂μα, ψ → eieαψ
in the partition function as expressed in (5.37). All terms are manifestly
independent of α apart from the gauge-fixing term, which becomes

− 1
2ρ

(∂μAμ − f)2

where

f = ∂2α

By construction, the partition function is gauge invariant. Therefore, if
we functionally differentiate lnZ with respect to f any number of times,
we must get zero. In particular,

δ lnZ

δf(x, τ)
=

〈∂μAμ(x, τ)〉
ρ

− f(x, τ)
ρ

= 0

δ2 lnZ

δf(x, τ)δf(x′, τ ′)
=

〈∂μAμ(x, τ)∂νAν(x′, τ ′)〉
ρ2

− 〈∂μAμ(x, τ)〉f(x′, τ ′)
ρ2

(5.45)

− δ(τ − τ ′)δ(x − x′)
ρ

= 0

Evaluating (5.45) at f = 0 and taking the Fourier transform, we obtain
(5.44). A constraint on the thermal average of a product of N vector
potentials is likewise obtained by differentiating N times lnZ with respect
to f , and then setting f = 0.

The propagator, its inverse, and the self-energy, are all symmetric
second-rank tensors. Assuming rotational invariance (which would not
be correct for a solid) the most general tensor of this type is a linear
combination of gμν , kμkν , uμuν , and kμuν + kνuμ. Here uμ = (1, 0, 0, 0)
specifies the rest frame of the many-body system. Taking into account

https://doi.org/10.1017/9781009401968.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.006


5.4 Photon self-energy 73

(5.41) to (5.44) we obtain the general forms

Πμν = GPμν
T + FPμν

L

Dμν =
1

G− k2
Pμν

T +
1

F − k2
Pμν

L +
ρ

k2

kμkν

k2
(5.46)

(D−1)μν = (G− k2)Pμν
T + (F − k2)Pμν

L +
kμkν

ρ

The quantities F and G are scalar functions of k0 and |k|. The two pro-
jection operators are four-dimensionally transverse, but one is also three-
dimensionally transverse (PT) while the other is three-dimensionally lon-
gitudinal (PL):

P 00
T = P 0i

T = P i0
T = 0

P ij
T = δij − kikj/k2 (5.47)

Pμν
L = kμkν/k2 − gμν − Pμν

T

These have the properties

Pμσ
L PLσν = −Pμ

Lν

Pμσ
T PTσν = −Pμ

Tν

kμP
μν
T = kμP

μν
L = 0 (5.48)

Pμσ
L PTσν = 0

Pμ
Lμ = −1

Pμ
Tμ = −2

In the vacuum there is no preferred rest frame, so the vector uμ cannot
play any role (it is not defined). Also, in the vacuum Πμν must be propor-
tional to gμν − kμkν/k2; hence F = G. Furthermore, G can only depend
on k2. At finite temperature and density, however, F and G can depend
on k0 = u · k and |k| =

√
(u · k)2 − k2 separately, owing to the lack of

Lorentz invariance.
Let us evaluate the photon self-energy at the one-loop level. From

(5.40),

Πμν = e2T
∑
l

∫
d3p

(2π)3
Tr
(
γν

1
p−m

γμ
1

p+ k −m

)
(5.49)

Here p0 = (2l + 1)πTi + μ and k0 = 2nπTi. We can always write Πμν =
Πμν

vac + Πμν
mat, where

Πμν
vac = lim

T→0
μ→0

Πμν (5.50)
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74 Quantum electrodynamics

is the vacuum self-energy and Πμν
mat is the remainder due to the presence of

matter. The vacuum part is discussed in many textbooks on field theory,
such as Peskin and Schroeder [2]. The matter part is readily evaluated:

Π00
mat = − e2

π2
Re
∫ ∞

0

dp p2

Ep
NF(p)

[
1 +

4Epk
0 − 4E2

P − k2

4pω
ln
(
R+

R−

)]
(5.51)

Πμ
matμ = −2

e2

π2
Re
∫ ∞

0

dp p2

Ep
NF(p)

[
1 − 2m2 + k2

4pω
ln
(
R+

R−

)]
Here

ω = |k| k2 = k2
0 − ω2 Ep =

√
p2 + m2

NF(p) =
1

eβ(Ep−μ) + 1
+

1
eβ(Ep+μ) + 1

R± = k2 − 2k0Ep ± 2pω

Also, the reader should note that here we define the action of the operator
Re as follows: Ref(k0) = 1

2 [f(k0) + f(−k0)].
Various limits of (5.51) are of physical interest. They correspond to the

screening of electric and magnetic fields and plasma oscillations. These
topics are discussed in Chapter 6 in particular, in the context of linear
response theory.

5.5 Loop corrections to lnZ

5.5.1 Two loops

The lowest-order correction to lnZ due to interactions is the two-loop
diagram seen in (5.39). There are two methods of doing explicit calcula-
tions with such diagrams. In the traditional method the frequency sums
are performed directly. Another method uses analytic continuation and
contour integrals, as discussed in Chapter 3. Both methods must of course
give the same answer, but usually the contour integral method is much
easier.

From (5.39), we have in the Feynman gauge the exchange contribution

lnZex

βV
= −1

2
e2

∫
d3p

(2π)3
d3q

(2π)3
d3k

(2π)3
(2π)3δ(p − q − k)

× T 3
∑

np,nq,nk

βδnp,nq+nk

Tr[γμ(p + m)γμ(q + m)]
k2(p2 −m2)(q2 −m2)

(5.52)
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The trace is readily carried out. Apart from integration over three-
momenta this becomes

−8T 3
∑

np,nq,nk

βδnp,nq+nk

2m2 − p · q
k2(p2 −m2)(q2 −m2)

(5.53)

The Kronecker delta may be written as

βδnp,nq+nk
=
∫ β

0
dθ exp[θ(p0 − q0 − k0)]

=
exp

[
β(p0 − q0 − k0)

]− 1
p0 − q0 − k0

(5.54)

where p0 = (2np + 1)πTi + μ, q0 = (2nq + 1)πTi + μ, and k0 = 2nkπT i.
Since q0 and k0 enter the argument of the exponential with minus signs
we multiply by − exp[β(k0 + q0 − μ)], which is unity when evaluated on
the integers. This procedure ensures that the integrands of the contour
integrals fall off exponentially before the θ integration is performed, so
that one never need worry about contributions from contours distorted
out to infinity. This procedure also guarantees that the normal vacuum
is recovered in the limit of zero temperature and chemical potential (see
the discussion in the papers of Norton and Cornwall [3] and Kapusta [4]).
With this analytic continuation of the Kronecker delta, (5.53) becomes

−8T
∑
nk

1
k2

T
∑
np

1
p2 −m2

T
∑
nq

1
q2 −m2

I(p0, q0, k0) (5.55)

where

I(p0, q0, k0) =
2m2 − p · q
p0 − q0 − k0

{exp[β(k0 + q0 − μ)] − exp[β(p0 − μ)]}

Notice that I has no singularities. Hence, each of the sums may be
converted to a contour integral via (3.40) and (3.71), and these contour
integrations may be performed simultaneously and independently. For
example,

T
∑
np

1
p2 −m2

I(p0, q0, k0)

= I(Ep, q
0, k0)

N−
F (p)
2Ep

+ I(−Ep, q
0, k0)

N+
F (p) − 1
2Ep

(5.56)
T
∑
nk

1
k2

I(p0, q0, k0)

= −I(p0, q0, ω)
NB(k)

2ω
− I(p0, q0,−ω)

NB(k) + 1
2ω
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where the fermion and boson occupation numbers are

N±
F (p) =

1
exp[β(Ep ± μ)] + 1

(5.57)
NB(k) =

1
exp(βω) − 1

and ω = |k|, Ep =
√

p2 + m2.
As is evident, the contour integration method has two obvious advan-

tages over the direct summation method. First, the contour integrals may
be evaluated independently of each other whereas the direct summations
must be done in consecutive order. This is a great algebraic simplifica-
tion, which becomes more pronounced as the complexity of the diagram
increases. Second, the contour integration puts each particle on its mass
shell automatically.

When (5.56) is used to evaluate (5.55), one finds terms that are
quadratic in the occupation numbers, terms that are linear, and terms
that are independent of the occupation numbers. Those that are indepen-
dent represent the energy shift of the vacuum and are not of interest to
us. Those that are linear are canceled by the fermion and photon vacuum
self-energy renormalizations. These are represented as

−

( (

− 1
2

( (

the angled parentheses indicating that the T = μ = 0 limit of the sub-
graph is to be taken (cf. (3.49)). Putting all the above together we find
the two-loop result:

lnZex

βV
= − 1

6
e2T 2

∫
d3p

(2π)3
NF(p)
Ep

− 1
2
e2

∫
d3p

(2π)3
d3q

(2π)3
1

EpEq

×
{(

1 +
2m2

(Ep − Eq)2 − (p − q)2

)
[N−

F (p)N−
F (q) +N+

F (p)N+
F (q)]

+
(
1 +

2m2

(Ep + Eq)2 − (p − q)2

)
[N−

F (p)N+
F (q) +N+

F (p)N−
F (q)]

}
(5.58)

where NF = N+
F + N−

F . This is referred to as the exchange term because
in the T = 0 limit it arises from the exchange of the three-momenta of
a pair of fermions in the Fermi sea. Various limits of the exchange term
are of interest, and so are listed below; note that the Fermi momentum is
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pF =
√
μ2 −m2 when |μ| > m:

lnZex

βV
= − e2

(2π)4

{
3
2

[
μpF −m2 ln

(
μ + pF

m

)]2

− p4
F

}
(T = 0) (5.59)

lnZex

βV
= − e2

288

(
5T 4 +

18
π2

μ2T 2 +
9
π4

μ4

)
(m = 0) (5.60)

lnZex

βV
=

e2

2(2π)3
m2T 2e2(μ−m)/T (T � m− μ � m) (5.61)

Equation (5.59) will be useful in our discussion of white dwarf stars.
Equation (5.60) will reappear in QCD plasma. Equation (5.61) modifies
the classical ideal gas equation of state to P = nT − e2n2/8mT .

5.5.2 Ring diagrams

The next order to contribute is not e4 as naively expected but e3 when
T > 0 and e4 ln e2 when T = 0 but μ = 0. These arise from the set of ring
diagrams shown in (3.54), where the photon self-energy is given to lowest
order by (5.40),

lnZring

βV
= −1

2T
∑
n

∫
d3k

(2π)3
Tr {ln [1 + D0(k)Π(k)] −D0(k)Π(k)} (5.62)

Making use of the explicit forms of D0 and Π as given by (5.46), we may
carry out the trace operation to obtain

lnZring

βV
= −1

2T
∑
n

∫
d3k

(2π)3

{
2
[
ln
(

1 − G(n, ω)
k2

)
+

G(n, ω)
k2

]

+ ln
(

1 − F (n, ω)
k2

)
+

F (n, ω)
k2

}
(5.63)

Note that F and G are functions of n (since k0 = 2πnTi) and ω = |k|. The
terms involving G have a coefficient of 2 relative to the terms involving F .
The reason is that there are two transverse degrees of freedom but only
one longitudinal degree of freedom (Pμ

Tμ = −2, Pμ
Lμ = −1). Note that the

expressions (5.62) and (5.63) are manifestly gauge invariant since the ρ-
dependent part of D0 vanishes, as a consequence of current conservation,
when it multiplies Π.

Since −k2 = ω2 + 4π2T 2n2, the logarithms may be expanded to second
order in F and G to give an e4 contribution, as long as n = 0. If either
F (n = 0, ω → 0) or G(n = 0, ω → 0) does not vanish then expan-
sions of the logarithms do not converge. To isolate this potential infrared
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divergence, we write

−1
2T

∫
d3k

(2π)3

[
2 ln

(
1 +

G(0, 0)
ω2

)
− 2G(0, 0)

ω2
+ ln

(
1 +

F (0, 0)
ω2

)
− F (0, 0

ω2

]
(5.64)

The remaining terms, which are explicitly of order e4 and which have no
infrared divergence, are

1
4
T

∫
d3k

(2π)3

⎧⎨⎩∑
n�=0

[
2
(
G(n, ω)

k2

)2

+
(
F (n, ω
k2

)2
]

+ 2
(
G(0, ω)

ω2

)2

− 2
(
G(0, 0)
ω2

)2

+
(
F (0, ω)

ω2

)2

−
(
F (0, 0)
ω2

)2
}

(5.65)

Upon examination of (5.46) and (5.51) we find that G(n = 0, ω → 0) = 0
but

F (n = 0, ω → 0) =
e2

π2

∫ ∞

0

dp

Ep

(
p2 + E2

p

)
NF(p) (5.66)

After integrating over k in (5.64), we find the order-e3 contribution,

lnZring

βV
=

T

12π
F 3/2(0, 0) (5.67)

This result, nonanalytic in α = e2/4π, is precisely analogous to our result
in Chapter 3 for the massless λφ4 theory. The nonanalyticity here arises
because interactions at finite temperature and density generate a static
electric screening mass for the photon.

There are several interesting limits of F (n = 0, ω → 0). In the ultrarel-
ativistic limit (m = 0),

F (0, 0) = e2

(
T 2

3
+

μ2

π2

)
(5.68)

In the nonrelativistic limit and with classical statistics,

F (0, 0) =
2e2

T

(
mT

2π

)3/2

e(μ−m)/T (5.69)

which, when inserted in (5.67), is the well-known Debye–Hückel formula.
At zero temperature, the discrete frequency of the photon becomes

continuous and the n = 0 mode cannot be isolated. From (3.40),

lim
T→0

T
∑
n

=
1

2πi

∫ i∞

−i∞
dk0 =

1
2π

∫ ∞

−∞
dk4 (5.70)
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At T = 0 it is convenient to work in Euclidean space with k4 = −ik0 and
with k̄2 = k2

4 + k2 = −k2 ≥ 0. Both F and G are functions of |k̄| and φ,
where tanφ = |k|/k4. Then (5.63) becomes

lnZring

βV
= − 1

(2π)3

∫ ∞

0
dk̄2 k̄2

∫ π/2

0
dφ sin2 φ

×
{

2
[
ln
(

1 +
G(k̄2, φ)

k̄2

)
− G(k̄2, φ)

k̄2

]
+ ln

(
1 +

F (k̄2, φ)
k̄2

)
− F (k̄2, φ)

k̄2

}
(5.71)

The potential infrared divergence in (5.71) may be isolated by setting
k̄ = 0 whenever possible in the integrand:

− 1
(2π)3

∫ ∞

0
dk̄2 k̄2

∫ π/2

0
dφ sin2 φ

{
2 ln

(
1 +

G(0, φ)
k̄2

)
+ ln

(
1 +

F (0, φ)
k̄2

)

− 2G(0, φ) + F (0, φ)
k̄2

+
1

2k̄2

1
k̄2 + μ2

[F 2(0, φ) + 2G2(0, φ)]
}

(5.72)

Notice the term 1/(k̄2 + μ2). The choice of μ2 is arbitrary; any choice
independent of e2 will give the same coefficient of e4 ln e2. After integrating
over k̄2, (5.72) becomes

− 1
2(2π)3

∫ π/2

0
dφ sin2 φ

{
F 2(0, φ)

[
ln
(
F (0, φ)

μ2

)
− 1

2

]
+ 2G2(0, φ)

[
ln
(
G(0, φ)

μ2

)
− 1

2

]}
(5.73)

The explicit forms of F (0, φ) and G(0, φ) may be substituted in (5.73)
and the integration performed. A lengthy analysis yields

lnZring

βV
= −e4 ln e2

128π6

[
(6 − 4 ln 2)μp3

F − 5μ2p2
F + 4μ3pF ln

(
μ + pF

μ

)
+ 6μm2pF ln

(
μ+ pF

25/3μ

)
−m2(4μ2 +m2) ln2

(
μ+ pF

m

)
+ m2μ(4μ2 + m2)

I(a)
pF

]
(5.74)

where

I(a) =
∫ ∞

0

dx

a2x2 − 1
ln
(
x + 1
x− 1

)
a =

μ

pF
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The ultrarelativistic limit is

lnZring

βV
= −e4 ln e2

128π6
μ4 (5.75)

and the nonrelativistic limit is

lnZring

βV
= −e4 ln e2

48π6
(1 − ln 2)μp3

F (5.76)

5.5.3 Three loops at finite density

The three-loop diagrams not included in the ring sum are

+ (5.77)

The evaluation of these diagrams is technically quite involved because of
overlapping ultraviolet divergences. For further discussion, see Freedman
and McLerran [5] and Baluni [6].

The result of evaluating (5.77) together with the order-e4 contribution
from the sum of ring diagrams is

P =
μ4

12π2

[
1 − 3

2
α(M)
π

− 3
2

(
α(M)
π

)2

ln
(
α(M)
π

)

− 1
2

(
α(M)
π

)2

ln
(

μ2

M2

)
+ (2.118 19)

(
α(M)
π

)2
]

(5.78)

Certain integrals had to be done numerically in producing this result,
giving the number in the coefficient of α2. The photon wavefunction
renormalization constant Z3 was defined at a Euclidean subtraction point
k̄2 = M2. Equivalently, the photon self-energy was renormalized in such
a way that F (k̄2 = M2, μ = 0) = G(k̄2 = M2, μ = 0) = 0.

The choice of subtraction energy M is completely arbitrary. In (5.78)
notice that a logarithm of μ/M appears. At higher orders of α, higher
powers of the logarithm will appear. Therefore, to reduce the importance
of higher-order terms at high density we are free to choose M = μ. (The
optimum choice of the constant of proportionality between M and μ is
not known.) Then (5.78) becomes

P =
μ4

12π2

[
1 − 3

2
α(μ)
π

− 3
2

(
α(μ)
π

)2

ln
(
α(μ)
π

)

+ (2.118 19)
(
α(μ)
π

)2
]

(5.79)
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The next question is: What is α(μ)? From our knowledge of the renor-
malization group we know that α(μ) must satisfy a renormalization-group
equation. To lowest order,

M
dα

dM
= c0α

2 (5.80)

In massless QED the constant c0 is computed to be 2π/3. Realizing that
we have chosen M = μ to suppress large logarithms at high density, we
find that the renormalization-group running coupling is

α

(
μ

μ0

)
=

α(1)
1 − [2α(1)/3π)] ln(μ/μ0)

(5.81)

Here μ0 is some reference scale and α(1) is the value of the coupling at
that scale. Just as in (4.24), (4.25) for the massless λφ4 theory, we can
combine α(1) and μ0 into one constant Λ. Then

α
(μ

Λ

)
=

3π
2 ln(Λ/μ)

(5.82)

Here Λ is the intrinsic energy scale of massless QED. This theory is not
asymptotically free. Therefore, when μ � Λ the coupling α(μ/Λ) is very
small. The perturbative expansion of the partition function for a cold
high-density electron gas converges rapidly until μ � Λ is reached. This
limitation is not of practical significance because the intrinsic energy scale
Λ ∼ mee137 is astronomically large (me = 0.511 MeV).

It is apparent that the perturbation series for P in (5.79) is rapidly con-
vergent at non-astronomically-large densities because α/π � 2.3 × 10−3.

5.5.4 Three loops at finite temperature

The pressure for finite temperature QED has been calculated for μ = 0
up to order e5. We first show results up to e4. See Corianò and Parwani
[7] for the details (especially on the delicate handling of the singular-
ities). The usual zero-temperature ultraviolet singularities are regular-
ized through dimensional regularization, ensuring that the physical result
is gauge invariant. Evaluating the diagrams (5.77) at finite temperature
for Nf electron flavors (physical QED corresponds to Nf = 1), with the
appropriate counterterms, yields

P

T 4
=

π2

45

(
1 +

7
4
Nf

)
− 5e2Nf

288

+
e3

12π

(
Nf

3

)3/2

+
e4Nf

π6
(0.4056 ± 0.0030)

− e4N2
f

[
0.4667 ± 0.0020

π6
+

5
1728π2

ln
(

T

M

)]
(5.83)
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The above also includes the e4 contribution for the set of ring diagrams
discussed earlier. As before the uncertainties in the quantities are due to
the numerical evaluation of some integrals. Note that the coupling in the
expression for the pressure is to be evaluated at some renormalization
scale M . This scale M may be chosen on physical grounds: for example,
setting M = T will eliminate the logarithm at this and higher orders.
An alternative procedure is to use renormalization-group arguments to
relate the coupling e at some scale M to that at another scale set by the
temperature. Doing this, one may write

e2(T ) = e2

[
1 +

e2Nf

6π2
ln
(

T

M

)]
+ O(e6) (5.84)

where e is the coupling in (5.83). Defining α(T ) = e2(T )/4π, (5.83) can
be written as

P

T 4
=

π2

45

(
1 +

7
4
Nf

)
− 5π2

72
α(T )Nf

π
+

2π2

9
√

3

(
α(T )Nf

π

)3/2

+
(

0.658 ± 0.006
Nf

− 0.757 ± 0.004
)(

α(T )Nf

π

)2

+ O
(
α(T )5/2

)
(5.85)

The logarithm in (5.83) has disappeared and has been absorbed into the
renormalization-group redefinition of the coupling constant.

The order-e5 contribution is then obtained by resumming the boson
propagators in (5.77) through a ring insertion, as discussed previously.
The details appear in Parwani and Corianò [8]; the result is

P5

T 4
=
(
α(T )Nf

π

)5/2(π2 [1 − γE − ln(4/π)]
9
√

3
− π2

2Nf

√
3

)
(5.86)

where γE is Euler’s constant.

5.6 Exercises

5.1 Prove (5.12).
5.2 Derive the blackbody radiation formula from (5.32) for arbitrary ρ.
5.3 Discuss what happens when the nonlinear gauge F = AμAμ −

f(x, τ) = 0 is chosen.
5.4 Derive the free-photon propagator given by (5.38).
5.5 Obtain the general forms given in (5.46) for the in-medium photon

propagator and its inverse.
5.6 Repeat the calculation in the text for lnZex but with an arbitrary

covariant gauge parameter ρ. Is the result independent of ρ?
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5.7 Using (5.51) and (5.46), find the limits of F and G when k2 = k2
0 −

k2 = 0.
5.8 Determine the combinatoric factors for the two diagrams of (5.77).
5.9 Derive (5.63) from (5.62).
5.10 Calculate the relative contributions to the pressure in QED at finite

temperature and zero electron mass from orders 0, 2, 3, 4 and 5 in e
for arbitrary Nf .

References

1. Fradkin, E. S., Proc. Lebedev Phys. Inst. 29, 6 (1965).
2. Peskin, M. E., and Schroeder, D. V. (1995). An Introduction to Quantum

Field Theory (Addison-Wesley, Reading).
3. Norton, R. E., and Cornwall, J. M., Ann. Phys. (NY) 91, 106 (1975).
4. Kapusta, J. I., Nucl. Phys. B148, 461 (1979).
5. Freedman, B. A., and McLerran, L. D., Phys. Rev. D 16, 1130, 1147, 1169

(1977).
6. Baluni, V., Phys. Rev. D 17, 2092 (1978).
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