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RINGS WHOSE INDECOMPOSABLE INJECTIVE 
MODULES ARE UNISERIAL 

DAVID A. HILL 

Introduction. A module is uniserial in case its submodules are linearly 
ordered by inclusion. A ring R is left {right) serial if it is a direct sum of 
uniserial left (right) R-modules. A ring R is serial if it is both left and right 
serial. It is well known that for artinian rings the property of being serial 
is equivalent to the finitely generated modules being a direct sum of 
uniserial modules [8]. Results along this line have been generalized to 
more arbitrary rings [6], [13]. 

This article is concerned with investigating rings whose indecomposable 
injective modules are uniserial. The following question is considered 
which was first posed in [4]. If an artinian ring R has all indecomposable 
injective modules uniserial, does this imply that R is serial? The answer 
is yes if R is a finite dimensional algebra over a field. In this paper it is 
shown, provided R modulo its radical is commutative, that R has every 
left indecomposable injective uniserial implies that R is right serial. 

The following definitions and notation will be needed. All rings have 
an identity, and all modules are unital. The Jacobson radical will be 
denoted by / . A submodule K is large in a module M in case K C\ L 7^ 0 
for every non-zero submodule L of M. The injective hull of M, denoted by 
E{M), is an injective module such that there exists a monomorphism 
i: M -> E(M) with the property that i{M) is large in E(M). 

The socle of M, denoted by S(M), is the largest semi-simple submodule 
of M. If R is artinian and M is any J\-module then M/JM, denoted by 
T(M)} is a direct sum of simples and is called the top of M. 

If M is a semi-simple module the number of simple direct summands of 
M will be denoted by C(M). The notation M(n) will be used to denote the 
direct sum of ^-copies of M. The notation RM(MR) will often be used to 
signify that AT is a left (right) i^-module. We shall say that M is an 
R — S bimodule where R and S are rings in case RMS and (rrn)s = r(ms) 
for r e R, s G S, m G M. 

1. Rings with indecomposable injectives uniserial. 

1.1 PROPOSITION. Let R be an artinian ring such that every indecomposable 
injective left R-module is uniserial. Then every factor ring of R has this 
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property. Conversely, if R/J2 has every indecomposable infective left R-
module uniserial, then so does R. 

Proof. Let R/I be a factor ring of R and ER/I be an indecomposable 
injective over R/I. As S(ER/I) is simple, the injective hull of ER/I is 
uniserial since it is a submodule of a uniserial module. 

The final statement follows using an argument dual to the one in [8]. 

1.2 LEMMA. Let R be a ring such that every indecomposable injective left 
R-module is uniserial. Then any ring Morita equivalent to R has this 
property. 

Proof. This result follows from the Morita theorems and will be left to 
the reader. 

A ring is said to be basic in case 1 = ex + + en where eu . . ., en 

are primitive orthogonal idempotents and Ret ~ Rej for i 9^ j . Since any 
artinian ring is Morita equivalent to a basic artinian ring, 1.2 allows us 
to restrict our attention to basic rings. 

The following lemma was essentially proved in [4]. 

1.3 LEMMA. Let R be a basic artinian ring with J2 = 0. Suppose that 
every indecomposable left injective R-module is uniserial. Let e and f be 
primitive idempotents of R such that f Je ^ 0, then fJ ~ T(eR)(n). 

Proof. This result follows from [4, Theorem 2.4]. 

Letting eRe = eRe/eJe and fRf = fRf/fJf, it is clear t h a t / / = fJe 
is a left fRf right eRe vector space. Likewise, it is not difficult to show 
that the left fRf action on fJe corresponds to the left R action, and the 
right eRe action on fJe corresponds to the right R action. 

1.4 LEMMA. Let R be as in 1.3. Consider the indecomposable projective 
left R-module Re where e is a primitive idempotent. Suppose fJe ^ 0 for 
some primitive idempotent f. Then fJe contains no proper non-zero left fRf 
right eRe submodules. 

Proof. Suppose fRf(Ie) eRe is a non-zero left fRf right eRe submodule of 
fJe. Consider an indecomposable injective uniserial module E = Re/Ke, 
with Ke a maximal submodule of Je. Since 

rs(jl) = {x e E\fl • x = 0} = Je/Ke, 

[4, Lemma 2.3] implies that fie = fJe. 

2. The case when J2 = 0. Throughout this section leti? be a basic 
artinian ring with J2 = 0 and such that every left indecomposable injec
tive module is uniserial. The purpose of this section will be to characterize 
those artinian rings with J2 = 0 whose indecomposable injectives are 
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uniserial. To prove the following lemmas, we shall need a number of 
facts and definitions. 

For R an artinian ring with J2 = 0 and such that every indecomposable 
left injective module is uniserial, let e be a primitive idempotent. We shall 
assume there exists a primitive idempotent / such that fJe 9^ 0. Thus 
/ / = fJe is a lehfRf right eRe vector space. Let le be a maximal (possibly 
le — 0 if Je is simple) proper semi-simple left ideal contained in Je with 
the property that the complement of le in Je is isomorphic to a copy of 
T(Rf). That is, le © Rx = Je with ite * ? W ) . The hypothesis that 
fJe 9e 0 guarantees the existence of such maximal left subideals. 

Define 

e$e — {e<pe £ Re\ leye C i>}. 

Then it is easily seen that e$e is a subring of eife and e/e C e$e. Likewise 
it is not difficult to show that e$e = e^e/eJe is a division subring of eRe. 
Also it is clear that le, fie, Je, fJe are left R right e$e modules and that 
fJe and fie are lehfRf right e$e vector spaces. As Re/Ie is uniserial, it is 
the injective hull of T(Rf). Likewise, we have that 

End* (Re/Ie) ^ e^e/ele. 

Let M be a left .R-module and S = End# (M). Then M is naturally an 
5-module in the obvious way. The module M is said to be balanced in 
case the natural ring homomorphism 7? —> Ends (M) is surjective. If M 
is injective then M is a cogenerator in case M contains an isomorphic copy 
of each simple left /^-module. 

2.1 LEMMA. Let e$e, e>f, le be as defined previously. Suppose y G Ende$e 

(Re/Ie) satisfies Im (7) C Je/Ie C ker (7). 77&en 7 is given 6y a left 
multiplication of an element in R. 

Proof. Let E — Ei ® © En be a minimal injective left cogenerator 
for i? where each Et is an indecomposable uniserial injective module. 
Set Si = End# (Et) and 5 = Endfl (£) . Thus for some a ^ w, 

£« ^ i?e//e and e$e/ele ^ 5«. 

So we may assume that 7 G Endsa (Ea). Since £ is an injective co-
generator in an artinian ring R, E is balanced [1, page 218, exercise 32]. 
Extend 7 to 7' : E —> E by defining y'(Ej) = 0 for j 9e a and 7'Ox;) = 
7(x), (x 6 £ a ) . It need only be shown that 7' is an S-homomorphism in 
order to prove the lemma. 

Each element s £ S can be represented as an n X n matrix where the 
if th entry si3- is an i?-homomorphism from Ej toEf. We make the following 
observations: For j 9^ i, stj(JEj) = 0. Otherwise s a is an isomorphism 
between Et and Ejt a contradiction to E minimal. Since Ea has composi-
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tion length = 2, these remarks imply tha t 

Im (saj) C JEa, (J j£ a). 

Using these remarks and lett ing s £ S, x £ E where Xj = TJ(X), (j = 1, 
. . ., n), yields 

y'(s(x)) = 7 ' ( Z ) ^ ( ^ ) » • • • > 

Also, 

sy'(x) = 5 • (0, . . . , Y O « ) , . • -, 0) 

Since 7 is an 5 a homomorphism, the above two equat ions are equal. T h u s 
y' is an 5-momomorphism. This means t h a t y' (and therefore 7) is given 
by a left multiplication of an element in R. 

Another version of the next proposition was proved by V. P. Camillo 
and K. R. Fuller when R is local, J2 = 0, and C{RJ) = 2 [2]. 

2.2 PROPOSITION. Let e, f, le, and e$e be as defined previously. Then 

dim e$ e (Ree$e) S C(RJe) < 00. 

Proof. Let n — C(RJe). Suppose t ha t 

m = d i m e i e (Ree$e) > n. 

So consider an e$e independent set {r *}"=<) C Re = eRe where r0 = e. 
Also Je = le © ift with ifc ^ 7 W ) . Define for i (1 ^ i g n - 1) the 
e3>e-homomorphisms \[/i : Re/Je —• J e / J e as follows: 

^i(Ti<p) = tip + le, (<p G e3>e) and 

*<(r,) = 0, f o r j ^ i, (0 ^ j g n ) . 

I t is routine to verify t ha t ^ can be extended to all of Re/ Je and defines a 
e<&e homomorphism. Consider, 

Re/le _ L > i t e / / e - ^ Je/Ie —^-> Re/Ie 

where e is the natural epimorphism of Re/Ie onto Re/Je and z is the 
natural monomorphism of Je/Ie into Re/Ie. Therefore, yt = ix/zte defines 
a ei>e-endomorphism of Re/Ie such t h a t 

Im ( 7 f ) Ç / e / J e C ker (7 . ) . 

Applying 2.1 for each 7*, ( 1 ^ i ^ w — 1), there is a pt £ i?e such t h a t 

Pi ^ 0, Pi G le , p ^ g /g, p ^ G /g ( j 5^ i ) , where (1 ^ j g » ) . 
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Consider {Rph . . ., Rpn-i}. We claim that 

n - l 

le = E *P<-

Define 

n-l 

J(k)
e = ]T i?p . for each 1 g k S n - 1. 

Suppose pfc G 7(A;)e. Then 

Rp* ' rk Ç /<*>* • r,. 

But p r̂* G Je, i 5̂  fe. This implies that 

pkrk G ^k)e • r/c ç /g 

a contradiction. Thus /^p^ Pi I{k) — 0 for each l ^ k S n — I. Therefore, 
the sum £ ^P* ]S direct and since C(RIe) = n — 1, le = £ ^P*-

Let x G /e. Then x can be written as x = £ û^p*, (a* G R). Using that 
ptTn G le (1 ^ i ^ n — 1), yields 

x • r„ = £ a;p*Tre G ie, V* G le. 

As le • rn Ç /g, we have that rn G e$e, a. contradiction. 

2.3 LEMMA. Suppose f Je ^ 0/or primitive idempotents e and f, and let 
e$e and le be as defined previously. Then 

dime$e (fie) = dimé$e (JJe) — 1. 

Proof. Let 0 ^ x = /x G Je, x (? Ie.lt will be shown that x • e$e 0 Je = 
Je as e<le vector spaces. Clearly le © ifo = Je. For each a G R, define an 
i^-homomorphism a : Je —> Re/Ie by 

<r(rx) = rax + /e, o"(/e) = 0. 

By the injectivity of Re/Ie, a can be extended to a right multiplication by 
an element p G Re such that Ie<p Q le and x<̂  — ax G /£. This implies that 

le -\- x - e$e = le + i?x = Je. 

It is straightforward to check that the above sum is a direct sum as e^e 
subspaces. Thus Rx = T(Rf) implies 

fie + x - e$e = fJe. 

This yields the result. 

The problem of determining the rings whose left indecomposable in-
jectives are uniserial can be cast into the framework of linear algebra. 
Let F and K be skew fields and FVK a bi-vector space over F and K. 
Then FVK is said to be simple in case FVK contains no proper non-zero 
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F — K bi-vector subspaces. Given an artinian ring whose left indecom
posable injective modules are uniserial, by 1.4, 2.2 and 2.3 one can always 
construct from these rings skew fields F, K, K', F Ç K, and K' — F, 
Kf — K vector spaces K> WF C K, VKj such that K> VK is simple and 

dimF (IF) = dimF (F) - 1 < oo 

dimx, (W) = dim** (V) - 1 < oo. 

In fact the existence of such a construction allows us to determine when 
such a ring is right serial. This discussion is summed up in the next 
theorem. 

In order to prove 2.4, the following definition will be needed: A module 
N is said to be injective relative to M in case for every submodule K Q M 
and homomorphism 5 : K —» TV, there is an extension of ô to M. When 
M = N, N is said to be quasi-injective. 

2.4 THEOREM. The following two statements are equivalent: 
(1) Every artinian ring whose indecomposable injective left modules are 

uniserial is a right serial ring. 
(2) Every simple bi-vector space FVK over skew fields F C K that possesses 

a sttbspace FWF Q FVF such that 

dimF W = dimF F — 1 < co 

dim (W)F = dim (V)F - 1 < oo 

satisfies dim (V)K = 1. 

Proof. Using 1.1 and a theorem of Nakayama, it suffices to prove the 
theorem when J2 = 0. 

(1) implies (2): Consider a simple bi-vector space FVK over skew fields 
F C K with subspace FWF Q FVF such that dimF W = dimF V — 1 < oo 
and dim (W) F = dim ( F) F — 1 < oo . Let R be the ring of matrices of the 
form 

R = 
LO K\ 

So R has primitive idempotents 

"o o l 
.0 lj • 

By [4, Proposition 1.2], Re2/Je2 is injective. So it will suffice to show that 
Re2/We2 is injective. Suppose <p\ Ve2/We2 —•> Re2/We2 is an jR-homo-
morphism. Since Ve2/We2 is simple as a left i^-module, <p is defined by its 
action on an element ve2 + We2 via 

<p(ve2 + We2) = ave2 + We2 {ve2 d We2), (a Ç K). 

By hypothesis IF © vF = V as F vector spaces, so av — vfi G IF for some 

ei 
1 0 
0 01 e2 = 
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fi G F. Thus (p can be extended to Re2/We2 via right multiplication by 
fie2. Therefore, Re2/We2 is quasi-injective. 

Consider lR(E) = {x G R\ x • E = 0}, E = 2&2/We2. As the F - K 
action corresponds to the R — R action on ideals of R, FVK simple 
implies that lR(E)e2 Q Je2, or lR(E)e2 = 0. The first case can not occur 
as E is not semi-simple. Thus lR{E)e2 = 0. This implies that lR{E)e\ = 0 
and so lR(E) = 0. Hence E is faithful. By a theorem of K. R. Fuller [5], 
Re2/We2 = E is injective. Therefore, using (1), R is right serial. This 
means that dim (V)K = 1. 

(2) implies (1): L e t / and e be primitive idempotents with fJe ^ 0. 
Setting V = fJe, W = fie, K = eRe, K' = fRf, and F = e$e and applying 
1.4, 2.2, 2.3 yields a simple bi-vector space K> VK with 

dim*> (W) = dim*> (F) — 1 < oo and 
dim (W)F = dim ( F ) F - 1 < oo. 

Therefore, dim*' (F/W) = dim (V/W)F = 1. Hence, the division rings 
K' and F are isomorphic via xa = 7(a)#, (x G V/W). Applying the 
hypothesis, dim (V)K = 1. Thus V = fJe = / / is simple, and so fR is 
uniserial. 

3. Rings with R/J commutative. Since any artinian ring with R/J 
commutative is basic, the results of Section 2 can be applied directly. 

3.1 LEMMA. Suppose F, K, and K' are fields with F C K, dimF (K) < oo , 
and K> VKj K'WK are K' — F,K' — K vector spaces such that K>W F QK> VF. 
If K'VK is simple and K'VK,K> WF satisfy 

dim (WF) = dim (V)F - 1 < oo 
dim*, (W) = A\mK>(V) — 1 < oo 

then dim (V)K = 1. 

Proof. The following notation will be used: dimF (KF) = n, dim* (VK) 
= fe. Thus dimF (VF) = few, dimF (WF) = kn — 1. We need only show 
that dimF (WF) = n — 1. 

Let {1, ri, . . ., 7v_i} be a basis for i£ over F. Suppose that there exists 
{wh . . ., wn) a set of non-zero F-linear independent vectors with w1} . . ., 
wn G IF. We will show that there must exist a vector 0 ?£ w £ W such 
that^r* £ W, (1 ^ irg n ~ 1) as follows: We will first show the existence 
of a set of non-zero ^-linear independent vectors {wi, . . . ,wn-s\ = S such 
that for each Wi £ 5, 

(1) {Wi.WiTi, . . .,WtT8} C W. 

When 5 = 0 and let r0 = 1, [wi, . . ., wn\ constitute such a set. So apply 
induction assuming the existence of a set of n — s non-zero, /Minear 
independent vectors {wi, . . ., wn-s] satisfying (1). Suppose there exists 
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a t least one wk with wk • 75+i # W. If not, any subset of n — s — 1 F-
independent vectors will do for the next step in the induction. So we 
may assume, re-indexing if necessary, t ha t wn-h * rtS+i (? W. Using wn-s 

we shall construct a set of n — s — 1 linearly independent non-zero 
vectors {^i, . . . , wn-s-i] such t h a t î î ^ • rk £ W, (1 S i S n — s — 1), 
0 ^ k ^ 5 + 1. So suppose t ha t for someWi, 1 ^ i < n — s,wt • r , + i (?_ W. 
Observe tha.twn-s • rs+i (£ W implies t ha t 

vF = w ® wn-h • T8+IF 

using tha t d i m F (W) = kn — 1. Therefore, 

w h e r e / £ F, w £ W. SetWf = wt — wn-s • f, and observe thatû>z ^ 0 
since ^ , wn-s are linearly independent. Having made this selection for 
aMwf (or l e a v i n g ^ = wt in caseze^ • r s + i Ç W), it is straightforward to 
show tha t the set {wi, . . . , zl>.„_*-i} is /^-linearly independent. Also it is 
clear using the commutiv i ty of K thatië^ • rk £ W, (1 S i S n — s — I), 
(0 ^ k ^ s + 1). Therefore by induction, we may assume tha t there 
exists 0 5* w G J^such t ha t w • rt £ W7", (1 rg i ^ n — 1). 

Let k £ K. T h u s * = / 0 + n / i + . . . + r„_i/n_i. So 

w - l 

w • & = w • (/o + n / i + . . . + rre_i/„_i) = 22 w • Ttfi + wfo £ H7'. 

Therefore w • K Ç1 W which implies t ha t K'w • K C W Q F, a contra
diction. So d i m F (WV) = n — I = kn — 1. Thus , & = 1. 

3.2 T H E O R E M . Le/ i? ôe aw artinian ring with R/J commutative. Then 
every indecomposable infective left R-module is uniserial if and only if R is 
right serial. 

Proof. By 1.1 and a theorem of N a k a y a m a [9], it suffices to consider 
the case when J2 = 0. Suppose every indecomposable injective left 
i^-module is uniserial. L e t / be a primitive idempotent such t h a t / / ^ 0. 
So there exists a primitive idempotent e such tha t f Je 9e 0 and such t ha t 
by 1 .3 /7 ^ T(eRYn\ Applying 1.4, 2.2, and 2.3 there exist fields K = 
eRe, K' = fRf, F = e<&e, and vector spaces K> VK = fJe, K'WF = fie 
satisfying the hypothesis of 3.1. T h u s dim (V)K = 1. S i n c e / / = fJe, 
fj is a one dimensional K(= eRe) vector space, and so C(fJR) = 1. 

This means tha t fR is r ight uniserial for all primitive idempotents / 
such t h a t / / 7^ 0. S i n c e / / = 0 implies t ha t fR is simple, we must have 
t ha t R is r ight serial. 

Suppose tha t R is right serial. Since R is basic, let {fi} be a basic set of 
primitive idempotents with 1 = / i H + /w. Since / 2 = 0, 

0 ç / i / ç (fi+f*)JQ--- QJ 
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is a sequence of [12, 2.6]. Applying [12, Theorem 2.7] and [12, Lemma 3.1] 
yields every indecomposable left injective module uniserial. 

3.3 COROLLARY. Let R be an artinian ring such that R/J is commutative. 
Then R is serial if and only if every indecomposable injective R-module is 
uniserial. 

Proof. Apply 3.2. 

3.4. PROPOSITION. Let R be an artinian ring which is Morita equivalent 
to a ring S with S/J{S) commutative. Then every indecomposable injective 
left R-module is uniserial if and only if R is right serial. 

Proof. Apply 1.2 and 3.2. 

Remark. Can 3.2 and 3.3 be extended to arbitrary rings, or for that 
matter to rings R such that R/J is a finite dimensional division algebra 
over a field? The author knows of no counter examples. 
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