RINGS WHOSE INDECOMPOSABLE INJECTIVE MODULES ARE UNISERIAL

DAVID A. HILL

Introduction. A module is *uniserial* in case its submodules are linearly ordered by inclusion. A ring R is *left (right) serial* if it is a direct sum of uniserial left (right) R-modules. A ring R is *serial* if it is both left and right serial. It is well known that for artinian rings the property of being serial is equivalent to the finitely generated modules being a direct sum of uniserial modules [8]. Results along this line have been generalized to more arbitrary rings [6], [13].

This article is concerned with investigating rings whose indecomposable injective modules are uniserial. The following question is considered which was first posed in [4]. If an artinian ring R has all indecomposable injective modules uniserial, does this imply that R is serial? The answer is yes if R is a finite dimensional algebra over a field. In this paper it is shown, provided R modulo its radical is commutative, that R has every left indecomposable injective uniserial implies that R is right serial.

The following definitions and notation will be needed. All rings have an identity, and all modules are unital. The Jacobson radical will be denoted by J. A submodule K is *large* in a module M in case $K \cap L \neq 0$ for every non-zero submodule L of M. The *injective hull* of M, denoted by E(M), is an injective module such that there exists a monomorphism $i: M \to E(M)$ with the property that i(M) is large in E(M).

The socle of M, denoted by S(M), is the largest semi-simple submodule of M. If R is artinian and M is any R-module then M/JM, denoted by T(M), is a direct sum of simples and is called the *top* of M.

If M is a semi-simple module the number of simple direct summands of M will be denoted by C(M). The notation $M^{(n)}$ will be used to denote the direct sum of *n*-copies of M. The notation $_{R}M(M_{R})$ will often be used to signify that M is a left (right) R-module. We shall say that M is an R - S bimodule where R and S are rings in case $_{R}M_{S}$ and (rm)s = r(ms) for $r \in R$, $s \in S$, $m \in M$.

1. Rings with indecomposable injectives uniserial.

1.1 PROPOSITION. Let R be an artinian ring such that every indecomposable injective left R-module is uniserial. Then every factor ring of R has this

Received July 19, 1979 and in revised form May 8, 1981. Part of this work was done with a grant from CNPq.

property. Conversely, if R/J^2 has every indecomposable injective left R-module uniserial, then so does R.

Proof. Let R/I be a factor ring of R and $E_{R/I}$ be an indecomposable injective over R/I. As $S(E_{R/I})$ is simple, the injective hull of $E_{R/I}$ is uniserial since it is a submodule of a uniserial module.

The final statement follows using an argument dual to the one in [8].

1.2 LEMMA. Let R be a ring such that every indecomposable injective left R-module is uniserial. Then any ring Morita equivalent to R has this property.

Proof. This result follows from the Morita theorems and will be left to the reader.

A ring is said to be *basic* in case $1 = e_1 + \cdots + e_n$ where e_1, \ldots, e_n are primitive orthogonal idempotents and $Re_i \cong Re_j$ for $i \neq j$. Since any artinian ring is Morita equivalent to a basic artinian ring, 1.2 allows us to restrict our attention to basic rings.

The following lemma was essentially proved in [4].

1.3 LEMMA. Let R be a basic artinian ring with $J^2 = 0$. Suppose that every indecomposable left injective R-module is uniserial. Let e and f be primitive idempotents of R such that $fJe \neq 0$, then $fJ \cong T(eR)^{(n)}$.

Proof. This result follows from [4, Theorem 2.4].

Letting $e\bar{R}e = eRe/eJe$ and $f\bar{R}f = fRf/fJf$, it is clear that fJ = fJeis a left $f\bar{R}f$ right $e\bar{R}e$ vector space. Likewise, it is not difficult to show that the left fRf action on fJe corresponds to the left R action, and the right eRe action on fJe corresponds to the right R action.

1.4 LEMMA. Let R be as in 1.3. Consider the indecomposable projective left R-module Re where e is a primitive idempotent. Suppose $fJe \neq 0$ for some primitive idempotent f. Then fJe contains no proper non-zero left fRf right eRe submodules.

Proof. Suppose $_{fRf}(Ie)_{eRe}$ is a non-zero left fRf right eRe submodule of fJe. Consider an indecomposable injective uniserial module E = Re/Ke, with Ke a maximal submodule of Je. Since

 $r_E(fI) = \{x \in E | fI \cdot x = 0\} = Je/Ke,$

[4, Lemma 2.3] implies that fIe = fJe.

2. The case when $J^2 = 0$. Throughout this section let R be a basic artinian ring with $J^2 = 0$ and such that every left indecomposable injective module is uniserial. The purpose of this section will be to characterize those artinian rings with $J^2 = 0$ whose indecomposable injectives are

uniserial. To prove the following lemmas, we shall need a number of facts and definitions.

For R an artinian ring with $J^2 = 0$ and such that every indecomposable left injective module is uniserial, let e be a primitive idempotent. We shall assume there exists a primitive idempotent f such that $fJe \neq 0$. Thus fJ = fJe is a left $f\overline{R}f$ right $e\overline{R}e$ vector space. Let Ie be a maximal (possibly Ie = 0 if Je is simple) proper semi-simple left ideal contained in Je with the property that the complement of Ie in Je is isomorphic to a copy of T(Rf). That is, $Ie \oplus Rx = Je$ with $Rx \cong T(Rf)$. The hypothesis that $fJe \neq 0$ guarantees the existence of such maximal left subideals.

Define

 $e\Phi e = \{e\varphi e \in Re | Ie\varphi e \subseteq Ie\}.$

Then it is easily seen that $e \Phi e$ is a subring of eRe and $eJe \subseteq e\Phi e$. Likewise it is not difficult to show that $e\Phi e = e\Phi e/eJe$ is a division subring of $e\overline{R}e$. Also it is clear that Ie, fIe, Je, fJe are left R right $e\Phi e$ modules and that fJe and fIe are left $f\overline{R}f$ right $e\Phi e$ vector spaces. As Re/Ie is uniserial, it is the injective hull of T(Rf). Likewise, we have that

 $\operatorname{End}_{R}(\operatorname{Re}/\operatorname{Ie})\cong e\Phi e/eIe.$

Let M be a left R-module and $S = \operatorname{End}_R(M)$. Then M is naturally an S-module in the obvious way. The module M is said to be *balanced* in case the natural ring homomorphism $R \to \operatorname{End}_S(M)$ is surjective. If M is injective then M is a *cogenerator* in case M contains an isomorphic copy of each simple left R-module.

2.1 LEMMA. Let $e\Phi e, e, f$, Ie be as defined previously. Suppose $\gamma \in End_{e\Phi e}$ (Re/Ie) satisfies Im (γ) \subseteq Je/Ie \subseteq ker (γ). Then γ is given by a left multiplication of an element in R.

Proof. Let $E = E_1 \oplus \cdots \oplus E_n$ be a minimal injective left cogenerator for R where each E_i is an indecomposable uniserial injective module. Set $S_i = \operatorname{End}_R(E_i)$ and $S = \operatorname{End}_R(E)$. Thus for some $\alpha \leq n$,

 $E_{\alpha} \cong Re/Ie$ and $e\Phi e/eIe \cong S_{\alpha}$.

So we may assume that $\gamma \in \operatorname{End}_{S_{\alpha}}(E_{\alpha})$. Since *E* is an injective cogenerator in an artinian ring *R*, *E* is balanced [1, page 218, exercise 32]. Extend γ to $\gamma' : E \to E$ by defining $\gamma'(E_j) = 0$ for $j \neq \alpha$ and $\gamma'(x) = \gamma(x)$, $(x \in E_{\alpha})$. It need only be shown that γ' is an S-homomorphism in order to prove the lemma.

Each element $s \in S$ can be represented as an $n \times n$ matrix where the *ij*'th entry s_{ij} is an *R*-homomorphism from E_j to E_i . We make the following observations: For $j \neq i$, $s_{ij}(JE_j) = 0$. Otherwise s_{ij} is an isomorphism between E_i and E_j , a contradiction to *E* minimal. Since E_{α} has composi-

tion length = 2, these remarks imply that

Im $(s_{\alpha j}) \subseteq JE_{\alpha}, \quad (j \neq \alpha).$

Using these remarks and letting $s \in S$, $x \in E$ where $x_j = \pi_j(x)$, (j = 1, ..., n), yields

$$\gamma'(s(x)) = \gamma' \left(\sum_{j=1}^n s_{1j}(x_j), \ldots, \sum_{\alpha_j} s_{\alpha_j}(x_j), \ldots \right) = \gamma \left(\sum_{\alpha_j} s_{\alpha_j}(x_j) \right) = \gamma(s_{\alpha\alpha}x_{\alpha}).$$

Also,

$$s\gamma'(x) = s \cdot (0, \ldots, \gamma(x_{\alpha}), \ldots, 0)$$

= $(s_{1\alpha}\gamma(x_{\alpha}), \ldots, s_{\alpha\alpha}\gamma(x_{\alpha}), \ldots, s_{n\alpha}\gamma(x_{\alpha})) = s_{\alpha\alpha}\gamma(x_{\alpha}).$

Since γ is an S_{α} homomorphism, the above two equations are equal. Thus γ' is an S-momomorphism. This means that γ' (and therefore γ) is given by a left multiplication of an element in R.

Another version of the next proposition was proved by V. P. Camillo and K. R. Fuller when R is local, $J^2 = 0$, and $C(_RJ) = 2$ [2].

2.2 PROPOSITION. Let e, f, Ie, and $e\Phi e$ be as defined previously. Then

 $\dim_{e\overline{\Phi}e} (\overline{R}e_{e\overline{\Phi}e}) \leq C(_{R}Je) < \infty.$

Proof. Let $n = C(_R Je)$. Suppose that

 $m = \dim_{e\bar{\Phi}e} \left(\bar{R}e_{e\bar{\Phi}e} \right) > n.$

So consider an $e\bar{\Phi}e$ independent set $\{\tau_i\}_{i=0}^n \subset \bar{R}e = e\bar{R}e$ where $\tau_0 = e$. Also $Je = Ie \oplus Rt$ with $Rt \cong T(Rf)$. Define for i $(1 \le i \le n-1)$ the $e\bar{\Phi}e$ -homomorphisms $\psi_i : Re/Je \to Je/Ie$ as follows:

$$\psi_i(\tau_i \varphi) = t\varphi + Ie, \ (\varphi \in e\Phi e) \quad \text{and} \\ \psi_i(\tau_i) = 0, \quad \text{for } j \neq i, \quad (0 \leq j \leq n).$$

It is routine to verify that ψ_i can be extended to all of Re/Je and defines a $e\bar{\Phi}e$ homomorphism. Consider,

$$Re/Ie \xrightarrow{\epsilon} Re/Je \xrightarrow{\psi_i} Je/Ie \xrightarrow{i} Re/Ie$$

where ϵ is the natural epimorphism of Re/Ie onto Re/Je and i is the natural monomorphism of Je/Ie into Re/Ie. Therefore, $\gamma_i = i\psi_i\epsilon$ defines a $e\overline{\Phi}e$ -endomorphism of Re/Ie such that

Im $(\gamma_i) \subseteq Je/Ie \subseteq \ker (\gamma_i)$.

Applying 2.1 for each γ_i , $(1 \le i \le n-1)$, there is a $\rho_i \in Re$ such that $\rho_i \ne 0, \rho_i \in Ie, \rho_i \tau_i \notin Ie, \rho_i \tau_j \in Ie \quad (j \ne i), \text{ where } (1 \le j \le n).$ Consider $\{R\rho_1, \ldots, R\rho_{n-1}\}$. We claim that

$$Ie = \sum_{i=1}^{n-1} R\rho_i$$

Define

$$I^{(k)}e = \sum_{i=k}^{n-1} R\rho_i$$
 for each $1 \le k \le n-1$

Suppose $\rho_k \in I^{(k)}e$. Then

$$R
ho_k\cdot au_k\subseteq I^{(k)}e\cdot au_k$$

But $\rho_i \tau_k \in Ie$, $i \neq k$. This implies that

$$\rho_k \tau_k \in I^{(k)} e \cdot \tau_k \subseteq I e$$

a contradiction. Thus $R\rho_k \cap I^{(k)} = 0$ for each $1 \leq k \leq n-1$. Therefore, the sum $\sum R\rho_k$ is direct and since $C({}_RIe) = n-1$, $Ie = \sum R\rho_k$.

Let $x \in Ie$. Then x can be written as $x = \sum \alpha_i \rho_i$, $(\alpha_i \in R)$. Using that $\rho_i \tau_n \in Ie$ $(1 \leq i \leq n-1)$, yields

$$x \cdot \tau_n = \sum \alpha_i \rho_i \tau_n \in Ie, \quad \forall x \in Ie.$$

As $Ie \cdot \tau_n \subseteq Ie$, we have that $\tau_n \in e\overline{\Phi}e$, a contradiction.

2.3 LEMMA. Suppose $fJe \neq 0$ for primitive idempotents e and f, and let $e\Phi e$ and Ie be as defined previously. Then

 $\dim_{e\bar{\Phi}e} (fIe) = \dim_{e\bar{\Phi}e} (fJe) - 1.$

Proof. Let $0 \neq x = fx \in Je, x \notin Ie$. It will be shown that $x \cdot e \Phi e \oplus Ie = Je$ as $e \overline{\Phi} e$ vector spaces. Clearly $Ie \oplus Rx = Je$. For each $\alpha \in R$, define an *R*-homomorphism $\sigma : Je \to Re/Ie$ by

$$\sigma(rx) = r\alpha x + Ie, \, \sigma(Ie) = 0.$$

By the injectivity of Re/Ie, σ can be extended to a right multiplication by an element $\varphi \in Re$ such that $Ie\varphi \subseteq Ie$ and $x\varphi - \alpha x \in Ie$. This implies that

$$Ie + x \cdot e\overline{\Phi}e = Ie + Rx = Je.$$

It is straightforward to check that the above sum is a direct sum as $e\overline{\Phi}e$ subspaces. Thus $Rx \cong T(Rf)$ implies

$$fIe + x \cdot e\overline{\Phi}e = fJe.$$

This yields the result.

The problem of determining the rings whose left indecomposable injectives are uniserial can be cast into the framework of linear algebra. Let F and K be skew fields and $_FV_K$ a bi-vector space over F and K. Then $_FV_K$ is said to be *simple* in case $_FV_K$ contains no proper non-zero

F - K bi-vector subspaces. Given an artinian ring whose left indecomposable injective modules are uniserial, by 1.4, 2.2 and 2.3 one can always construct from these rings skew fields $F, K, K', F \subseteq K$, and K' - F, K' - K vector spaces $_{K'}W_F \subseteq _{K'}V_K$, such that $_{K'}V_K$ is simple and

$$\dim_F (W) = \dim_F (V) - 1 < \infty$$
$$\dim_{K'} (W) = \dim_{K'} (V) - 1 < \infty.$$

In fact the existence of such a construction allows us to determine when such a ring is right serial. This discussion is summed up in the next theorem.

In order to prove 2.4, the following definition will be needed: A module N is said to be *injective relative to* M in case for every submodule $K \subseteq M$ and homomorphism $\delta : K \to N$, there is an extension of δ to M. When M = N, N is said to be *quasi-injective*.

2.4 THEOREM. The following two statements are equivalent:

(1) Every artinian ring whose indecomposable injective left modules are uniserial is a right serial ring.

(2) Every simple bi-vector space $_{F}V_{K}$ over skew fields $F \subset K$ that possesses a subspace $_{F}W_{F} \subseteq _{F}V_{F}$ such that

 $\dim_F W = \dim_F V - 1 < \infty$ $\dim (W)_F = \dim (V)_F - 1 < \infty$

satisfies dim $(V)_{K} = 1$.

Proof. Using 1.1 and a theorem of Nakayama, it suffices to prove the theorem when $J^2 = 0$.

(1) implies (2): Consider a simple bi-vector space $_FV_K$ over skew fields $F \subset K$ with subspace $_FW_F \subseteq _FV_F$ such that $\dim_F W = \dim_F V - 1 < \infty$ and $\dim_W(W)_F = \dim_W(V)_F - 1 < \infty$. Let R be the ring of matrices of the form

$$R = \begin{bmatrix} F & V \\ 0 & K \end{bmatrix}.$$

So R has primitive idempotents

$$e_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

By [4, Proposition 1.2], Re_2/Je_2 is injective. So it will suffice to show that Re_2/We_2 is injective. Suppose $\varphi: Ve_2/We_2 \rightarrow Re_2/We_2$ is an *R*-homomorphism. Since Ve_2/We_2 is simple as a left *R*-module, φ is defined by its action on an element $ve_2 + We_2$ via

$$\varphi(ve_2 + We_2) = \alpha ve_2 + We_2 \ (ve_2 \notin We_2), \ (\alpha \in K).$$

By hypothesis $W \oplus vF = V$ as F vector spaces, so $\alpha v - v\beta \in W$ for some

 $\beta \in F$. Thus φ can be extended to Re_2/We_2 via right multiplication by βe_2 . Therefore, Re_2/We_2 is quasi-injective.

Consider $l_R(E) = \{x \in R | x \cdot E = 0\}, E = Re_2/We_2$. As the F - K action corresponds to the R - R action on ideals of R, ${}_FV_K$ simple implies that $l_R(E)e_2 \subseteq Je_2$, or $l_R(E)e_2 = 0$. The first case can not occur as E is not semi-simple. Thus $l_R(E)e_2 = 0$. This implies that $l_R(E)e_1 = 0$ and so $l_R(E) = 0$. Hence E is faithful. By a theorem of K. R. Fuller [5], $Re_2/We_2 = E$ is injective. Therefore, using (1), R is right serial. This means that dim $(V)_K = 1$.

(2) implies (1): Let f and e be primitive idempotents with $fJe \neq 0$. Setting V = fJe, W = fIe, $K = e\overline{R}e$, $K' = f\overline{R}f$, and $F = e\overline{\Phi}e$ and applying 1.4, 2.2, 2.3 yields a simple bi-vector space $_{K'}V_K$ with

$$\dim_{K'} (W) = \dim_{K'} (V) - 1 < \infty \quad \text{and} \\ \dim (W)_F = \dim (V)_F - 1 < \infty.$$

Therefore, $\dim_{K'}(V/W) = \dim(V/W)_F = 1$. Hence, the division rings K' and F are isomorphic via $\bar{x}a = \gamma(a)\bar{x}$, $(\bar{x} \in V/W)$. Applying the hypothesis, dim $(V)_{\kappa} = 1$. Thus V = fJe = fJ is simple, and so fR is uniserial.

3. Rings with R/J commutative. Since any artinian ring with R/J commutative is basic, the results of Section 2 can be applied directly.

3.1 LEMMA. Suppose F, K, and K' are fields with $F \subseteq K$, dim $_F(K) < \infty$, and $_{K'}V_K$, $_{K'}W_K$ are K' - F, K' - K vector spaces such that $_{K'}W_F \subseteq_{K'}V_F$. If $_{K'}V_K$ is simple and $_{K'}V_K$, $_{K'}W_F$ satisfy

 $\dim (W_F) = \dim (V)_F - 1 < \infty$ $\dim_{K'} (W) = \dim_{K'} (V) - 1 < \infty$

then dim $(V)_{K} = 1$.

Proof. The following notation will be used: $\dim_F (K_F) = n$, $\dim_K (V_K) = k$. Thus $\dim_F (V_F) = kn$, $\dim_F (W_F) = kn - 1$. We need only show that $\dim_F (W_F) = n - 1$.

Let $\{1, \tau_1, \ldots, \tau_{n-1}\}$ be a basis for K over F. Suppose that there exists $\{w_1, \ldots, w_n\}$ a set of non-zero F-linear independent vectors with $w_1, \ldots, w_n \in W$. We will show that there must exist a vector $0 \neq w \in W$ such that $w\tau_i \in W$, $(1 \leq i \leq n-1)$ as follows: We will first show the existence of a set of non-zero F-linear independent vectors $\{\tilde{w}_1, \ldots, \tilde{w}_{n-s}\} = S$ such that for each $\tilde{w}_i \in S$,

(1) $\{\tilde{w}_i, \tilde{w}_i\tau_1, \ldots, \tilde{w}_i\tau_s\} \subseteq W.$

When s = 0 and let $\tau_0 = 1$, $\{w_1, \ldots, w_n\}$ constitute such a set. So apply induction assuming the existence of a set of n - s non-zero, *F*-linear independent vectors $\{\tilde{w}_1, \ldots, \tilde{w}_{n-s}\}$ satisfying (1). Suppose there exists

at least one \tilde{w}_k with $\tilde{w}_k \cdot \tau_{s+1} \notin W$. If not, any subset of n - s - 1 *F*independent vectors will do for the next step in the induction. So we may assume, re-indexing if necessary, that $\tilde{w}_{n-s} \cdot \tau_{s+1} \notin W$. Using \tilde{w}_{n-s} we shall construct a set of n - s - 1 linearly independent non-zero vectors $\{\bar{w}_1, \ldots, \bar{w}_{n-s-1}\}$ such that $\bar{w}_i \cdot \tau_k \in W$, $(1 \leq i \leq n - s - 1)$, $0 \leq k \leq s + 1$. So suppose that for some \tilde{w}_i , $1 \leq i < n - s$, $\tilde{w}_i \cdot \tau_{s+1} \notin W$. Observe that $\tilde{w}_{n-s} \cdot \tau_{s+1} \notin W$ implies that

 $V_F = W \oplus \tilde{w}_{n-s} \cdot \tau_{s+1} F$

using that $\dim_F(W) = kn - 1$. Therefore,

 $\tilde{w}_i \tau_{s+1} = \tilde{w}_{n-s} \cdot \tau_{s+1} f + w$

where $f \in F$, $w \in W$. Set $\bar{w}_i = \tilde{w}_i - \tilde{w}_{n-s} \cdot f$, and observe that $\bar{w}_i \neq 0$ since $\tilde{w}_i, \tilde{w}_{n-s}$ are linearly independent. Having made this selection for all \tilde{w}_i (or leaving $\bar{w}_i = \tilde{w}_i$ in case $\tilde{w}_i \cdot \tau_{s+1} \in W$), it is straightforward to show that the set $\{\bar{w}_1, \ldots, \bar{w}_{n-s-1}\}$ is *F*-linearly independent. Also it is clear using the commutivity of *K* that $\bar{w}_i \cdot \tau_k \in W$, $(1 \leq i \leq n - s - 1)$, $(0 \leq k \leq s + 1)$. Therefore by induction, we may assume that there exists $0 \neq w \in W$ such that $w \cdot \tau_i \in W$, $(1 \leq i \leq n - 1)$.

Let $k \in K$. Thus $k = f_0 + \tau_1 f_1 + \ldots + \tau_{n-1} f_{n-1}$. So

$$w \cdot k = w \cdot (f_0 + \tau_1 f_1 + \ldots + \tau_{n-1} f_{n-1}) = \sum_{i=1}^{n-1} w \cdot \tau_i f_i + w f_0 \in W.$$

Therefore $w \cdot K \subseteq W$ which implies that $K'w \cdot K \subseteq W \subseteq V$, a contradiction. So dim_F $(W_F) = n - 1 = kn - 1$. Thus, k = 1.

3.2 THEOREM. Let R be an artinian ring with R/J commutative. Then every indecomposable injective left R-module is uniserial if and only if R is right serial.

Proof. By 1.1 and a theorem of Nakayama [9], it suffices to consider the case when $J^2 = 0$. Suppose every indecomposable injective left *R*-module is uniserial. Let *f* be a primitive idempotent such that $fJ \neq 0$. So there exists a primitive idempotent *e* such that $fJe \neq 0$ and such that by 1.3 $fJ \cong T(eR)^{(n)}$. Applying 1.4, 2.2, and 2.3 there exist fields $K = e\bar{R}e$, $K' = f\bar{R}f$, $F = e\bar{\Phi}e$, and vector spaces $_{K'}V_K = fJe$, $_{K'}W_F = fIe$ satisfying the hypothesis of 3.1. Thus dim $(V)_K = 1$. Since fJ = fJe, fJ is a one dimensional $K(=e\bar{R}e)$ vector space, and so $C(fJ_R) = 1$.

This means that fR is right uniserial for all primitive idempotents f such that $fJ \neq 0$. Since fJ = 0 implies that fR is simple, we must have that R is right serial.

Suppose that R is right serial. Since R is basic, let $\{f_i\}$ be a basic set of primitive idempotents with $1 = f_1 + \cdots + f_n$. Since $J^2 = 0$,

$$0 \subseteq f_1 J \subseteq (f_1 + f_2) J \subseteq \dots \subseteq J$$

is a sequence of [12, 2.6]. Applying [12, Theorem 2.7] and [12, Lemma 3.1] yields every indecomposable left injective module uniserial.

3.3 COROLLARY. Let R be an artinian ring such that R/J is commutative. Then R is serial if and only if every indecomposable injective R-module is uniserial.

Proof. Apply 3.2.

3.4. PROPOSITION. Let R be an artinian ring which is Morita equivalent to a ring S with S/J(S) commutative. Then every indecomposable injective left R-module is uniserial if and only if R is right serial.

Proof. Apply 1.2 and 3.2.

Remark. Can 3.2 and 3.3 be extended to arbitrary rings, or for that matter to rings R such that R/J is a finite dimensional division algebra over a field? The author knows of no counter examples.

Acknowledgement. The author wishes to thank the referee for valuable suggestions concerning the final form of the manuscript.

References

- 1. F. W. Anderson and K. R. Fuller, *Rings and categories of modules* (Springer-Verlag, New York-Heidelberg-Berlin, 1973).
- V. P. Camillo and K. R. Fuller, Balanced and QF-1 algebras, Proc. Amer. Math. Soc. 34 (1972), 373-378.
- 3. V. Dlab and C. M. Ringel, Decomposition of modules over right serial rings, Math. Z. 129 (1972), 207-230.
- 4. K. R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115-135.
- 5. ——— On direct representations of quasi-injectives and quasi-projectives, Arch. Math. 20 (1969), 495–503.
- 6. G. Ivanov, Decomposition of modules over serial rings, Comm. in Alg. 3 (1975), 1031-1036.
- 7. T. Nakayama, On frobeniusean algebras I, Ann. of Math. 40 (1939), 611-634.
- 8. On frobeniusean algebras II, Ann. of Math. 42 (1941), 1-21.
- 9. Note on uniserial and generalized uniserial rings, Proc. Imp. Soc. Japan 16 (1940), 285-289.
- 10. E. Robert, Projectifs et injectifs relatifs, C. R. Acad. Sci. Paris. Ser. A 268 (1969), 361-364.
- 11. B. Roux, Anneaux artiniens et extensions d'anneaux semi-simples, J. Algebra 25 (1973), 295-306.
- 12. Modules injectifs indecomposables sur les anneaux artiniens et dualite de Morita, Seminaire Dubreil (Algebre) 26 (1973), no. 10.
- R. B. Warfield Jr., Serial rings, semi-hereditary rings and finitely presented modules, J. Algebra 37 (1975), 187-222.

Universidade Federal da Bahia, Salvador, Bahia, Brasil