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A Theorem on Unit-Regular Rings

Tsiu-Kwen Lee and Yiqiang Zhou

Abstract. Let R be a unit-regular ring and let σ be an endomorphism of R such that σ(e) = e for all

e2
= e ∈ R and let n ≥ 0. It is proved that every element of R[x ; σ]/(xn+1) is equivalent to an element

of the form e0 + e1x + · · · + enxn, where the ei are orthogonal idempotents of R. As an application, it

is proved that R[x ; σ]/(xn+1) is left morphic for each n ≥ 0.

Throughout this note, R is an associative ring with unity. A ring R is called unit-

regular if, for any a ∈ R, a = aua for some unit u of R. For a, b ∈ R, we say that a

is equivalent to b if b = uav for some units u and v in R. It is an interesting question

in ring theory (in particular in the theory of matrix rings) to ask when an arbitrary

element of a ring is equivalent to an element with a certain property. In this note, we

consider this question for the ring R[x ; σ]/(xn+1), where R is a unit-regular ring with

an endomorphism σ. Our main results are Theorem 2 and Corollary 3.

Let R be a ring. For a, b ∈ R, let [a, b] = ab − ba be the commutator of a and b.

For two additive subgroups A and B of R, let [A, B] denote the additive subgroup of

R generated by all elements [a, b] for a ∈ A and b ∈ B. An additive subgroup L of R

is called a Lie ideal if [L, R] ⊆ L.

Proposition 1 Let R be a semiprime ring and let σ be an endomorphism of R such

that σ(e) = e for all e = e2 ∈ R. Then e(σk(r) − r)(1 − e) = 0 for all r ∈ R, all

e2
= e ∈ R, and all positive integers k.

Proof Since σk is also an endomorphism of R and σk(e) = e for all e = e2 ∈ R, it

suffices to show the case k = 1. Let E be the additive subgroup of R generated by all

idempotents in R. Note that for e2
= e ∈ R and r ∈ R,

[r, e] = (e + (1 − e)re) − (e + er(1 − e))

is a difference of two idempotents. It follows that E is a Lie ideal of R. Thus, for r ∈ R

and e = e2 ∈ R, we have [e, r] ∈ [E, R] ⊆ E and hence

[e, r] = σ([e, r]) = [σ(e), σ(r)] = [e, σ(r)].

So [e, σ(r) − r] = 0 for all r ∈ R. Right-multiplying the last equality by 1 − e yields

e(σ(r) − r)(1 − e) = 0, as asserted.
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For an endomorphism σ of R, let R[x ; σ] be the ring of left polynomials over R.

Thus, elements of R[x ; σ] are polynomials in x with coefficients in R written on the

left, subject to the relation xr = σ(r)x for all r ∈ R. Let S = R[x ; σ]/(xn+1) where

n ≥ 0. Then

S = {r0 + r1x + · · · + rnxn : ri ∈ R, i = 0, 1, . . . , n}

with xn+1
= 0 and xr = σ(r)x for all r ∈ R. Our aim is to prove the following

theorem and Corollary 3.

Theorem 2 Let σ be an endomorphism of R such that σ(e) = e for all e2
= e ∈ R

and let S = R[x ; σ]/(xn+1) where n ≥ 0. Then the following are equivalent:

(i) R is a unit-regular ring.

(ii) Each α ∈ S is equivalent to e0 + e1x + · · · + enxn, where the ei are orthogonal

idempotents of R.

Proof (ii) ⇒ (i). Note that if r0 + r1x + · · · + rnxn ∈ S is a unit, then so is r0 in R. Let

a ∈ R. By hypothesis, there exists e2
= e ∈ R such that uav = e, where u, v are units

in R. Then a = a(vu)a is unit-regular.

(i) ⇒ (ii). It suffices to show the following claim: For each integer k with 1 ≤
k ≤ n, there exist idempotents e0, . . . , ek−1 ∈ R and rk, . . . , rn ∈ R such that up to

equivalence

(∗) α = e0 + e1x + · · · + ek−1xk−1 +

n
∑

j=k

r jx
j ,

where ei ∈ (1 − ei−1) · · · (1 − e0)R(1 − e0) · · · (1 − ei−1) for i = 1, . . . , k − 1 and

where r j ∈ (1 − ek−1) · · · (1 − e0)R(1 − e0) · · · (1 − ek−1) for j = k, . . . , n.

Our theorem is then proved by choosing k = n. Indeed, in this case we see that

α = e0 + e1x + · · · + en−1xn−1 + rnxn,

where ei ∈ (1 − ei−1) · · · (1 − e0)R(1 − e0) · · · (1 − ei−1) for i = 1, . . . , n − 1 and

where rn ∈ hRh with h := (1 − e0) · · · (1 − en−1). Because hRh is unit-regular by

[3, Corollary 4.7], there is a unit u in hRh with inverse v and an idempotent en in hRh

such that rn = uen. Clearly, (e0 + · · · + en−1) + v is a unit in R and

(e0 + · · · + en−1 + v)α = e0 + e1x + · · · + en−1xn−1 + enxn,

as asserted.

We now turn to proving our claim. By induction we first deal with the case k = 1.

Let α = r0 + r1x + · · · + rnxn ∈ S. Since R is unit-regular, every element of R is the

product of a unit and an idempotent. Thus, up to equivalence, left-multiplying α by

a suitable unit of R, we can assume that r0 = e0 is an idempotent. Because

(1 − (1 − e0)r1x)α(1 − r1x) = e0 + (1 − e0)r1(1 − e0)x + · · · ,
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where both 1 − (1 − e0)r1x and 1 − r1x are units of S, we can further assume that

r1 ∈ (1 − e0)R(1 − e0). Now

(1 − (1 − e0)r2x2)α(1 − r2x2) = e0 + r1x + (1 − e0)r2(1 − e0)x2 + · · · ,

where both 1 − (1 − e0)r2x2 and 1 − r2x2 are units of S, so we can assume that

r2 ∈ (1 − e0)R(1 − e0). A simple induction shows that we can assume that

α = e0 + r1x + r2x2 + · · · + rnxn, ri ∈ (1 − e0)R(1 − e0), for i = 1, . . . , n.

Thus the case where k = 1 is proved. Fix an integer k with 1 < k < n and assume

that (∗) holds. Clearly, e0, . . . , ek−1 are orthogonal idempotents. We set

fk−1 := (1 − e0) · · · (1 − ek−1) and gk−1 = e0 + · · · + ek−1.

Then fk−1 and gk−1 are orthogonal idempotents and fk−1 + gk−1 = 1. Because

fk−1R fk−1 is a unit-regular ring by [3, Corollary 4.7], write rk = uek where ek is an

idempotent of fk−1R fk−1 and u is a unit of fk−1R fk−1 with inverse v. Then gk−1 + v

is a unit of R with inverse gk−1 + u. Since

(gk−1 + v)α = e0 + e1x + · · · + ekxk +

n
∑

j=k+1

vr jx
j ,

up to equivalence we can assume that

α = e0 + e1x + · · · + ekxk +

n
∑

j=k+1

r jx
j ,

where e2
k = ek ∈ fk−1R fk−1 and r j ∈ fk−1R fk−1 for j = k + 1, . . . , n. Now

α ′ := (1 − rk+1x)α

= e0 + e1x + · · · + ekxk + rk+1(1 − ek)xk+1 +

n
∑

j=k+2

r ′jx
j ,

where rk+1, r ′k+2, . . . , r ′n ∈ fk−1R fk−1. Set r ′k+1 := rk+1(1 − ek). We then compute

(

1 − (1 − ek)r ′k+1x
)

α ′(1 − r ′k+1x) =

k
∑

i=0

eix
i +

n
∑

j=k+1

r ′ ′j x j ,

where

r ′ ′k+1 = r ′k+1 − ekσ
k(r ′k+1) − (1 − ek)r ′k+1ek

= ek(r ′k+1 − σk(r ′k+1)) + (1 − ek)r ′k+1(1 − ek)

= ek(rk+1 − σk(rk+1))(1 − ek) + (1 − ek)r ′k+1(1 − ek)

= (1 − ek)r ′k+1(1 − ek) ∈ (1 − ek) fk−1R fk−1(1 − ek),
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since ek(rk+1 − σk(rk+1))(1− ek) = 0 by Proposition 1, and where all r ′ ′i ∈ fk−1R fk−1

for i ≥ k + 2.

We set fi := (1 − e0) · · · (1 − ei) for i = 0, 1, . . . , k. Up to equivalence we may

assume that

α =

k
∑

i=0

eix
i + rk+1xk+1 +

n
∑

j=k+2

r jx
j ,

where ei = e2
i ∈ fi−1R fi−1 for i = 1, . . . , k, and where rk+1 ∈ fkR fk, r j ∈ fk−1R fk−1

for j = k + 2, . . . , n. We then compute

α ′ := (1 − rk+2x2)α

=

k
∑

i=0

eix
i + rk+1xk+1 +

n
∑

j=k+2

r ′j x
j ,

where r ′j ∈ fk−1R fk−1 for j > k + 2 and where r ′k+2 = rk+2(1 − ek). We then compute

(1 − (1 − ek)r ′k+2x2)α ′(1 − r ′k+2x2) =

k
∑

i=0

eix
i + rk+1xk+1 +

n
∑

j=k+2

r ′ ′j x j ,

where

r ′ ′k+2 = r ′k+2 − ekσ
k(r ′k+2) − (1 − ek)r ′k+2ek

= ek

(

r ′k+2 − σk(r ′k+2)
)

+ (1 − ek)r ′k+2(1 − ek)

= ek

(

rk+2 − σk(rk+2)
)

(1 − ek) + (1 − ek)r ′k+2(1 − ek)

= (1 − ek)r ′k+2(1 − ek) ∈ (1 − ek) fk−1R fk−1(1 − ek) = fkR fk,

since ek(rk+2 − σk(rk+2))(1− ek) = 0 by Proposition 1, and where all r ′ ′i ∈ fk−1R fk−1

for i ≥ k + 3. Repeating analogous arguments, up to equivalence we may assume that

α = e0 + e1x + · · · + ekxk +

n
∑

j=k+1

r jx
j ,

where r j ∈ fkR fk for j = k + 1, . . . , n. So we complete the inductive step and hence

the proof is finished.

Following [5], an element a ∈ R is called left morphic if R/Ra ∼
= l(a), where l(a) =

{r ∈ R | ra = 0} is the left annihilator of a in R, and the ring R is called left morphic

if every element of R is left morphic. A well known result of Ehrlich says that a ring

R is unit-regular if and only if R is both left morphic and (von Neumann) regular

(see [2]). The morphic property of the ring R[x ; σ]/(xn+1) was first considered in

[5] where it was noticed that if D is a division ring and σ is an endomorphism of D

with σ(1) = 1, then D[x ; σ]/(x2) is left morphic. Later in [1], it was proved that if
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R is a strongly regular ring (i.e., a regular ring whose idempotents are central) and σ
is an endomorphism of R such that σ(e) = e for all e2

= e ∈ R, then R[x ; σ]/(x2)

is left morphic. Note that every strongly regular ring is unit-regular. Recently, in [4,

Theorem 2], it was proved that if R is a unit-regular ring and σ is an endomorphism

of R such that σ(e) = e for all e2
= e ∈ R, then R[x ; σ]/(x2) is left morphic and

R[x]/(xn+1) is left morphic for each n ≥ 0. It is worth noting that the proof of

[4, Theorem 2] only works for R[x]/(xn+1), that is, the case where σ = 1R. The

assumption that σ(e) = e for all e2
= e ∈ R in the next corollary is not superfluous

(see [4, Example 3]).

Corollary 3 Let R be a unit-regular ring with an endomorphism σ such that σ(e) = e

for all e2
= e ∈ R. Then R[x ; σ]/(xn+1) is left morphic for each n ≥ 0.

Proof Let α ∈ S := R[x ; σ]/(xn+1). We show that α is left morphic in S. By Theo-

rem 3, α is equivalent to γ := e0 + e1x + · · · + enxn, where

e2
0 = e0 ∈ R and e2

i = ei ∈ (1 − ei−1) · · · (1 − e0)R(1 − e0) · · · (1 − ei−1)

for i = 1, . . . , n. Let β = b0 +b1x+· · ·+bnxn, where bi = (1−e0)(1−e1) · · · (1−en−i)

for i = 0, . . . , n. Thus, we have

Sγ = Re0 + R(e0 + e1)x + · · · + R(e0 + · · · + en)xn
= l(β),

l(γ) = Rb0 + Rb1x + · · · + Rbnxn
= Sβ.

So γ is left morphic in S by [5, Lemma 1]. Hence α is left morphic in S by [5,

Lemma 3].

In our concluding examples, we present a unit regular ring R that is not strongly

regular such that there exists an endomorpism σ 6= 1R with σ(e) = e for all e2
=

e ∈ R, and also a unit regular ring R that is not strongly regular such that 1R is the

only endomorphism fixing idempotents and that there exists an endomorphism σ
not equal to 1R.

Example 4 Let R = S×T where S is a strongly regular ring that is not commutative

and T is a unit regular ring that is not strongly regular. Then R is unit regular, but it

is not strongly regular. Take a unit v of S that is not central and let u = (v, 1T). Then

u is a unit of R. Let σ : R → R be the endomorphism given by σ(r) = u−1ru. Then

σ 6= 1R, and σ(e) = e for all e2
= e ∈ R.

Example 5 Let R = M2(Z2) be the 2 × 2 matrix ring over the ring of integers

modulo 2. Then R is a unit regular ring that is not strongly regular. Because each

element of R is either an idempotent or the sum of two idempotents or the sum

of three idempotents, we see that 1R is the only endomorphism fixing idempotents.

However, σ : R → R,
(

a b
c d

)

7→
(

d c
b a

)

is an endomorphism of R with σ 6= 1R.
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