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TRANSITIVITY AND ORTHO-BASES
JACOB KOFNER
Throughout this paper ‘‘space’’ means ‘T, topological space.”

1. The concept of an ortho-base was introduced by W. F. Lindgren
and P. J. Nyikos.

Definition 1. A base Z of a space X is called an ortho-base provided
that for each subcollection %y C & either N %, is open.-or &, is a local
base of a point x € X [17].

Ortho-bases are related to interior-preserving collections which have
been known for some time.

Definition 2. A collection of open sets of a space X is called interior-
preserving provided that the intersection of any subcollection is open. A
space X is called orthocompact provided that each open cover has an open
interior-preserving refinement.

It was proved in [17], in particular, that each space with an ortho-base
is orthocompact, and each orthocompact developable space (which is
the same as a non-archimedean quasi-metrizable developable space [4])
has an ortho-base. This paper is primarily devoted to the solution of
Problem 6.9 of [17]: whether, in spaces with ortho-bases, being a y-space
implies (non-archimedean) quasi-metrizability.

Definition 3. A space X is quasi-metrizable provided that it admits a
quasi-metric d, i.e., a generalized metric satisfying the triangle inequality,

d(x,2) = d(x,y) + d(y, %).

(““A space admits a generalized metric d"' means that for each x € X the
spheres S? (x, €) = {y| d(x,y) < ¢}, € > 0, form a local base atx.) If the
triangle inequality is strengthened to

d(x, 2) £ max {d(x,y),d(y, 2)},

then d is a non-archimedean quasi-metric and X is non-archimedean quasi-
metrizable. If the triangle inequality is relaxed to d(x, z,) — 0 whenever
d(x, v,) — 0 and d(y,, z,) — 0, then X is a y-space.

Obviously a non-archimedean quasi-metrizable space is a vy-space.
However, a quasi-metrizable space need not be non-archimedean quasi-
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metrizable [14]. The y-space conjecture states that every y-space is
quasi-metrizable. The problem, whether the conjecture is true, listed as
Classic Problem VIII in [18], is open and only partial solutions have been
obtained [11], [12], [15] (cf. also [1], [7]). G. Gruenhage has shown in [11]
that each paracompact y-space with an ortho-base is non-archimedean
quasi-metrizable (G. Gruenhage has also proved in [11] that a first
countable paracompact linearly ordered space with an ortho-base, due
to P. J. Nyikos, fails to be a y-space.) We will prove here a general
result concerning the transitivity of spaces with ortho-bases, which will
imply that all y-spaces with an ortho-base are non-archimedean quasi-
metrizable. This will prove the y-space conjecture for the spaces with
ortho-bases and will provide a positive solution to Problem 6.9 of [17].

Notice that a space is non-archimedean quasi-metrizable if and only if
it has a o-interior preserving base, i.e., a base which is a countable union
of interior preserving collections [14], [27]. An analogous characterization
of y-spaces requires the following definitions.

Definition 4. A collection & of pairs (G’, G'’) of open sets of a space
X,G C G", is called a local pair base of x € X, provided that for each
neighbourhood G of x there exists a pair (G’, G"") € & such that x € G’
and G C G; & is called a pair-base of X provided that it is a local pair
base of each x € X.

Definition 5. A collection Q of pairs (G’, G'") of open sets of a space X,
G’ C G",1is called interior preserving, provided that for each subcollection

QO C Q!

NG| (G, G") € Qo} Cint M {G"| (G',G") € Qo}.
A space is called preorthocompact provided that for each open cover there
is an interior-preserving collection Q of pairs of open sets (G, G"),

G’ CG”, such that {G”|{(G’,G"”) € Q} refines the cover while
{G'| (G',G"") € Q} covers the space.

We can now state that a space is a y-space if and only if it has a
o-interior preserving pair-base, i.e., a pair-base which is a countable
union of interior-preserving collections, cf. [6].

The analogy between Definitions 2, 4 and 1 suggests the following

Definition 6. A pair-base & of a space X is called an ortho-pair-base
provided that for each subcollection £y C & either

NG| (G, G") € P} Cint N\ {G"| (G, G") € Py}
or &P, is a local pair-base of a point x € X.

Each space with an ortho-pair-base is preorthocompact, and each
preorthocompact developable space (which is the same as a developable
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vy-space [12] has an ortho-pair-base. The proof of this is quite similar to
the proof in [17] of the analogous result on ortho-bases and ortho-
compactness, mentioned above.

H. Junnila has proved in [12] that each developable y-space is quasi-
metrizable. We will generalize here H. Junnila’s result to all y-spaces
with ortho-pair-bases.

2. Given a space X, a binary relation U on X, ie.,, U C X X X, is
called a netghbournet in X, provided that for each x € X,

Ulx} = {y| (x,y) € U}

is a neighbourhood of x. If U is a neighbourhood of the diagonal in
X X X, then it is a neighbournet in X; but the converse need not be
true.

Given a neighbournet U in X and a set G C X, we define

UG = U(G) = U {Ufx}| x € G}.

Given two neighbournets U and V we define a new neighbournet
UV = U o V such that

(Uo V){x} = U(V{x}) for each x € X,

and U*=UoUo...0U (ktimes). A neighbournet is transitive
provided that U2 C U, i.e., (x,z) € U whenever (x,y), (y,2) € U. A
neighbournet is normal provided that there exists a sequence of neigh-
bournets U,, n = 1, 2, ..., Upyy and U; = U. A sequence of neigh-
bournets (U,) is called basic, provided that for each x € X,
{Unfx}| = =1,2,...} is a local base of x [13].

ProrosiTiON 1. (i) A space X is quasi-metrizable if and only if there 1s
a basic sequence of normal neighbournets in X.

(ii) A space X s non-archimedean quasi-metrizable if and only if there
1is a basic sequence of transitive neighbournets in X.

(iii) 4 space X is a y-space if and only if there is a sequence of neigh-
bournets (U,) in X such that {(U,?) is basic [13].

Concerning (iii) we remark that if (U,?) is basic then so is (U,*) for
each k£ = 1.

It follows immediately from Proposition 1 that, in order to show that
a vy-space X is (non-archimedean) quasi-metrizable, it is enough to
prove, for example, that for each neighbournet U in X there exists a
normal (transitive) neighbournet V C U* for any fixed & = 1. This
suggests the following definition and proposition due to P. Fletcher and
W. F. Lindgren.

Definition 7. A space X is called k-pretransitive (k-transitive), k = 1,
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provided that for each neighbournet U in X there is a normal (transitive)
neighbournet V C U* (cf. [3]).

Obviously, each k-(pre)transitive space is m-(pre)transitive for each
m = k.

ProposiTION 2. Each k-pretransitive (k-transitive) vy-space is (non-
archimedean) quasi-metrizable.

We will show that each space with an ortho-(pair-)base is 2-(pre)-
transitive; hence, each y-space with an ortho-(pair-)base is non-archi-
medean quasi-metrizable (quasi-metrizable).

It is worth noting that k-transitivity and k-pretransitivity, para-
compactness-like properties of topological spaces with neighbournets in
the role of covers, seem to be of certain intrinsic interest. In many cases
it is not easy to show that a particular space is or is not k- (pre)transitive.
The only known classes of k-(pre)transitive spaces are those of the
generalized ordered spaces, & = 3 [15], the (pre)orthocompact semi-
stratifiable spaces, £ = 3, [12] and the spaces with ortho-(pair-)bases,
k = 2 as will be seen below. More on this subject can be found in [5],
[16] and [9].

3. The following construction was used in [15] to prove that each
generalized ordered space is 3-transitive.
Given a neighbournet U in X, we define a new neighbournet U+t in X
such that for each x € X,
Ut {x} = N {U(G)| G is a neighbourhood of x}.

LEMMA 1. For each neighbournet U in X
Q) UCvrC U
(it) (UH)* = U
(iii) If each U{x} 1s open then ((Ut)%)t = (UH)2.

Proof. (i) is obvious. Since for each open set G, Ut(G) = U(G), it
follows that (U+)* = Ut and if each U{x} is open, then
(UH)G) = UH(UHG)) = UN(UG)) = UWUG)) = U*G),
and it follows that ((U*)? = (U?)*, i.e., (ii) and (iii) are proved.

It follows from Lemma 1 (i) that in order to prove that each space X
with an ortho-(pair-)base is 2-(pre)transitive, it is sufficient to show
that for each neighbournet U in X there is a (normal) transitive neigh-
bournet V C U*.

Notice that a neighbournet U contains a normal neighbournet if and
only if U is normal.

ProposITION 3. The following are equivalent for a space X.
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(i) For each neighbournet U in X, Ut is normal.
(i1) For each neighbournet U in X, there is a neighbournet V in X such
that V* C Ut
(iii) For each mneighbournet U in X, there is anm interior preserving
collection Q of pairs (G',G") of open sets, G' C G", such that for each
x € X there exists (G',G") € Qwith x € G', G C Ut{x}.

Proof. (i) = (ii) is obvious. In order to prove (ii) = (i), let U = U,
be a neighbournet in X. There is a neighbournet V' = U, in X, such that
V* C U+, and such that all V{x} are open. By Lemma 1 (ii) (V2)+* C U.
By Lemma 1 (iii) ((V*+)2)* C U*. We have proved that for each neigh-
bournet U; in X there exists a neighbournet U, in X such that
(Uz*)? C Ui*. Repeating similar arguments for each n = 2, 3, ..., we
obtain a sequence (U,) of neighbournets, » = 1, 2, ... such that for
each n, (U,u1t)? C U,*t; hence, U;t is normal.

For (ii) = (iii) let V?* C Ut and each V{x} be open. We set

Q = {(Vix}, VP{ax})lx € X}.

For (iii) = (ii) let x € X and (G'(x), G’ (x)) € Q such that x € G'(x),
G"(x) C Ut{x}. We define a neighbournet V in X such that each
V{x} is given by

Vix} = G'(x) N (N {G"|{G',G") € Q,x € G'}).
It follows that V2 C U+.

ProrposiTiON 3’. The following are equivalent for a space X.

(1) For each meighbournet U in X, there is a tramsitive neighbournet
V C Ut

(i1) For each neighbournet U in X, there is an interior-preserving collection
C of open sets such that for each x € X there exists G € C with
x € G C Ut{x}.

Proof. For (i) = (ii) let all V{x} be open. We set C = {V{x}|x € X}.
It follows that C is interior-preserving. For (ii) = (i) we define a neigh-
bournet V such that each Vix} = N {G| G € C, x € G}.

We will also use the following property of neighbournets U+, the proof
of which is straightforward.

LeEMMA 2. Let U be a neighbournet in X, and G C X. Then F =
{x|G C Ut{x}} is relatively closed in G.
4. THEOREM 1. In each space with an ortho-pair-base for each neighbournet

U, Ut is normal.

THEOREM 1’. In each space with an ortho-base for each neighbournet U
there is a transitive neighbournet V C U™,
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Proof. Let £ be a well order on a space X. We will simultaneously
prove Theorems 1 and 1’ assuming for both Theorems that there is an
ortho-pair-base & in X, and assuming for Theorem 1/, in addition, that
G’ = G" for each (G',G") € &; this means that there is an ortho-
pair-base in X. It is sufficient to prove that there exists an interior-
preserving collection £ C & such that for each x € X there is
(G',G"y € 2 withx € G'and G’ C Ut {x}. For Theorem 1 this means
that U* is normal by Proposition 3. For Theorem 1, however, this means
the existence of a transitive neighbornet V' C U* by Proposition 3’, since
the collection {G| (G, G ) € £} is interior-preserving.

In fact we shall obtain an interior preserving collection

2CP,2={p)|xc X}, pk) = (G (x),G" (x)),
such that x € G’ (x) and G” (x) C U* {x}. Simultaneously we shall
define a set ¥ C X, and for each x € ¥ sets Y (x) and F(x) which will
be used in our argument. The set ¥ will be defined by stating for each
x € X whether x € V. The sets

Y(x) Cly € Y|y <}

will be defined for each x € ¥ using induction on y < x by stating
whether ¥y € V(x). For each x € Y the set
F(x) Cly € G'(%)] G"(x) C U* {y}}

will be a relatively closed subset of G’ (x) and x € F(x). All the definitions
will be carried out by induction on (X, <) as follows.

Letx € X. If x € F(y) for some y € ¥, y < x, we set p(x) = p(v)
for the first such y, and state that x ¢ Y.

Otherwise x € Y. Then put

(1), Y(x) ={y € Y|y <x € G'(y) and
Y(y) ={z € Y(x)|z <yl};
(i), p(x) = (G' (x),G"(x)) € &P such that x € G’ (x) and
G"(x) C Utx} M G(x),
where G(x) = N {G'(y) — F(x)|y € Y(x)};
(iii), F(x) = {y € G'(x)| G"(x) C Ut{y}}
— UG )y <x¢ G ).
Note that part (ii), of the definition can be carried out because G(x)
is a neighborhood of «x.
If Y(x) has the last element y, G(x) is a neighborhood of x since by
(ii), and (i),
G'(y) — Fy) CN{G'(z) — Fz)[z € Y)I N (G (¥) — F(y))
=U{G'() — F(z)|z € Y (x),z <y}
N (G (y) — F)) = G(x).
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The set G'(y) — F(y) is a neighborhood of x because since y € Y (x),
x € G'(y)andsincey < x € V,x ¢ F(y) and F(v) is a relatively closed
subset of the open set G’(y) by (iii), and Lemma 2.
If Y(x) has no last element then G(x) is a neighborhood of x since by

(iii), and (i),

NG )]y € Y(x)}

C NG (z) — Fle)lz € Y}y € Y(v)}

= N {G'(y) — Fy)|y € Y(x)} = Gx).

The set N{G" (y)| ¥ € Y(x)} is a neighborhood of x since
G (), Gy € Y(x)}

is a subcollection of the ortho-pair-base & and it is not a local pair-base,
for otherwise for some y € Y(x), G"(y) € U*x, and hence for the first
such y by (iii), « € F(y), while ¥ < x. This is impossible for x € Y.

It is clear now that for each x € X, x € G'(x) and G" (x) C Ut{x}.
We complete the proof by showing that

Q={{G'x), &) x e X} ={(GF), G ) xe V)

is interior preserving. Since £ C & and & is an ortho-pair-base, it is
enough to prove that £ does not contain a local pair-base for a point
x € X.

In fact, if y is the first point such that p(x) = p(y) then y € ¥ and
for z € YV, z # v, either

Fy)NG (@) =0or Fz) NG (2) =0
hence either
x € G'(z) or G'(2) T G'(x).

Indeed, let I = Y(y) M Y (z). It follows from (i), ¢ € I, that I is an
initial subset of both Y(y) and Y (z). Let ¥ and Z be the first elements
of (Y(y) —I)\J{y} and (¥Y(z) — I) U {2z} respectively. Obviously
I=Y3E =YE.1f2<7<ythenz¢ Y(y) and by (i), vy ¢ G'(5).
Hence

Fiy) CX =G'(e) CX -G (®)

by (iii), and (ii),. If § < Z then similarly
Fiz) € X - G ).

Let now # = 2. Then either § = vy € Y(2) or 2 = z € YV (y), hence either
G'(z) €G"(z) €S X — F(y)
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by (i), or similarly
G'(y) C X — F(z).
From Lemma 1(i) and Proposition 2 we have:

THEOREM 2. Each space with an ortho-pair-base is 2-pretransitive; hence,
each vy-space with an ortho-pair-base is quasi-metrizable.

THEOREM 2'. Each space with an ortho-base is 2-transitive, hence each
y-space with an ortho-base is non-archimedean quasi-metrizable.

Remark. If U is a neighbournet in a space without an ortho-base then
U+ may be non-normal even if the space is 2-transitive [10].

5. In light of the results of this paper, the following problems are of
interest.

Problem 1. Is each space with an ortho-pair-base k-transitive for some
k? Does it have a pair-base?

Problem 2. Is each quasi-metrizable space with an ortho-pair-base
non-archimedean quasi-metrizable?

Notice that it is not known whether each preorthocompact developable
space is orthocompact or, in other words, whether each quasi-metrizable
developable space is non-archimedean quasi-metrizable [12].

Added in proof. After this paper was submitted the y-space problem
was solved negatively by Ralph Fox [8].
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